AGENDA FOR THE EDNAP MEETING

SANTIAGO DE COMPOSTELA – 20 OCTOBER 2015

Expected duration: 09.00 - 17.00

Coffee: 10.30 – Lunch: 13.00-14.00 – Coffee: 15.30

Host: Angel Carracedo Chairman: Niels Morling

Welcome	Angel Carracedo
Update on activities concerning mtDNA SNP screening – two PCRs, 18 SNPs	Arnoud Kal
Updates from other groups EMPOP High quality DNA sequence database Nomenclature of STR sequences EUROFORGEN-NoE	Walther Parson Walther Parson Chris Phillips Peter Schneider
Identification of the MH17 victims	Arnoud Kal
EDNAP website update (www.isfg.org/EDNAP)	Peter Schneider
Future activities - Methylated DNA and age exercise	Athina Vidaki
EDNAP meeting in spring 2016 in Warsaw - April 2015	Niels Morling
EDNAP meeting in autumn 2016 – Rome?	Niels Morling
Any other business	Niels Morling

EUROPEAN DNA PROFILING GROUP (EDNAP) MEETING

Santiago de Compostela, Spain

20 October 2015

Host: Angel Carracedo Chairman: Niels Morling

A list of participants is attached.

Welcome

Professor Angel Carracedo welcomed members to Santiago de Compostela.

Update on exercises

A SNaPshot based method targeting 18 common mtDNA mutations Arnoud Kal Arnoud Kal presented the results of the collaborative EDNAP exercise concerning typing of 18 mtDNA SNPs with the SNaPshot method (presentation attached).

Updates from other groups

EMPOP

Walther Parson Walther Parson gave an update on the new version of the database EMPOP. New developments include an event-based search engine (SAM-E), map-based description of database matches, a new tabular layout of search results and the provision of the haplogroup status of mtDNA sequences. EMPOP follows the concept of providing high-quality data and basic results of database searches. The interpretation of search results is the responsibility of the users. There are courses planned for training on mtDNA matters in association with congresses. Individual courses can be organized (presentation attached).

STR nomenclature

Walther Parson gave an update on nomenclature of STRs analyzed by Massively Parallel Sequencing (MPS). The board of the IFSG has established a commission to provide considerations for early adopters of STR MPS. The issue was discussed at the 26th ISFG conference held in September 2015 in Krakow, Poland. The ISFG will formulate considerations on nomenclature of DNA sequence data for the forensic genetic community. The considerations will include minimal requirements for the analysis and storage of data as well as the use of reference sequences and nomenclature systems that are regularly updated.

Nomenclature of STR sequences

Chris Phillips Chris Phillips gave an update on the structures of the forensic genetic STRs and the various nomenclatures of STR sequences with special focus on the new challenges associated with the complete DNA sequence data that are produced by massively parallel sequencing (presentation attached).

EUROFORGEN-NoE – General update

Peter Schneider gave an update concerning the project (presentation attached).

Walther Parson

Identification of the MH17 victims

Arnoud Kal Arnoud Kal gave an overview of the work with the identification by means of DNA of the victims of the airplane accident in 2015 in Ukraine (presentation attached).

EDNAP website update (<u>www.isfg.org/EDNAP</u>)

Members are encouraged to visit the website. Suggestions are welcome.

Future activities

Methylated DNA and age exercise

Athina Vidaki and Denise Syndercombe Court suggested a collaborative EDNAP exercise of forensic age estimation based on investigation of the degree of DNA methylation of select nucleotides (presentation attached). The proposed method includes a bisulfite sequencing protocol using the Illumina MiSeq platform. The methylation status of 16 CpG sites will be investigated. Other chemistries and instruments may be used by participants. However, Kings College will send out the first set of samples, reagents, and detailed protocols that are compatible with the Illumina MiSeq before the end of December 2015. Participants will be asked to return results before the end of March 2016. The precise protocol and production plan will be formulated as soon as possible. Some of the procedures may be new to some of the laboratories. Therefore, the timeline may be considered. Athina Vidaki and Denise Syndercombe Court will contact laboratories.

Next meeting

The next EDNAP meeting will be held 19 April 2016 in Prague in connection with the CODIS meeting the same day and the ENFSI DNA WG Meeting 20-22 April 2016.

The colleagues from Laboratoria Genetica Forense, Universita Cattolica, Rome, kindly invited EDNAP members to hold the meeting in October/November 2016 in Rome. The EDNAP members happily accepted the invitation.

Any other business

Niels Morling thanked Roman Hradil for the excellent collaboration with the ENFSI DNA Working Group during his work as chairman and welcomed the new chairman, Sanders Kneppers, and invited to continuation of the professional and helpful collaboration between the groups.

There was no other business.

Closing of the meeting

The meeting closed with sincere thanks to Angel Carracedo, Chris Phillips, Ana Mosquera and all other colleagues, who helped to organise the meeting in Santiago de Compostela.

Attachments are found at the EDNAP website http://www.isfg.org/EDNAP/Meetings:

- List of participants
- Presentations
 - Arnoud Kal: Report on mtDNA SNP typing (waiting)
 - Walther Parson: EMPOP report
 - Walther Parson: High quality DNA sequence database
 - Chris Phillips: Nomenclature of STR sequences
 - Arnoud Kal: Identification of the MH17 victims (waiting)
 - Peter Schneider: EUROFORGEN-NoE report

EDNAP Minutes - 20 October 2015 - Santiago de Compostela

Niels Morling

Niels Morling

Peter Schneider

Athina Vidaki

 $\circ\;$ Ahina Vidaki: Methylated DNA and age exercise.

EDNAP Meeting, Santiago de Compostela, Spain, Oct 20, 2015

Empop_{mtDNA} database

Version 3 - launch: July 27 2015

Dr. Walther Parson

assoc. Professor, Institute of Legal Medicine, Innsbruck

adj. Professor, Forensic Program, Penn State University, PA, USA

walther.parson@i-med.ac.at

EMPOP 3 - Why change to a new version?

Improve forensic use

Improved search engine (SAM-E)

Block insertions (selection)

16032+TCTCTGTTCTTTCAT

- 104+CGGAGC
- 105+GGAGCA
- 209+GTGTGTT
- 241+TAA
- 286+TAACA
- 291+ACATCATAACAAAAAA
- 398+ACCAGATTTCAAAT
- 470+TACTACTA
- 524+[AC]₂₋₈
- 563+AACAAAGAAC...AAA (204)
- 8271+CCCCCTCTA
- 8280+CCCCCTCTA
- 8289+CCCCCTCTA

Improve forensic use

- Improved search engine (SAM-E)
- Better visualization of results (distribution maps)
- Show more details of matching and neighbor haplotypes
- New tools (e.g. Haplogroup Browser)

Introduce new concepts

Concept of haplogroups in practical forensic work Distribution of haplogroups as relevant information Cost model for mutations Stimulate alternative interpretation of haplotypes EMPOP V3 R11 N=34,617 Metapops revised Release updates

EMPOP V2.3 R11 will be available until Dec 2015 (no Release updates)

EMPOP v2.3 is still available here until Dec. 2015

Registration by Email to assign services (e.g. search history, NETWORK, ...)

walther.parson@gmail.com your account logout

Home Updates Use Methods Contribute Contributors Meet Terms of Use

mtDNA database v3/R11

QUERY POPULATIONS TOOLS

EMPOP

EMPOP slideshow provides information about novel features for mtDNA databanking and forensically relevant issues

Home Updates Use Methods Contribute Contributors Meet Terms of Use

QUERY POPULATIONS TOOLS

Updates

2015.07.27 Welcome to EMPOP 3

EMPOP 3 represents a new mtDNA database version based on a novel programming concept and website layout. New features are included to accommodate Massively Parallel (Next Generation) Sequencing data.

Good things that remain

- · EMPOP only holds high quality mtDNA sequence data that underwent stringent quality control
- EMPOP uses SAM, an alignment-free search engine to guarantee that matches are found regardless of the alignment and nomenclature of query and database haplotypes
- MtDNA haplotypes are sorted by geographic and metapopulation categories that are relevant to forensics and informative for other scientific fields

New developments in EMPOP 3

- The earlier distinction in forensic and literature data is no more required, as the QC tools applied to every uploaded dataset proved to be effective and reliable
- Tabular summaries of query results are presented in a more convenient format
- Statistical evaluation of matching haplotypes was improved by offering correction for sampling bias
- Neighbors are presented by Hamming distance and by costs (fluctuation rate)
- Haplogroup estimates of mtDNA sequences are provided based on maximum likelihood/minimum cost functions
- · Geographical maps are provided to present the distribution of matching haplotypes and the distribution of haplogroups
- Haplogroup Browser is a new tool to search for and display the distribution of mitochondrial haplogroups

Home Updates Use Methods Contribute Contributors Meet Terms of Use

QUERY POPULATIONS TOOLS

How to use EMPOP 3

The usage of EMPOP is described in the downloadable PDF file. For further questions and comments please contact info@empop.org.

pdf file "how to use EMPOP" • will be updated

EMPOP mtDNA database, v3/R11

Home Updates Use Methods Contribute Contributors Meet Terms of Use

QUERY POPULATIONS TOOLS

Methods Description of methods used in EMPOP Alignment discussed at this workshop

MtDNA sequences are traditionally reported relative to the human reference sequence (rCRS). This format is short and convenient, however nucleotide sequence strings can be translated into more than one rCRS-coded haplotype and are therefore ambiguous. As a consequence, database searches may suffer from biased results when query and database haplotypes are aligned differently. In the forensic context that could lead to an underestimation of absolute and relative frequencies and thus to an overestimation of the statistical power of the evidence.

EMPOP uses SAM, a string-based search algorithm that converts query and database sequences into alignment-free nucleotide strings and thus eliminates the possibility that identical sequences will be missed in a database query.

Length variant hot spots can be ignored during a search (default setting). Length variant regions were reviewed and adapted in EMPOP 3 now including coding region length variants (see below). EMPOP 3 introduces an updated query engine that considers block insertions and block deletions (indels) as a single phylogenetic event. In the CA-repeat of the control region (positions 513 and 524) only tandem indels are observed, e.g. 523del 524del. While this tandem deletion nominally constitutes two individual differences to the rCRS it is considered as single event by the new version of SAM-E. This better reflects the phylogenetic nature of the mitochondrial molecule.

The following length variant regions are considered in EMPOP 3:

Position	Туре	Length of Ins/Del	Inserted/Deleted Block	Since SAM Version
16193	Length Variation	16193del - 16193+CCC	Individual bases	19
309	Length Variation	309-CCCC - 309+CCTCC	Individual bases	19
455	Length Variation	455-T - 455+CC	Individual bases	19
463	Length Variation	463-CC - 463+CCCCC	Individual bases	20
573	Length Variation	573-C - 573+8C	Individual bases	19
960	Length Variation	960-C - 960+CCCCC	Individual bases	20
5899	Length Variation	5899-C - 5899+10C	Individual bases	20
8276	Length Variation	8276-CCCC - 8276+CCCC	Individual bases	20
8285	Length Variation	8285-CCCC - 8285+CCCC	Individual bases	20

QUERY POPULATIONS TOOLS

Contribute

The board of the International Society of Forensic Genetics (ISFG) and the editors of <u>Forensic Science International: Genetics</u> and <u>International Journal of Legal</u> <u>Medicine</u> invited EMPOP to logistically organize and perform quality control (QC) of mtDNA sequences in the course of manuscript preparations for the journals. Before mtDNA population papers are put forward to the editors for review, the authors are requested to submit the data to EMPOP. After positive evaluation, the authors will be contacted by EMPOP with the respective EMPOP accession numbers that serve as indicator of successful QC for the editors and reviewers. The necessary steps for submission of mtDNA sequences to EMPOP are outlined below.

Step 1

Prepare your sequence data as shown in the tutorial. An example can be downloaded from the EMPOP webpage <u>here</u> that can also be used as template. The emp-file is a tab delimited text file that can be created using standard text software or MS Excel (then, save file under .txt format and rename "txt" by "emp"). The first 2 lines specify individual details of the dataset and origin of the samples. Further lines list the mtDNA haplotypes headed by their sequence range(s). Note that a given sequence range is applied to all mtDNA haplotypes following this range until a new range is defined (range lines are defined by "#!"). Text lines, e.g. for individual comments, need to be identified using the "#" symbol.

Step 2

Submit your file to EMPOP by Email to EMPOP. The data will be quality checked for format, clerical error, sequence range violation, reference error, designation of indels, phantom mutation using in-house software and <u>Network</u>.

EMPOP mtDNA database, v3/R11

Home Updates Use Methods Contribute Contributors Meet Terms of Use

QUERY POPULATIONS TOOLS

Contributors

EMPOP was established under the scientific umbrella of the European DNA Profiling Group (EDNAP). Its conceptual design has been open to scientific discussion, which many colleagues in the forensic and population genetic field joined. The current version of the database is a result of international teamwork and hopefully continues to evolve by fruitful collaboration in the future.

Collaborative scientific groups

EDNAP The European DNA Profiling Group

EDNAP Website Publication: Parson 2004

Ge.F.I. Gruppo Ematologi Forensi Italiani <u>Ge.F.I. Website</u> Publication: <u>Turchi 2008</u>

GHEP-ISFG Grupo Español y Portugués de la ISFG / Grupo Espanhol e Português da ISFG <u>GHEP-ISFG Website</u> Publication: <u>Prieto 2010</u>

Individual collaborators

Argentina Carlos Vullo, Cecilia Bobillo, Daniel Corach, Laura Catelli

Belgium Persedette Vecto, Stiin Desmuter

Bernadette Hoste, Stijn Desmyter

Brazil

Cintia Fridman, Denilce R Sumita, Edna S. Miazato Iwamura, Greiciane G Paneto, Martin R Whittle, Regina M Cicarelli

Chile

Servicio Medico Legal

China

Xiang Yanbao

under construction to be completed ...

please send comments

EMPOP Tools

The EMPOP tools section provides a suite of software to support the analysis and interpretation of mitochondrial DNA sequence variation.

Haplogroup Browser

The haplogroup browser represents the established <u>most recent Phylotree</u> haplogroups in convenient searchable format and provides the number of EMPOP sequences assigned to the respective haplogroups by <u>EMMA</u>. Note that EMPOP provides the MRCA haplogroup if multiple haplogroup assignments are feasible.

Individual haplogroups can also be found by querying differences to the rCRS in a database of > 20,000 mtGenome sequences.

EMPcheck

EMPcheck is a tool to perform plausibility checks on a rCRS-coded data table. The file format must meet the requirements described below and in <u>Carracedo et al 2014</u> See <u>here</u> for the required file format.

NETWORK

NETWORK is software to calculate and draw quasi-median networks. They are useful to examine the quality of an mtDNA dataset. Details on how to use NETWORK and references can be found <u>here</u>.

QUERY POPULATIONS TOOLS

Query	Result Details	Neighbors					
Sample ID	rCRS Control Region						
Ranges	16024-576						
Profile			Subark of 2	197 00			
Entire Data	base		subsec of a			Frequency	Clopper Pearson Cl
			haplotypes	(R11)	11/26127	4.2102e-4	[2.1019e-4, 7.5320e-4]
				* *			
By Origin						Frequency	Clopper Pearson Cl
Africa					0/1900	0.0000e+0	[0.0000e+0, 1.9396e-3]
America					6/13829	4.3387e-4	[1.5924e-4, 9.4411e-4]
Asia					3/6024	4.9801e-4	[1.0271e-4, 1.4547e-3]
Europe					2/4374	4.5725e-4	[5.5380e-5, 1.6507e-3]
Find origin.							

By Metapopulation		Frequency	Clopper Pearson Cl
African	2/3912	5.1125e-4	[6.1920e-5, 1.8456e-3]
Westeurasian	6/10687	5.6143e-4	[2.0606e-4, 1.2216e-3]
South Asian	0/644	0.0000e+0	[0.0000e+0, 5.7117e-3]
East Asian	0/2923	0.0000e+0	[0.0000e+0, 1.2612e-3]
Southeast Asian	0/1144	0.0000e+0	[0.0000e+0, 3.2194e-3]
North Asian	0/166	0.0000e+0	[0.0000e+0, 2.1977e-2]
Native American	0/1972	0.0000e+0	[0.0000e+0, 1.8689e-3]
Native American Admixed	2/2091	9.5648e-4	[1.1586e-4, 3.4508e-3]
US Hispanics	1/2588	3.8640e-4	[9.7828e-6, 2.1510e-3]

Find metapopulation...

QUERY POPULATIONS TOOLS

Query	Result	Details	Neighbors
Sample ID	rCRS Co	ontrol Region	
Ranges	16024-	576	

Profile

EMPOP 3 provides haplogroup info

11 of 11 haplotypes shown

Origin					Metapopulation		Haplogroup		
filter origins					filter metopopu		filter haplog	group	
Continent	Region	Country	Province	City		Ignored Mutations	Rank 1	Rank 2	Publications
Asia	Central Asia	Uzbekistan	Tashkent province	Chirchik	Westeurasian		H2a2a1 🚯	RO 🚯	Irwin 2010
Europe	Western Europe	Germany	Southwest Germany		Westeurasian		H2a2a1 🚯	RO 🕕	Lutz-Bonengel 2009
Asia	Central Asia	Uzbekistan	Fergana	Ohunbabaev	Westeurasian		H2a2a1 🚯	RO 🕕	Irwin 2010
America	South America	Argentina	Misiones		Native American Admixed		H2o2o1 🚯	RO 🚯	Bobillo 2010
Asia	Central Asia	Uzbekistan	Tashkent province	Chirchik	Westeurasian		H2a2a1 🚯	R0 🚯	Irwin 2010
America	Northern America	United States of America	Florida		Westeurasian		H2a2a1 🚯	RO 🚯	AFDIL 2011
America	Northern America	United States of America	Idaho		US Hispanics		H2a2a1 🚯	RO 🚯	AFDIL 2012
Europe	Western Europe	Germany	Baden-Württemberg	Freiburg	Westeurasian		H2a2a1	RO 🚯	Lutz-Bonengel 2012
America	Northern America	United States of America	Washington		African		H2a2a1 🚯	RO 🚯	AFDIL 2012
America	Northern America	United States of America	California	Orange County	African		H2a2a1 🚯	RO 🚯	AFDIL 2013
America	South America	Argentina	Rio Negro		Native American Admixed		H2o2o1 🚯	RO 🚯	Bobillo 2010

QUERY POPULATIONS TOOLS

Query Sample ID Ranges Profile	Result Details (none specified) 16024-576	Neighbors		EMP	°OP 3 step	pro nei	ovi igh	ides up	to			
92 of 92	haplotypes show	'n		inci	uaine		osu	: value	5			
Drigin					Metapopulation					Haplogroup	_	
filter origins					filter metapopu		filter		• Innored	filter haplogi	oup	
ontinent	Region	Country	Province	City		Cost	Count	Mutations	Mutations	Rank 1	Rank 2	Publications
urope	Southern Europe	Spain	Asturias		Westeurasian	2.41	2	G263A (0.75) 315.1delC (0.77)	Y199T (0.00) 573.1delC 573.2delC 573.3delC (0.89)	н	RO 🚯	Prieto 2011
urope	Northern Europe	Sweden	Uppsala		Westeurasian	1.52	2	G263A (0.75) 315.1delC (0.77)	Y195T (0.00)	RO 🚯	н	Tillmar 2010
urope	Eastern Europe	Hungary	Budapest	Budapest	Westeurasian	1.52	2	G263A (0.75) 315.1delC (0.77)	Y16056C (0.00)	RO 🕕	н 🚯	Irwin 2007
America	Northern America	United States of America	Colorado		Westeurasian	1.52	2	G263A (0.75) 315.1delC (0.77)	Y152T (0.00)	RO 🕕	н	AFDIL 2011
America	Northern America	United States of America	California	Orange County	Westeurasian	0.77	1	315.1delC (0.77)	R484A (0.00)	H2a2a1 🚯	H2a2a1 🚯	AFDIL 2013
Asia	Western Asia	Kuwait			Westeurasian	1.94	2	G263A (0.75) 315.1delC (0.77)	R16183A (0.00) 309.1delC 309.2delC (0.42)	RO 🕄	н	Scheible 2011

		walther.parson@gmail.com your account logout
Home Updates Use Methods Contribute Contributors Meet Terr	ms of Use	
QUERY POPULATIONS TOOLS		
EMPOP accession number	Text	
Geographic Affiliation Spain	Authors	
Metapopulation		

Submit

1567 samples within **11** populations found.

		Origin					Metapopulatio	n		
EmpAcc#	Count	Continent	Region	Country	Province	City	u	L2	L3	Publication
EMP00023	154	Europe	Southern Europe	Spain			Westeurasian	European		Crespillo 2006
EMP00024	154	Europe	Southern Europe	Spain	Basque Country	Madrid	Westeurasian	European		Prieto 2011
EMP00290	249	Europe	Southern Europe	Spain	Modrid	Andalucia	Westeurasian	European		Prieto 2011
EMP00293	84	Europe	Southern Europe	Spain	Basque Country		Westeurasian	European		Prieto 2011
EMP00365	106	Europe	Southern Europe	Spain	Basque Country		Westeurasian	European		Cardoso 2012
EMP00400	61	Europe	Southern Europe	Spain	Cantabria		Westeurasian	European		Cardoso 2010
EMP00533	438	Europe	Southern Europe	Spain	Val d'Aran		Westeurasian	European		Lopez Parra 2012

I	1 1 1 1 1	2 2 2 2	3 3 3 3 2	4 4 4 3 3	5559	6 6 6 5	77776	8 8 8 7	1 9 9 9 8	2 1 10 10 9	3 2 11 11 10	4 3 1 1	5 4 2 2 1	5 3 3 2	6 4 3	5 5 4	6	6	_								ST	S to	MF	PS
	÷ (- 2	3	-	5	6	7	-	-	10	11	12	1.7	2	3	-	5	6												
		2	-		-		-	-	-	-	10		12	-	-	-		5	~											
	-	2	3	-	s	6	7	-		10		12		2		-	5	5	7	-								$\mathbf{O}\mathbf{O}\mathbf{O}$		
	-	2	3	-6	5	6	7	-		10		12	13		2	3	-4	5	6	7										
	2	2	3	-4	5	6	7	-	9	10	3.3.	1	2	3	-4	5	6	7	-	-	10	3.3								
	а.	2	з		4	5	6	7			10	2.2	12	13	-	2	3	-4	5	6	7	-	9							
	1	2	з	-6	5	6	7	-	9	10	1.1	1.2	13	2.4	- 1	2	3	-4	5	6	7	-							-	
	а.	2	3	-6	5	6	7	-	9	10	3.3	1.2	13	1.4	2	2	3	-	5	6	7	-	-							
	1.	2	з	-6	5	6	7		9	10	1.1	12	13	1.4	1	2	3	-4	5	6	7	-	9	10						
	1	2	з	-6	5	6	7	-	9	20	2.2	12		13	2.6	1.5	16	17	18	- 2	2	3	-6	5	6					
	1	2	3	-6	5	6	7		9	10	2.2	12	13	2.4	15	16	1	2	3	-6	5	6	7							
	1	2	3	-6	5	6	7		9	10	11	12		13	2.4	15	16	17	18	19	1.	2	3	-4	5					
	1	2	3	-6	5	6	7		9	10	1.1	12		13	1.4	15	16	17	18	19	20	- 1	2	3	-6	5				
	1	2	3	-6	5	6	7	-	9	10	1.1	12	13	1.4		15	16	17	18	19	20	2	2	3	-5	5				
	1	2	3	-6	5	6	7		9	10	1.1	12	13	1.4	15	16	17	18	1	2	3	-4	5	6	7	-				
	1	2	3	-4	5	6	7		9	10	1.1	12	13	1.4	15		16	17	18	19	20	21	1	2	3	-	5			

		GAT			AGAT				_		AGAC		AT			AGAT												
14	1	2	3	4	5	6	7	8	1	2	3	4	5															
16	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6													
17	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5												
18	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5	6											
18.3	1		2	3	4	5	6	7	8	9	10	11	1	2	3	4	5	6										
19	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6										
19.3	1		2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6									
19.3	1	2	3	4	5		6	7	8	9	10	11	12	1	2	3	4	5	6									
21	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8								
21	1	2	3	4	5	6	7	8	9	10	11	12	13	1	2	3	4	5	6	7								
22	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5	6	7	8	9	10	11						
22.3	1	2	3		4	5	6	7	8	9	10	11	12	13	1	2	3	4	5	6	7	8	9					
23	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1	2	3	4	5	6	7	8						
23	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1	2	3	4	5	6	7	8	9	_				
24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1	2	3	4	5	6	7	8	9	10				
24.2	1	2	3	4	5	6	7	8	9	10	11	12		13	14	15	16	17	18	1	2	3	4	5	6			
25	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1	2	3	4	5	6	7	8				
25.2	1	2	3	4	5	6	7	8	9	10	11	12		13	14	15	16	17	18	19	1	2	3	4	5			
26.2	1	2	3	4	5	6	7	8	9	10	11	12		13	14	15	16	17	18	19	20	1	2	3	4	5		
26.2	1	2	3	4	5	6	7	8	9	10	11	12	13	14		15	16	17	18	19	20	1	2	3	4	5		
27	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1	2	3	4	5	6	7	8		
27.2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		16	17	18	19	20	21	1	2	3	4	5	

STR sequence variation analysis will add a lot of power ...in some markers, but not all

STR ranked by repeat allele (RA) heterozygosity	Sequence heterozygotes detected in isometric homozygotes	Proportion of sequence heterozygotes in isometric homozygotes	No. of repeat alleles	No. of sequence alleles	No. of genotypes reported	Repeat allele heterozygosity	Sequence allele heterozygosity	Rise in power with MPS
DXS10103	2.15%	28%	44	111	1244	92.31%	98.22%	6.4%
D12S391	5.72%	36.73%	25	91	1785	84.43%	93.53%	10.78%
D2S1338	3.18%	19.87%	12	61	1767	84%	92.74%	10.39%
D21S11	6.57%	35.23%	23	89	1772	81.36%	92.95%	14.25%
D8S1179	7.31%	35.2%	11	26	1761	79.24%	90.57%	14.31%
vWA	2.33%	10.53%	11	35	1701	77.86%	85.15%	9.36%
D13S317	7.2%	30.91%	9	25	1736	76.69%	88.92%	15.94%
D3S1358	8.05%	30.65%	10	22	1716	73.73%	86.57%	17.42%
D5S818	4.45%	16.87%	10	23	1681	73.62%	85.42%	16.02%
D1S1656	2.54%	9.56%	18	36	1657	73.41%	90.48%	23.24%
D4S2408	3.71%	12.11%	8	12	1634	69.39%	79.95%	15.22%
D9S1122	10.38%	33.68%	9	19	1695	69.17%	83.78%	21.12%
D2S441	3.6%	11.04%	15	27	1622	67.37%	82.17%	21.96%

Discussed STR sequence nomenclature issues at EDNAP Zurich 2014
 Katherine Gettings presented findings from NIST's MPS analysis of core STRs

- Discussed STR sequence nomenclature issues at EDNAP Zurich 2014
 Katherine Gettings presented findings from NIST's MPS analysis of core STRs
- Illumina launched the ForenSeq kit in January 2015
 27 A-STRs, 24 Y-STRs, 7 X-STRs

- Discussed STR sequence nomenclature issues at EDNAP Zurich 2014
 Katherine Gettings presented findings from NIST's MPS analysis of core STRs
- Illumina launched the ForenSeq kit in January 2015
 27 A-STRs, 24 Y-STRs, 7 X-STRs
- 2015: USC/KCL/Illumina analysed the 944 sample CEPH panel with ForenSeq

Runs completed in August and data processing ongoing, but all STR sequence variation is now compiled - provides a good overview of 58 STRs

- Discussed STR sequence nomenclature issues at EDNAP Zurich 2014
 Katherine Gettings presented findings from NIST's MPS analysis of core STRs
- Illumina launched the ForenSeq kit in January 2015
 27 A-STRs, 24 Y-STRs, 7 X-STRs
- 2015: USC/KCL/Illumina analysed the 944 sample CEPH panel with ForenSeq

Runs completed in August and data processing ongoing, but all STR sequence variation is now compiled - provides a good overview of 58 STRs

 September: Round table discussion at ISFG Krakow began collection of ideas on nomenclature and oversight of data

Several suggestions, but agreement to require flanking SNPs from suppliers

- Discussed STR sequence nomenclature issues at EDNAP Zurich 2014
 Katherine Gettings presented findings from NIST's MPS analysis of core STRs
- Illumina launched the ForenSeq kit in January 2015
 27 A-STRs, 24 Y-STRs, 7 X-STRs
- 2015: USC/KCL/Illumina analysed the 944 sample CEPH panel with ForenSeq

Runs completed in August and data processing ongoing, but all STR sequence variation is now compiled - provides a good overview of 58 STRs

 September: Round table discussion at ISFG Krakow began collection of ideas on nomenclature and oversight of data

Several suggestions, but agreement to require flanking SNPs from suppliers

 September: Katherine Gettings' FSIGEN review published and e-mail discussions to clarify STR sequence alignment issues and current repeat motif inconsistencies

- Discussed STR sequence nomenclature issues at EDNAP Zurich 2014
 Katherine Gettings presented findings from NIST's MPS analysis of core STRs
- Illumina launched the ForenSeq kit in January 2015
 27 A-STRs, 24 Y-STRs, 7 X-STRs
- 2015: USC/KCL/Illumina analysed the 944 sample CEPH panel with ForenSeq

Runs completed in August and data processing ongoing, but all STR sequence variation is now compiled - provides a good overview of 58 STRs

 September: Round table discussion at ISFG Krakow began collection of ideas on nomenclature and oversight of data

Several suggestions, but agreement to require flanking SNPs from suppliers

 September: Katherine Gettings' FSIGEN review published and e-mail discussions to clarify STR sequence alignment issues and current repeat motif inconsistencies

 ISFG board has charged Walther with coordination of a guidelines document to highlight forensic needs and the challenges of annotating genomic data

Sequence alignment and sequence annotation

 Alignment of an STR sequence string to a community-wide agreed human genome assembly

GRCh37 and GRCh38 - how easy is it to interchange these integer sets?

Are the assemblies identical for forensic loci or is there extra sequence?

How often will new assemblies be published in the future?

Sequence alignment and sequence annotation

 Alignment of an STR sequence string to a community-wide agreed human genome assembly

GRCh37 and GRCh38 - how easy is it to interchange these integer sets?

Are the assemblies identical for forensic loci or is there extra sequence?

How often will new assemblies be published in the future?

Annotation of repeat sequence features and SNPs and/or Indels in the flanking regions

Common flanking region markers generally have rs-numbers, but rare variants will also occur - but can use genomic coordinates e.g. 17:4588194

Are there inconsistencies in the way repeat motifs are currently labelled?

Can the current human assemblies be used to describe repeat motifs?

Human genome assemblies

Human genome assemblies

Human genome assemblies

Human genome assemblies - frequency of new builds

Many established repeat descriptions are reverse strand

DYS385 comprises two repeat regions that are inverses

GAAA

																	1		2		3	3		4		1	5		6			7		8			9		10			11		17	2		13		1	4								
A	Α	G G	G A	AG	G G	Α	A G	G /	AA	G	G A	A G	G	A A	A G	G	G A	A A	G	A A	A	i A	A A	G	A A	A	G A	A	A G	A A	AA	G A	Α /	G	A A	A A	G A	A	A G	A	A A	G A	Α	AG	Α	A A	G	A A	AG	i A	A A	G	AG	iA	A A	A A	A G	Α
18680608	18680609	18680610 18680611	18680612	18680613 18680614	18680615	18680616	18680617 18680618	18680619 18680619	18680621	18680622 18680623	18680624	18680625 18680626	18680627	18680628 18680629	18680630	18680631	18680633 18680633	18680634 18680635	18680636	18680638	18680639	18680641	18680642 18680643	18680644	18680645 18680646	18680647	18680649	18680650	18680652	18680653 18680654	18680655	18680656 18680657	18680658	18680660	18680661 18680662	18680663	18680664 18680665	18680666	18680668	18680669	18680671	18680672 18680673	18680674	18680675 18680676	18680677	18680679 18680679	18680680	18680681 18680682	18680683 18680684	18680685	18680686 18680687	18680688	18680689 18680690	18680691	18680693	18680694 18680695	18680696	18680697
20842494	20842495	20842496 20842497	20842498	20842499 20842500	20842501	20842502	20842503 20842504	20842505	20842507	20842508	20842510	20842511 20842512	20842513	20842514 20842515	20842516	20842517	20842518	20842520 20842521	20842522	20842524	20842525	20842527	20842528 20842529	20842530	20842531 20842532	20842533	20842535	20842536	20842538	20842539 20842540	20842541	20842542 20842543	20842544	20842546	20842547 20842548	20842549	20842550 20842551	20842552	20842554	20842555	20842557	20842558 20842559	20842560	20842561 20842562	20842563	20842564 20842565	20842566	20842567 20842568	20842569 20842570	20842571	20842572 20842573	20842574	20842575 20842576	20842577	20842579	20842580 20842581	20842582	20842583
							1			2		3	ł		4	_		5		6			7		8			9		10	0		11																			_						
т	С	тт	гт	τт	г с	т	ст	ΤI	r c	τı	гт	СТ	т	т	ст	т	тс	тт	т	ст	τı	r c	тт	т	ст	ΤI	r c	т	тт	СТ	гт	тс	TI	т	c c	c	тт	С	с т	т	c c	тт	С	ст	т	c c	т	т с	сı	т								
18639703	18639704	18639705 18639706	18639707	18639708 18639709	18639710	18639711	18639712 18639713	18639714	18639716	18639717 18639718	18639719	18639720 18639721	18639722	18639723 18639724	18639725	18639726	18639728 18639728	18639729 18639730	18639731	18639733	18639734 18639734	18639736	18639737 18639738	18639739	18639740 18639741	18639742	18639744	18639745	18639747	18639748 18639749	18639750	18639751 18639752	18639753	18639755	18639756 18639757	18639758	18639759 18639760	18639761	18639763	18639764	18639766	18639767 18639768	18639769	18639770 18639771	18639772	18639774 18639774	18639775	18639776 18639777	18639778 18639779	18639780								
20801589	20801590	20801591 20801592	20801593	20801594 20801595	20801596	20801597	20801598 20801599	20801600	20801602	20801603	20801605	20801606 20801607	20801608	20801609 20801610	20801611	20801612	20801614	20801615 20801616	20801617	20801619	20801620 20801621	20801622	20801623 20801624	20801625	20801626 20801627	20801628	20801630	20801631	20801633	20801634 20801635	20801636	20801637 20801638	20801639	20801641	20801642 20801643	20801644	20801645 20801646	20801647	20801649	20801650	20801652	20801653 20801654	20801655	20801656 20801657	20801658	20801659 20801660	20801661	20801662 20801663	20801664 20801665	20801666								

TTTC

Both current assemblies map exactly for 55 of 58 STRs compared so far

Three core forensic STRs show nucleotide differences in their repeat regions between GRCh37 and GRCh38

Katherine Gettings' FSIGEN review refers to GRCh38 coordinates only (and no X/Y loci) GATA Repeat region sequence (with line breaks) GATA Extra sequence tracts in the genome assembly

TTC

TATTTGAAATGGAGTTTCACTCTTGTTGCCCAGGCTG

DYS438 (GRCh37)

DYS439 (GRCh37) GATACATAGGTGGAGACAGATAGATGATAAATAGAA

Sequence alignment and sequence annotation

 Alignment of an STR sequence string to a community-wide agreed human genome assembly

GRCh37 and GRCh38 - how easy is it to interchange these integer sets?

Are the assemblies identical for forensic loci or is there extra sequence?

How often will new assemblies be published in the future?

Annotation of repeat sequence features and SNPs and/or Indels in the flanking regions

Common flanking region markers generally have rs-numbers, but rare variants will also occur - but can use genomic coordinates e.g. 17:4588194

Are there inconsistencies in the way repeat motifs are currently labelled?

Can the current human assemblies be used to describe repeat motifs?

Ten informative flanking region SNPs in amplicons of +/-120 nt around the repeat region - suppliers not revealing primer-ends

Six flanking region SNPs in ForenSeq amplicons

rs572637907 A/- rs575219471 AA/-

rs535823682 A/G А G G rs575219471 AA/rs572637907 A/-

rs572637907 A/- rs575219471 AA/-

13	286 bp	288 bp	310 bp	AAAG AGAGAG	[AGAA] ₁₃	716									rc5	258	2369	87 A						
13.1	287 bp	289 bp	311 bp			<u>variant allele</u>	17	,			18				135	550	200	52 6	γu					
13.2	288 bp	290 bp	312 bp	AAAG AG AGAGAG	[AGAA] ₁₃	369	A	G	A	A	A	G	A	A	A	A	A	G	A	G	A	G	A	G
13.3	289 bp	291 bp	313 bp			<u>variant allele</u>		-		E	_	-		-										
14	290 bp	292 bp	314 bp	AAAG AGAGAG	[AGAA] ₁₄	716	48964	48965	48966	48967	48968	48969	48970	48971	48972	48973	48974	48975	48976	48977	48978	48979	48980	48981
14.2	292 bp	294 bp	316 bp	AAAG AG AGAGAG	[AGAA] ₁₄	369	609	609	609	609	609	609	609	609	609	609	609	609	609	609	609	609	609	609
15	294 bp	296 bp	318 bp	AAAG AGAGAG	[AGAA] ₁₅	716	L731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742	1743	L744	L745	l746	1747	1748
[A0	GAA]n A	AAG	AG	AGAGA	٨G	63283	6328	6328	63282	63282	63282	63282	6328:	63282	63282	63282	63282	63282	6328.	6328.	6328.	63282	63282

rs572637907 **A/-**

rs575219471 AA/-

 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 5'
 <td

rs561167308 TCTG/-

rs572637907 A/- rs575219471 AA/-

13	286 bp	288 bp	310 bp	AAAG AGAGAG	[AGAA] ₁₃	716									rc5	258	236	87 A						
13.1	287 bp	289 bp	311 bp			<u>variant allele</u>] 17	,			18				135	550	2300		ŊU					
13.2	288 bp	290 bp	312 bp	AAAG AG AGAGAG	[AGAA] ₁₃	369	A	G	A	A	A	G	A	A	A	A	A	G	A	G	A	G	A	G
13.3	289 bp	291 bp	313 bp			<u>variant allele</u>		-		F		-		-										
14	290 bp	292 bp	314 bp	AAAG AGAGAG	[AGAA] ₁₄	716	48964	48965	48966	48967	48968	48969	48970	48971	48972	48973	48974	48975	48976	48977	48978	48979	48980	48981
14.2	292 bp	294 bp	316 bp	AAAG AG AGAGAG	[AGAA] ₁₄	369	609	609	609	609	609	609	609	609	609	609	609	609	609	609	609	609	609	609
15	294 bp	296 bp	318 bp	AAAG AGAGAG	[AGAA] ₁₅	716	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742	1743	1744	1745	1746	1747	1748
[A(GAA]n A	AAG	AG	AGAGA	AG	63282	6328	6328	6328	6328:	6328	6328	6328:	6328:	6328:	6328:	6328	6328	6328	6328	6328	6328:	6328

rs572637907 **A/-**

rs575219471 AA/-

5' T A T C T A

10				11		rs9	546	6005	5 A/	Τ		rs2(020	435	589	A/ ⁻	Г																
т	A	т	с	т	A	т	с	A	A	т	с	A	A	т	с	А	т	с	т	A	т	с	т	A	т	с	т	т	т	с	т	G	т
82722196	82722197	82722198	82722199	82722200	82722201	82722202	82722203	82722204	82722205	82722206	82722207	82722208	82722209	82722210	82722211	82722212	82722213	82722214	82722215	82722216	82722217	82722218	82722219	8272220	82722221	82722222	8272223	8272224	8272225	8272226	8272227	8272228	8272229
82148061	82148062	82148063	82148064	82148065	82148066	82148067	82148068	82148069	82148070	82148071	82148072	82148073	82148074	82148075	82148076	82148077	82148078	82148079	82148080	82148081	82148082	82148083	82148084	82148085	82148086	82148087	82148088	82148089	82148090	82148091	82148092	82148093	82148094

rs561167308 TCTG/-

11 Yes

12 Yes

 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5

rs561167308 TCTG/-

				D	19	S43	33																																													
5	5'									1		2		3			4		5		6			7		8		9			10		11		12					13				14								3'
	с	тс	тт	т с	тт	c c	т	:т	с т [c c	TI	rc	с т	тс	c	тт	c c	т	r c	с т	тс	c	тт	c c	т	тс	с т	тс	c	тт	c c	тт	C (ст	T C	С 1	гт	c c	т А [c c	тт	ст	тт	c (:т	гс	A A	c /	A G	A A	т с	
GRCh37	30417126	30417127 30417128	30417129 30417130	30417131 30417132	30417133 30417134	30417135 30417136	30417137	30417139	30417141	30417142 30417143	30417144	30417146	30417147 30417148	30417149 30417150	30417151	30417153	30417154 30417155	30417156	30417158	30417159 30417160	30417161 30417162	30417163	30417164 30417165	30417166 30417167	30417168	30417170	30417171	30417173 30417174	30417175	2/1717000	30417178 30417179	30417180 30417181	30417182	30417183 30417184	30417185	30417187 30417188	30417189	161/1100	30417193	30417196	30417196 30417197	30417198 30417199	30417200 30417201	30417202	30417204	30417206	30417207 30417208	30417209	30417211	30417213	30417214 30417215	
GRCh38	9926219	9926221	9926222	992622A	9926226	19926228 19926229	9926230	9926232	99262JA	9926235	9926237	9926239	19926240	9926242 9926243	9926244	3926246	29926247 29926248	9926249	9926251	9926253	9926254	9926256	9926258	19926259 19926260	9926261	9926263	19926264	9926266	9926268	9926270	9926271 9926272	9926273	9926275	19926277	5926278 5926279	9926280	9926282	99262BM	9929265	19926287	5926289 5926290	1926291	5926293 5926234	9926295	9926297	9926299	19926300	5926302	9926304	9926306	3926307 3926308	

					D	19	S43	33																																															
5	5'										1			2		3			4		5		6			7		8		9			10		11		12					13				1	6							3	3'
	с	т	т	тт	с	тт	c c	т	с т	c	c	ст	т	c c	т	T C	с т	т	c c	тт	с	ст	тс	с	тт	c c	τı	r c	ст	тс	C 1	т	c c	тт	C (ст	r c	ст	т	c c	T A	c c	TI	r c	тт	т	: с	тт	C A	A (: A	G A	A T	с	
GRCh37	30417126	30417128	30417129	30417130	30417132	30417133	30417135	30417137	30417138 30417139	30417140	30417142	30417143 30417144	30417145	30417146 30417147	30417148	30417150	30417151	30417153	30417155	30417156	30417158	09171100	30417161	30417163	30417165	30417166 30417167	30417168	30417170	30417172	30417173 30417174	30417175	30417177	30417178	30417180 30417181	30417182	3041718M	001/1M0E	30417187 30417188	30417189	161/1100	30417192 30417193	30417194 30417195	30417196	30417198	30417200	30417201	30417203	30417204	30417206 30417207	30417208	30417210	30417212	30417213 30417214	30417215	
GRCh38	29926219	29926220	5926222	29926223	29926225	19926226 19926227	29926228	5926230	29926232	29926233	29926235	29926235	29926238	29926240	19926241	29926243	29926244	29926246	29926248	29926249	29926251	29926253	29926254	29926256	29926258	29926259	29926261	29926263	29926264	29926266	29926268	29926270	29926271	29926273	29926275	29926277	29926279	29926280	29926282	299262BA	29926285	29926287	0026289	162926291	29926293	P926294	29926296	29926297	29926300	1063595	29926303	29926305	29926307	29926308	

ISFG guidelines on STR structure description indicate D19S433 repeats to be counted are [CCTT] Kits that included this STR counted CCTA and CTTT

+2 allele numbers now populate all D19S433 in NDNADs

Dealing with less or more nucleotides in the analysed repeat region compared to the reference sequence

D13S317-11 D13S317[CE12]	TCTAACGCCT ATCTGTATTT ACAAATACAT -TATC-TATC -TATC-TATC A
D13S317-11 D13S317[CE12]	-TATC-TATC -TATC-TATC -TATC-TATC -TATC
D13S317-11 D13S317[CE12]	-AATC-ATCT -ATCT -TT

D13S317[CE11]-Chr13-GRCh37-g.82.722.160:82.722.223-TATC[11]AATC[2]ATCT[3] D13S317[CE12]-Chr13-GRCh37-g.82.722.160:82.722.223-TATC[13]AATC[1]ATCT[3]-g.x.136G>A

D13S317[CE12]-Chr13-GRCh37-g.82.722.160:82.722.223-TATC[13]AATC[1]ATCT[3]-g.x.136G>A D13S317[CE12]: Locus name and capillary electrophoresis STR allele name

D13S317[CE12]-Chr13-GRCh37-g.82.722.160:82.722.223-TATC[13]AATC[1]ATCT[3]-g.x.136G>A Chr13-GRCh37: Chromosome number and human genome reference version

D13S317[CE12]-Chr13-GRCh37-g.82.722.160:82.722.223-TATC[13]AATC[1]ATCT[3]-g.x.136G>A g.82.722.160:82.722.211: STR repeat region coordinates of reference allele

D13S317[CE12]-Chr13-GRCh37-g.82.722.160:82.722.223-TATC[13]AATC[1]ATCT[3]-g.x.136G>A TATC[13]AATC[1]ATCT[3]: full description of STR motif

D13S317[CE12]-Chr13-GRCh37-g.82.722.160:82.722.223-TATC[13]AATC[1]ATCT[3]-g.x.136G>A

g.x.136G>A: genome coordinate of derived SNP, where g.x refers to non-unique coordinate

11 Yes 12 Yes

Slide not shown: 1000 Genomes lobSTR data released in late 2014

SATURDAY OCTOBER 18, 2014

Short Tandem Repeats added to the 1000 Genomes Release #ASHG14

We have added two sets of STR predictions and genotypes to the 1000 Genomes dataset.

These are available in the supporting directory strs.

The call set were created using LobSTR and RepeatSeq respectively.

The sites are genotyped in all 2535 individuals who were used in our final release. This includes the 31 individuals related to other individuals in the main call set.

A total of 670,646 micro-satellites in lobSTR format for 2,504 individuals.
 A bio-informatics challenge (mostly CA di-nucleotides)

• D2S1338; VWA; D12S391; D21S11 all missing from the dataset

 Long STRs in general have recognition problems, as lobSTR calls an STR by recognizing both flanking sequences plus the repeat region in reads of 100 bp, so longer STRs are missed

• Data failed to properly describe the repeat sequence variation known to occur in many core forensic STRs

EUROFORGEN-NoE Update: EDNAP Meeting Santiago de Compostela 2015

Peter M. Schneider Institute of Legal Medicine

University of Cologne (Germany)

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

20/10/2015 Slide no 1

- Training workshops
- Recent EUROFORGEN-NoE publications
- Dissemination Conference 2016

• Three 'Train the Trainers' workshops in Copenhagen

20-22 participants from all European countries

2013 - 2015

Subject: Statistical methods

in forensic genetics

Organized by: Niels Morling

Teachers:

Thore Egeland (team leader), Guro Dørum, Oskar Hansson, Daniel Kling

- ... and >25 Satellite Training Workshops all over Europe!
 - Belgium 1 (+1)
 - Croatia 1
 - Czech Rep. 1 (+1)
 - Estonia (+1)
 - France 6 (+?)
 - Germany 5 (+2)
 - Greece 2
 - Ireland 1
 - Italy 1 (+1)
 - Latvia 1 (+1)
 - Portugal 2 (+1)
 - Romania 1
 - Slovenia 1 (+1)
 - Spain 1
 - Sweden 1
 - Switzerland 2 (+1)

Consortium publications

Network of Excellence	ie data data data data data data data dat	Login Search Contact Sitemap
	► Home ► Dissemination Activities ► Journal articles	
		search
About EUROFORGEN-NoE	Project publications	Quicklinks
The Group		You can apply for + sho
The Project	The original esticies listed below have been sublished in accepting isometa	term fellowships.
Networking Activities	and mainly describe results from Work Package 3. In case of co-authorship.	The European landscape in
Training	the work of one or several of the contributing authors has been funded by	 Geographical display a
N WS	EUROFORGEN-NoE.	contact data
Disservination Activities		Report and presentations
Consortium publications	2015	Conference in Brussels 20
Journal articles		
Contact	Forensis appestry applysis with two capillary electrophoresis	
Login	ancestry informative marker (AIM) panels: Results of a	Newsletter (2/2015
	collaborative EDNAP exercise.	BUCCHER DE CONTROL
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ELSEVIER	in the second se
1 Mar 19	Forensic Sci Int Genet. 2015 Jun 15;19:56-67	
EUROFORGEN-NoE - The	Authors: Santos C. Fondevila M. Ballard D. Banemann P. Bento AM. Barsting C. Branicki W.	
research leading to these results receives funding	Brisighelli F, Burrington M, Capal T, Chaitanya L, Daniel R, Decroyer V, England R, Gettings	Dowload here
from the European Union	KB, Gross TE, Haas C, Harteveld J, Hoff-Olsen P, Hoffmann A, Kayser M, Kohler P, Linacre	
Seventh Framework Programme (FP7/2007-2013)	A, Mayr-Eduardoff M, McGovern C, Morling N, O'Donnell G, Parson W, Pascall VL, Porto MJ, Roseth A, Schneider PM, Sijen T, Stenzl V, Court DS, Templeton JE, Turanska M, Vallone PM,	Consortium
under grant agreement n°	Oorschot RA, Zatkalikova L, Carracedo Å, Phillips C, EUROFORGEN-NoE Consortium	

- Santos et al.: Forensic ancestry analysis with two capillary electrophoresis ancestry informative marker (AIM) panels: Results of a collaborative EDNAP exercise
 - Forensic Sci Int Genet. 2015 Jun 15;19:56-67
- Marcinska et al.: Evaluation of DNA Variants Associated with Androgenetic Alopecia and Their Potential to Predict Male Pattern Baldness
 - PLoS One. 2015;10(5):e0127852
- Eduardoff et al.: Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGM[™]
 - Forensic Sci Int Genet. 2015 Jul;17:110-21
- Mapes et al.: Which traces to select for DNA analysis?
 - Forensic Magazine Oct 2015 (in press)

International dissemination conference "DNA in Forensics 2016" – Venue & Date

There will be a special registration discount for EUROFORGEN participants

International dissemination conference "DNA in Forensics 2016" – Topics

• FROM CRIME SCENE TO COURT ROOM

- Evidence challenges and advanced interpretation methods
- The interpretation debate: miscarriages of justice

• FROM GENOTYPE TO PHENOTYPE

- Eye or hair colour
- Other externally visible characteristics
- Biogeographic origin

• FROM SCIENCE TO SOCIETY

- Ethical and legal aspects, the societal dimension of forensic genetics
- Border security in Europe from a DNA perspective
- Cost-benefits of DNA typing

• First Call 2013

- 14 fellowships awarded to 13 colleagues from 9 countries
- Details on website

• Second Call 2014-2015

- 20 new fellowships open
 - Laboratory visits for 3-5 days
 - Active participation in workshops related to EFG aims
 - Other research/training activities related to scope of WPs 2-5
- Application details on the website
- Travel support up to EUR 500

Please do not forget to join our Facebook group! ... already 244 members!

to incriminate him by seeking source code

Defence lawyers for Michael Robinson want to prove TrueAllele did not accurately detect the killer's DNA.

244 M

Slide no 10 20/10/2015

EDNAP meeting, 20 October 2015

DNA methylation-based NGS Method for Age Prediction

A. Vidaki, D. Ballard, D. Syndercombe Court

<u>Eye colour</u>: **DARK BROWN**

Skin colour:

Aim of the project

<u>Part 1</u>

Age prediction in whole blood using a small set of ageassociated differentially methylated CpG sites

Part 2

Development of an NGS protocol for accurate and sensitive methylation quantification

RESEARCH

Open Access

DNA methylation age of human tissues and cell types

Steve Horvath^{1,3,3}

- ~8,000 samples analysed by Illumina 27K/450K
- Multi-tissue age predictor
- 353 'clock' CpG sites
- Whole blood \rightarrow median error = 3.7 years

Tissue	Set	Samples	₽ 1 ♂	Age range (mean) (years)	Platform
	1	235	0/235	4-18 (10)	27K
	2	24	12/12	2-35 (14)	27K
	3	170	77/93	32-90 (65)	450K
whole	4	385	187/198	16-88 (40)	27K
DIOOD	5	33	12/21	18-65 (29)	450K
	6	91	91/0	49-74 (63)	27K
	7	218	218/0	52-78 (65)	27K

1,156 597/559 2-90 (44)

Methylation patterns

24 out of 45 CpGs p<0.05

CPG SITES DATASET ANN MODEL NGS METHOD PREDICTION EXERCISE

Current work

- Potential to improve the method's prediction by introducing different data normalisation strategies both on the genome-wide <u>AND</u> MiSeq data
- Testing different multiplex PCR combinations to further improve the method's sensitivity and the hands-on time
- Analysing more blood samples and mock casework stains
- Manuscript in preparation

EDNAP Exercise Proposal

Samples to be analysed:

5 blood samples (<u>in triplicate</u>)
7 DNA methylation standards (0, 5, 10, 25, 50, 75, 100%) *Additional samples (optional*)

KCL to provide:

DNA samples PCR primers Protocols

Participating labs to provide:

Reagents

CPG SITES DATASET ANN MODEL NGS METHOD PREDICTION EXERCISE
--

EDNAP Exercise Proposal

Potential dates:

Part 1 Samples to be sent out (controls) - December 2015 Data to be collected - March 2016 Presentation of results - April 2016

<u>Part 2</u>

Samples to be sent out (blood samples) - May 2015 Data to be collected - August 2016 Presentation of results - October 2016 Manuscript preparation/dissemination - End of 2016

Points for discussion:

Type of data - FASTQ files or methylation values Other PCR-based methods? PGM instrument?

Interested in joining the exercise?

Please contact:

Denise Syndercombe Court denise.syndercombe-court@kcl.ac.uk

Athina Vidaki athina.a.vidaki@kcl.ac.uk

