AGENDA FOR THE EDNAP MEETING

WARSAW – 26 APRIL 2016

Expected duration: 09.00 - 17.00

Coffee: 10.15 - Lunch: 12.30-14.00 - Coffee: 15.15

Host: Magdalena Jabłonska Chairman: Niels Morling

Welcome

Magdalena Jablonska

Peter Gill

Peter Gill

Update on activities concerning mtDNA SNP screening – two PCRs, 18 SNPs Mathylated DNA and age exercise	Arnoud Kal
Methylated DNA and age exercise	Aunina vidaki
Updates from other groups	
EMPOP	Walther Parson
High quality DNA sequence database	Walther Parson
Nomenclature of STR sequences	Walther Parson
EUROFORGEN-NoE	Peter Schneider
Singapore and DNA Working Group of The Asian Forensic	Christopher Syn
Sciences Network	· ·

Interpretation of complex DNA mixtures in crime cases Outline of a new DNA commission on the evaluation of evidence

Future activities Exercise on mRNA typing with NGS Cordula Haas EDNAP meeting in autumn 2016 – 8 November 2016 in Rome? Niels Morling (ENFSI DNA WG Steering Group Meeting: 7 Nov 2016 in Rome) (Promega Meeting: 9 – 10 November 2016 in Florence) Any other business Niels Morling

EDNAP Meeting 26 April 2016 - Warsaw

Page 1 of 1

EDNAP Meeting 26 April 2016 - Warsaw - Participants

First and last name	F-mail	Phone number	Institution / Organisation	Country	Institution's address
i list and last hame	L-IIIdii	r none number	Control Ecropoic	Country	
Ankiewicz Hanna	haniaank@gmail.com	507277123	Laboratory of the Police	Poland	Aleie Lliazdowskie 7 00-583 Warsaw Poland
	Hanlaank@gmail.com	307211123	Swedish National	FUIdiTu	
Ansell Ricky	ricky.ansell@polisen.se	46105628119	Forensic Centre	Sweden	NFC 58194 Linkoping 58194 Linkoping Sweden
,	regine.banemann@bka.bu				
Banemann Regine	nd.de	+49 611 5516053	Bundeskriminalamt	Germany	Thaerstr. 11 65193 Wiesbaden Germany
	ingo.bastisch@bka.bund.d				
Bastisch Ingo	е	4961116030	Bundeskriminalamt	Germany	Thaerstr. 11 65193 Wiesbaden Germany
			NBI Forensic Laboratory		
Bengs Auli	auli.bengs@poliisi.fi	358504564610	Finland	Finland	PO BOX 285 FI-01301 Vantaa Finland
	michal.boron@policja.gov.		Central Forensic		
Boroń Michał	pl	509907991	Laboratory of the Police	Poland	Aleje Ujazdowskie 7 00-583 Warsaw Poland
	anna.bragoszewska@poli		Central Forensic		
Bragoszewska Anna	cja.gov.pl	512151980	Laboratory of the Police	Poland	Aleje Ujazdowskie 7 00-583 Warsaw Poland
Camps Lydia	lydiacamps@gmail.com	34696298555	Mossos Esquadra	Spain	Avinguda de la Pau, 120 08206 Sabadell Spain
Daly Dyan	ddaly@fsl.gov.ie	353866031631	Forensic Science Ireland	Ireland	Garda Headquarters Dublin 8 Dublin Ireland
			Laboratorio Policia		
			Cientifica da Policia		
Ferreira Paulo	pamife@hotmail.com	351966843577	Judiciaria	Portugal	Rua Gomes Freire, 174 1169-007 Lisbon Portugal
			Norwegian Institute of		
Gill Peter	peterd.gill@gmail.com	+447786126571	Public Health	Norway	PO Box 4404 Nydalen 0403 Oslo Oslo Norway
	june.guiness@homeoffice.		Home Office- Forensic		
Guiness June	gsi.gov.uk	447769887147	Science Regulation	United Kingdom	5 St. Philips Place B3 2PW Birmingham United Kingdom
			Norwegian Institute of		
Hanssen Eirik	eiha@fhi.no	++4741652397	Public Health	Norway	PO Box 4404 Nydalen 0403 Oslo Oslo Norway
			University of Zurich,		
			Institute of Forensic		
Haas Cordula	cordula.haas@irm.uzh.ch	+41 44 635 56 56	Medicine	Switzerland	Winterthurerstrasse 190/52 8057 Zurich Switzerland
	magdalena.jablonska@pol		Central Forensic		
Jabłońska Magdalena	icja.gov.pl	48226012629	Laboratory of the Police	Poland	Aleje Ujazdowskie 7 00-583 Warsaw Poland
			Central Forensic		
Kadyjewska Ewa	ewakadi@tlen.pl	48 22 60 15855	Laboratory of the Police	Poland	Aleje Ujazdowskie 7 00-583 Warsaw Poland
			Netherlands Forensic		
Kal Arnoud	a.kal@nfi.minvenj.nl	+31-6-48131812	Institute	Netherlands	PO box 24044 2490AA The Hague Netherlands
	ewa.kartasinska@policja.		Central Forensic	L	
Kartasińska Ewa	gov.pl	48226012625	Laboratory of the Police	Poland	Aleje Ujazdowskie 7 00-583 Warsaw Poland

Doc: EDNAP-Participants-6041.xls

EDNAP Meeting 26 April 2016 - Warsaw - Participants

			Netherlands Forensic		
Kneppers Alexander	s.kneppers@nfi.minvenj.nl	31629623036	Institute	Netherlands	PO Box24044 2490 AA The Hague Netherlands
			Institute of Criminalistics		
Kratky Martin	mar.kratky@gmail.com	420974824526	Prague	Czech Republic	Strojnicka 27 17089 Prague Czech Republic
	francoisxavier.laurent@int		Institut National de Police		31 Avenue Franklin Roosevelt 69134 ECULLY CEDEX
Laurent Francois-Xavier	erieur.gouv.fr	33641561273	Scientifique	France	France
	zmakowska.72@gmail.co		Central Forensic		
Makowska Żanetta	m	48 22 60141 44	Laboratory of the Police	Poland	Aleje Ujazdowskie 7 00-583 Warsaw Poland
Mogensen Helle	helle.smidt@sund.ku.dk	+45 61140212	University of Copenhagen	Denmark	Frederik Vs vej 11 DK-2100 Copenhagen Denmark
Morling Niels	niels.morling@sund.ku.dk	+45 21206110	University of Copenhagen	Denmark	Frederik Vs vej 11 DK-2100 Copenhagen Denmark
		+415146000 EXT			
MUNGUIA SERGIO	smunguia@guardiacivil.es	48396	GUARDIA CIVIL	Spain	GUZMAN EL BUENO 110 28003 MADRID Spain
Noel Fabrice	fabrice.noel@just.fgov.be	+32 2 243 46 04	NICC	Belgium	Vilvoordsesteenweg 100 1120 Brussels Belgium
	mateusz.ochocki@policja.		Central Forensic		
Ochocki Mateusz	gov.pl	602625200	Laboratory of the Police	Poland	Aleje Ujazdowskie 7 00-583 Warsaw Poland
	walther.parson@i-		Medical University of		
Parson Walther	med.ac.at	+43512900370640	Innsbruck	Austria	Muellerstrasse 44 6020 Innsbruck Austria
	agnieszkapieta2@gmail.c		Central Forensic		
Pięta Agnieszka	om	48516098948	Laboratory of the Police	Poland	Aleje Ujazdowskie 7 00-583 Warsaw Poland
			National Institute of Legal		
			Medicine and Forensic		
Porto Maria	m.joao.porto@inmlcf.mj.pt	+351 239854230	Sciences	Portugal	Largo da Se Nova 3000-213 Coimbra Portugal
	richard.scheithauer@i-		Medical University of		
Scheithauer Richard	med.ac.at	+43512900370600	Innsbruck	Austria	Muellerstrasse 44 6020 Innsbruck Austria
			Institute of Legal		
	peter.schneider@uk-		Medicine, University of		
Schneider Peter	koeln.de	491735916684	Cologne	Germany	Melatenguertel 60/62 50823 Cologne Germany
Simonsen Bo	bo.simonsen@sund.ku.dk	+45 28756136	University of Copenhagen	Denmark	Frederik Vs vej 11 DK-2100 Copenhagen Denmark
	christopher syn@hsa.gov.		Health Sciences		
Syn Christopher	sg	6598456812	Authority, Singapore	Singapore	11 Outram Road 169078 Singapore Singapore
					Franklin Wilkins Building, Kings College, 150 Stamford
Syndercombe Court	denise.syndercombe-				Street, London SE1 9NH SE1 9NH London United
Denise	court@kcl.ac.uk	+44 20 7844 4155	Kings College London	United Kingdom	Kingdom
			Health Sciences		
Tan Jiayu	tan jiayu@hsa.gov.sg	6596321509	Authority, Singapore	Singapore	11 Outram Road 169078 Singapore Singapore

EDNAP Meeting 26 April 2016 - Warsaw - Participants

					Franklin Wilkins Building, Kings College, 150 Stamford
					Street, London SE1 9NH SE1 9NH London United
Vidaki Athina	athina.a.vidaki@kcl.ac.uk	0020 7848 4155	Kings College London	United Kingdom	Kingdom
			Central Forensic		
Wysocka Katarzyna	wysockak@o2.pl	2260112601	Laboratory of the Police	Poland	Aleje Ujazdowskie 7 00-583 Warsaw Poland
Zatkalikova Livia	livia.zatkalikova@minv.sk	00421907834948	Ministry of Interior	Slovakia	Pribinova 2 812 72 Bratislava Slovakia
Życka-Krzesińska			Central Forensic		
Joanna	krzejo@tlen.pl	606939391	Laboratory of the Police	Poland	Aleje Ujazdowskie 7 00-583 Warsaw Poland

EUROPEAN DNA PROFILING GROUP (EDNAP) MEETING

Warsaw, Poland

26 April 2016

Host: Magdalena Jablonska Chairman: Niels Morling

A list of participants is attached.

Welcome

Magdalena Jablonska welcomed members to Warsaw.

Update on exercises

A SNaPshot based method targeting 18 common mtDNA mutations Arnoud Kal Arnoud Kal presented the results of the collaborative EDNAP exercise concerning typing of 18 mtDNA SNPs with the SNaPshot method and whole mtDNA genome sequencing. A draft for a manuscript will be circulated soon (presentation attached).

Methylated DNA and age exerciseAthina VidakiAthina Vidaki presented the results of the collaborative EDNAP exercise on age estimation by
means of measurements of methylation of selected DNA positions (presentation attached).

Updates from other groups

STRidER Walther Parson Walther Parson gave an update on the High quality DNA sequence database, STRidER (presentation attached).

EMPOP

Walther Parson gave an update on the new version of the database EMPOP. New developments include an event-based search engine (SAM-E), map-based description of database matches, a new tabular layout of search results and the provision of the haplogroup status of mtDNA sequences. EMPOP follows the concept of providing high-quality data and basic results of database searches. The interpretation of search results is the responsibility of the users. There are courses planned for training on mtDNA matters in association with congresses. Individual courses can be organized (presentation attached).

Nomenclature of STR sequences Walther Parson Walther Parson gave an update on the thoughts about the nomenclature of DNA sequences of STRs (presentation attached).

EUROFORGEN-NoE – General update Peter Schneider Peter Schneider gave an update concerning the project (presentation attached).

Singapore and DNA Working Group of the Asian Forensic Christopher Syn *Sciences Network* (presentation attached).

Walther Parson

Other presentations

Interpretation of complex DNA mixtures in crime cases (presentation attached).

Outline of a new DNA commission on the evaluation of evidence Peter Gill (presentation attached).

EDNAP website update (www.isfg.org/EDNAP)

Members are encouraged to visit the website. Suggestions are welcome.

Future activities

Second exercise on methylated DNA and age Athina Vidaki The EDNAP members accepted an invitation from Athina Vidaki and Denise Syndercombe Court for a second collaborative EDNAP exercise concerning forensic age estimation based on investigation of the degree of DNA methylation of select nucleotides. The proposed methods are similar to those of the first exercise making it possible to use equipment from both the MiSeq and the PGM. Kings College will send out invitations, protocols, and 5-10 blood samples that should be investigated. It is the idea to circulate the samples in June 2016 so that the results can be discussed at the next EDNAP meeting (presentation attached).

Exercise on mRNA typing with NGS

The EDNAP members accepted an invitation from Cordula Haas for a NGS based study of discrimination between various tissues and body fluids. The investigations can be performed with both the MiSeq and the PGM. Cordula Haas will send out invitations, protocols and some tissue and body fluid samples. It is the idea to circulate the samples in June 2016 so that the results can be discussed at the next EDNAP meeting (presentation attached).

Next meeting

The next EDNAP meeting will be held 8 November 2016 in Rome in connection with the meeting of the steering group the ENFSI DNA WG Meeting 7 November 2016. The colleagues from Laboratoria Genetica Forense, Universita Cattolica, Rome, will organise the meetings.

Any other business

There was no other business.

Closing of the meeting

The meeting closed with sincere thanks to Magdalena Jablonska and all other colleagues, who helped to organise the meeting.

Attachments are found at the EDNAP website http://www.isfg.org/EDNAP/Meetings:

- Agenda
- List of participants
- Presentations
 - Arnoud Kal: Report on mtDNA SNP typing
 - Athina Vidaki: Report on methylated DNA and age
 - Walther Parson: EMPOP report
 - Walther Parson: STRidER report
 - Peter Schneider: EUROFORGEN-NoE report.

Niels Morling

Cordula Haas

Niels Morling

Page 2 of 3

Peter Gill

Peter Schneider

- Christopher Syn: Singapore and DNA Working Group of the Asian Forensic Sciences Network
- Peter Gill: Interpretation of complex DNA mixtures in crime cases
 Peter Gill: Outline of a new DNA commission on the evaluation of evidence

Page 3 of 3

Netherlands Forensic Institute Ministry of Justice

Update Exercise mtDNA SNaPshot

Arnoud Kal

Natalie Weiler Titia Sijen

26 April 2016, Warsaw

A control region-based mtDNA SNaPshot selection tool, integrated into a mini amplicon sequencing method

- Targets 18 SNPs in HVS I - II - III

- Degenerate bases in 3' part primer to cover SNPs at primer binding site positions

- Two SNaPshot multiplexes for PCR products of mini amplicon mtDNA multiplexes (Eichmann et al 2008)

SNP	Base change	Frequency	Haplogroup
73	A>G	0.5551	HV / H / V
146	T>C - T>a	0.0933 - 0.0001	
150	C>T - C>g	0.1028 - 0.0001	
152	T>C	0.2007	
182	C>T	0.0088	
185	G>A - G>t - G>c	0.0541 - 0.0031 - 0.0004	
195	T>C - T>a	0.1986 - 0.0002	
489	T>C	0.1351	M / J
497	C>T	0.0419	К
16126	T>C	0.1799	
16129	G>A - G>c	0.0689 - 0.0111	
16223	C>T	0.1405	
16270	C>T	0.0876	
16278	C>T	0.0646	
16294	C>T - C>a - C>g	0.1071 - 0.0003 - 0.0002	
16311	T>C	0.1676	
16362	T>C	0.0743	
16519	T>C	0.6642	

Same PCR product for sequencing and SNaPshot

Example: Case with 30 hairs \rightarrow 600 *sequencing reactions SNaPshot: Selection of 3 hair samples* \rightarrow 60 *sequencing reactions*

Update Exercise mtDNA SNPs | 26 April 2016

Optimised SNaPshot assay

- SNP number preceded by `r': reverse primer
- Allele call followed by `-': rCRS allele

EDNAP Exercise: 3 parts – 14 labs (excl NFI)

- ① SNaPshot assays on 13 samples for which PCR products are provided
- ② Paper challenge: compare results 1 to list of 8 references given in standard nomenclature
- ③ Optional: NGS full mtDNA analysis of 2 samples
 » Commercial control DNA sample (cell line)
 - » Sample with heteroplasmy

Santiago meeting 2015

Update on results for part 1 and part 2:

- SNP typing, haplogroup inference
- Paper challenge

NGS exercise

Sample A (=sample 11 in part one of the exercise):

several polymorphisms

•one point heteroplasmy also targeted by the mini-mtSNaPshot (146Y)

•two insertions of an AC-repeat at position 524

•a C-stretch at position 574 for which the exact number of C's remained undetermined by Sanger sequencing (position 574 is a known homopolymeric position)

Sample B

•presumably cell line-derived control DNA (hDNA; Life Technologies)

several polymorphisms

•a deletion of an AC-repeat at position 523-524.

NGS analysis

3 x MiSeq 1 x Ion Torrent PGM

Full control region (16024 to 16569 and 1 to 576) Full mtDNA genome

NGS results

The MPS results were highly concordant despite the marked differences in average read coverage between the four laboratories ($\sim 1000 - \sim 85.000$)

Exception: an 309.1C insertion in sample B that was not detected by two laboratories and Sanger sequencing, while two other laboratories did observe this insertion.

The ratio between the two bases at a heteroplasmic position was similar for all three laboratories (46-49%)

Manuscript

Draft manuscript is allmost ready for sending out to all 14 labs

Big THANK YOU ALL!!

EDNAP Meth-Age exercise Results - part 1

A. Vidaki, D. Ballard, D. Syndercombe Court

EDNAP meeting Warsaw, 26 April 2016

Overview

- DNA methylation-based age prediction using NGS update
- EDNAP Meth-Age exercise part 1 proposed in Oct 2015
- Participating laboratories
- Samples (part 1) Dec 2015
- Protocols for both MiSeq and PGM
- Data collection April 2016
- Questionnaires & NGS run QC
- DNA Methylation results
- Summary
- EDNAP Meth-Age exercise part 2 Proposal

NGS METHOD EXERCISE VOL. 1 LAB DATA L

LINEARITY

SUMMARY

ZEXERCISE VOL. 2

Task/Part 1 - Method evaluation

Samples

7 commercially available DNA methylation standards (EpigenDx, USA) 0%, 5%, 10%, 25%, 50%, 75%, 100% To be analysed <u>in duplicate</u>

DNA preparation

100ng of DNA to be converted (5ng/µl) 2 multiplexes (Age 7plex & 5plex) - provided standardised protocol) PCR products to be combined, purified and quantified

DNA sequencing

Library preparation, amplification and quantification NGS platform: MiSeq and/or PGM

PGM protocol with the help of Mayra (Innsbruck) & Theresa (Cologne)

Participating laboratories

- Copenhagen, Denmark
- Innsbruck, Austria
- NFI, Netherlands
- Orlando, Florida, USA
- Lyon, France
- NIST, USA
- Victoria, Australia
- Singapore
- London, UK

- Cologne, Germany
- Oslo, Norway
- Zurich, Switzerland
- Santiago de Compostela, Spain

SUMMARY

EXERCISE VOL. 2

No data/technical problems:

Adelaide, Australia

LINEARITY

Auckland, New Zealand

Questionnaires

DNA preparation

- 12X MethylEdge Bisulfite Conversion System, Promega
- 12X Multiplex PCR kit, Qiagen
- 12X MinElute PCR purification kit, Qiagen
- 9X Qubit dsDNA HS assay kit, ThermoFisher Scientific
 2X QuantiFluor, Promega
 - 1X QIAxcel, Qiagen

Questionnaires

DNA sequencing

MiSeq labs - 9 data sets

- 9X KAPA Hyper Prep kit, Illumina
- 8X KAPA library quant kit for Illumina, KAPA Biosystems
 1X Qubit dsDNA HS kit, ThermoFisher Scientific
- 7X MiSeq reagent kit v2, 300 cycles
 1X MiSeq reagent kit v3, 600 cycles
 1X MiSeq reagent kit v3, 151 cycles (single reads)
- 1X own data analysis tool, TSSV/FDSTools (NFI)

Questionnaires

DNA sequencing

NGS METHOD

EXERCISE VOL. 1

PGM labs - 7 data sets

- 7X Ion Xpress Plus gDNA Fragment library kit, ThermoFisher Scientific
- 6X Ion library quantitation kit, ThermoFisher
 1X Qubit dsDNA HS kit, ThermoFisher Scientific
- 5X Ion PGM Hi-Q OT2 kit/Ion PGM Hi-Q Sequencing kit, ThermoFisher
 1X as above plus 8 extra amplification cycles
 1X Ion PGM IC 200 kit/Ion PGM Hi-Q Sequencing kit, ThermoFisher

LINEARITY

LAB DATA

EXERCISE VOL. 2

SUMMARY

Technical/experimental issues

- There was a mix-up of 2 methylation standards (10% & 25%) (most likely during sample preparation) confirmed by a 'mixed' methylation profile (~17%) (Lab 14)
- MiSeq cluster density was quite high in many labs resulting in lower QC values
- Instructions on library dilution using average fragment length was not clear in the protocol
- Strange higher methylation values for certain CpGs (Lab 13)
- PGM: problems like bad loading, poor alignment, unexpected read length histograms
- A few marker 'drop-outs' in PGM data
- Lab 3 did not run the samples in duplicate

Reads - per sample per lab

Reads - per marker, MiSeq

No of reads

Reads - per marker, PGM

Methylation data analysis

- Laboratories provided raw data in FastQ file format
- Files were analysed using KCL script for generation of vcf and bam files
- The methylation ratio of each site was calculated using the formula:
 % methylation = C reads/(C+T reads)
- The average methylation was calculated from the dun
- The average methylation was calculated from the duplicates and used for analysis

Additional QC:

- DNA conversion rates were also calculated >99% in almost all cases
- Negative samples (PCR-negative, No-conversion control) gave no reads

.. and PGM linearity

Summary & conclusions

 Generally, considering laboratories' experience with DNA methylation-based NGS, the method worked well

- Optimised MiSeq protocol performed better than PGM
- Various patterns were observed among labs in terms of marker distribution and total reads
- Methylation quantification showed great accuracy
- Mean of each marker for all samples: SD=3.4% (range 0-11%)
- As expected, low-methylation samples (5-25%) were the most challenging
Exercise part 2 - Proposal

Samples to be analysed:

5 -10 blood samples (to be analysed in duplicate) Additional samples (optional)

KCL to provide: Blood samples/stains (PCR primers and protocols from part 1)

Participating labs to provide: Reagents

Potential dates:

Samples to be sent out - Beginning of June 2016 Data to be collected - End of of September 2016 Presentation of results - Next meeting, November 2016

> NGS METHOD

LAB DATA

Emails:

denise.syndercombe-court@kcl.ac.uk athina.a.vidaki@kcl.ac.uk

EDNAP Meeting, Warsaw, Poland, April 26 2016

STRidER STRs for identity ENFSI Reference database

Dr. Walther Parson assoc. Prof. Institute of Legal Medicine, Medical University of Innsbruck, Austria adj. Prof. Forensic Science Program, Penn State University, PA, USA walther.parson@i-med.ac.at

Bodner et al in prep

EDNAP Meeting, Warsaw, Poland, April 26 2016

EMPOP_{mtDNA} database

Dr. Walther Parson assoc. Prof. Institute of Legal Medicine, Medical University of Innsbruck, Austria adj. Prof. Forensic Science Program, Penn State University, PA, USA walther.parson@i-med.ac.at

- **2. Gomes** Human settlement history between Sunda and Sahul: a focus or East Timor (Timor-Leste) and the Pleistocenic mtDNA diversity. <u>BMC Genomics</u> **16**(1): 70.
- 3. Just Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. FSIG 18: 131-139.
- Just Full mtGenome reference data: development and characterization of 588 forensic-quality haplotypes representing three U.S. populations. <u>FSIG</u> 14: 141-155.
- **5.** Naue Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA. <u>Mitochondrion</u> **20**: 82-94.
- 6. Parson Molecular genetic analysis on the remains of the Dark Countess: Revisiting the French Royal family. <u>FSIG</u>
 19: 252-254.
- 7. Parson MPS of complete mitochondrial genomes from hair shaft samples. <u>FSIG</u> 15: 8-15.
- 8. Valente Exploring the relationship between lifestyles, diets and genetic adaptations in humans. BMC Gen 16: 55.
- **9. Xavier** Admixture and genetic diversity distribution patterns of non-recombining lineages of Native American ancestry in Colombian populations. <u>PLoS One</u> **10**(3): e0120155.
- **10.Chaitanya** (2016). High-quality mtDNA control region sequences from 680 individuals sampled across the Netherlands to establish a national forensic mtDNA reference database. <u>FSIG</u> **21**: 158-167.
- **11.Scheible** (2016). The mitochondrial landscape of African Americans: An examination of more than 2500 control region haplotypes from 22 U.S. locations. <u>FSIG</u> **22**: 139-148.

EMPOP holds high quality population data

The EMPOP database aims at the collection, quality control and searchable presentation of mtDNA haplotypes from all over the world.

The scientific concept and the quality control measures using logical and phylogenetic tools were found suitable for forensic purposes, e.g.

- by declaration of the German Supreme Court of Justice (2010)
- the SWGDAM mtDNA interpretation guidelines (2013)
- and the updated ISFG guidelines for mtDNA analysis (2014)

>

EMPOP generates conservative haplogroup estimates

EMPOP provides automated haplogroup estimates. These are based on maximum likelihood and minimal costs functions. For multiple possible haplogroups most recent common ancestor (MRCA) haplogroups are provided.

The geographical haplogroup patterns are provided via maps to visualize and better understand their distribution.

Sequence alignment can be ambiguous

... and many more alignments ...

Effect of alignment on database searches

Search method	Alignment 1	Alignment 2
rCRS-coded	28 matches	0 matches
	EM	POP V3 R11; N = 34617

SAM: String-based sequence search algorithm for mitochondrial DNA database queries

Alexander Röck^a, Jodi Irwin^b, Arne Dür^a, Thomas Parsons^c, Walther Parson^{d,*}

Search method	Alignment 1	Alignment 2
String alignment	28 matches	28 matches

EMPOP V3 R11; N = 34617

The String Alignment Method (SAM) guarantees that sequences are found in EMPOP regardless of the alignment

Bandelt and Parson (2008) Consistent treatment of length variants in the human mtDNA control region: a reappraisal, Int J Legal Med 122:1-21

Rule 1. Phylogenetic rule

Rule 2. Anchor 16189 and 310

Rule 3. 3' alignment

2013 Adopted by SWGDAM

2014 Recommended by ISFG

Practical consequences of SAM

Practitioners are free to choose mtDNA alignment and notation of mtDNA haplotypes as EMPOP turns haplotypes into FASTA-like strings and performs the search in **unaligned format**

Reporting is disentangled from **database** searches

Elaborating the phylogenetic alignment remains an academic task - cognizance of mtDNA phylogeny

BUT

Some labs require consistent alignment for consistent reporting of mtDNA sequences

We are developing a new version of SAM that turns FASTA strings back in phylogenetic alignment

SAM21 eats **single** or **batches** of FASTA-like sequence strings and turns these into **rCRScoded haplotypes** following the **phylogenetic** alignment

Requirement:

Database of high-quality mtDNA sequences - EMPOP Weighting scheme for "mutations" - fluctuation rates (Röck et al FSIG 2013)

T16217C is a stable marker in hgs B4 and HV2 and therefore a strong signature for hg-estimation

T152C is strongly fluctuating in all 4 hgs and therefore of little relevance for hg-estimation

The new phylogenetic alignment software will be made available via EMPOP

Work flow:

Haplotypes or FASTA-like sequences queried in EMPOP EMPOP provides database search result EMPOP provides phylogenetic alignment of haplotype

Advantages:

EMPOP Database releases no more curated by hand but by software Even large datasets of different background (medical/population genetics) can be automatically aligned into standardized format and directly compared with each other

Caveats:

Not all conventions currently used in forensic genetics can be maintained The new software will come with updated recommendations for mtDNA notation

The new software will "soon" be available for testing.

If you are interested in testing and providing feedback, please come see me or write to walther.parson@gmail.com

acknowledgements: Nicole Huber, Arne Dür

EDNAP Meeting, Warsaw, Poland, April 26 2016

Next Generation Sequencing of STRs

Dr. Walther Parson assoc. Prof. Institute of Legal Medicine, Medical University of Innsbruck, Austria adj. Prof. Forensic Science Program, Penn State University, PA, USA walther.parson@i-med.ac.at

STR Analysis by Electrophoresis

National STR databases (ENFSI DNA WG)

* incomplete data

STR Analysis by Next Generation (Massively Parallel) Sequencing

	T T L C T A C G T T G T	Y O E E
G A C G G G A T A G C A T T G G A T A G C A T A G C A T A G C A T A G C A T T G G G C A C G C G C A G C A T T G G C A G C A T A G C A T T G C G C A T A G C A T A G C A T T G C A C C A T A G C A T T G C A T A G C	C T A C G T T G T C T A C G T T G T C T A C G T T G T C T A C G T T G T C T A C G T T G T C T A C G T T G T C T A C G T T G T C T A C G T T G T C T A C G T T G T C T A C G T T G T C T A C G T T G T C T A C G T T G <td>1 A 1 C A A T A G G A G T A T C A A T A G G A G T A T C A A T A G G A G T A T C A A T A G G A G T A T C A A T A G G A G T A T C A A T A G G A G T A T C A A T A G G A G T A T C A A T A G G A G G A G G A G G A G G A G G G G</td>	1 A 1 C A A T A G G A G T A T C A A T A G G A G T A T C A A T A G G A G T A T C A A T A G G A G T A T C A A T A G G A G T A T C A A T A G G A G T A T C A A T A G G A G T A T C A A T A G G A G G A G G A G G A G G A G G G G
	Sequence	

STR Analysis by Next Generation (Massively Parallel) Sequencing

NGS of STRs: Considerations of the ISFG

Forensic Science International: Genetics 22 (2016) 54-63

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

GENETIC

Walther Parson^{a,b,*}, David Ballard^c, Bruce Budowle^{d,e}, John M. Butler^f, Katherine B. Gettings^f, Peter Gill^{g,h}, Leonor Gusmão^{i,j,k}, Douglas R. Hares^l, Jodi A. Irwin^l, Jonathan L. King^d, Peter de Knijff^m, Niels Morlingⁿ, Mechthild Prinz^o, Peter M. Schneider^p, Christophe Van Neste^q, Sascha Willuweit^r, Christopher Phillips^s

The executive board of the ISFG introduced a DNA commission to evaluate **initial considerations** regarding STR nomenclature.

The primary goal is to define **minimum criteria** for data analyses and database storage.

Ultimately, this should facilitate compatibility between MPS STR data generated currently and the data that will inevitably follow with wider adoption, while ensuring **backward** and **parallel compatibility** to CE-based STR typing in national DNA databases as well as published population data.

At present, it can be expected that both CE- and MPS-based STR typing methods will continue to **coexist**. Their application to casework will depend on resources, ease of use, speed of analysis, the value of the increased resolution power, and each technique's relevance to complex and challenging cases.

The adoption of sequenced STR alleles in practical forensic work requires considerations at **three hierarchical levels**:

the full sequence (sequence string), the alignment of sequences relative to a reference sequence and the annotation of alleles.

A set of **8 practical considerations** on NGS of STRs (see also appendix of this presentation)

Consideration 1:

MPS analysis should be performed with software that allows STR sequences to be exported and stored in databases as **sequence (text) strings** to capture the **maximum consensus sequence information**.

Lesson learnt from mtDNA:

Database searches of reference-coded haplotypes/genotypes should be performed in alignment-free format to guarantee that haplotypes/genotypes are not missed due to different alignment/notation.

'247A 249DEL' and '247DEL' denote the same sequence, but when queried in rCRS-coded format, they would lead to different search results.

Translation of the haplotypes into nucleotide strings solves this problem (Röck et al (2011) *FSIG*)

Consideration 2:

The **forward strand direction** assigned in the human genome has been constant for all assemblies published since the first draft in 2001 and can be used to align STR sequences.

Consideration 3:

At the time of writing, **GRCh38** is the most up to date sequence assembly and is recommended as the framework with which to define repeat region structure for sequence alignment and for the mapping of sequence features such as SNPs.

Human genome assemblies

ISFG DNA Commission on STR NGS: Consequences of Harmonizing Alignment

		Human Reference Genome Assembly GRCh38											
STR	Chr.	Location of Repeat Region Start	Location of Repeat Region Stop	Repeat No.	Past Repeat Region Sequence Summary	Future Repeat Region Sequence Summary	Frameshift Exists						
D1S1656	1	230769616	230769683	17	[TAGA]16 [TAGG] [TG]5	[CA]5 [CCTA] [TCTA]16	*						
D2S1338	2	218014859	218014950	23	[TGCC]7 [TTCC]13 [GTCC] [TTCC]2	[GGAA]2 [GGAC] [GGAA]13 [GGCA]7							
FGA	4	154587736	154587823	22	[דדדכ]3 [דדדד] [דדכד] [כדדד]14 [כדככ] [דדככ]2	[GGAA]2 [GGAG] [AAAG]14[AGAA] [AAAA] [GAAA]3	*						
D5S818	5	123775556	123775599	11	[AGAT]11	[ATCT]11	*						
CSF1PO	5	150076324	150076375	13	[AGAT]13	[ATCT]13	*						
D6S1043	6	91740225	91740272	12	[AGAT]12	[ATCT]12	*						
D7S820	7	84160226	84160277	13	[GATA]13	[TATC]13							
VWA	12	5983977	5984044	17	[TCTA] [TCTG]5 [TCTA]11 TCCA TCTA	TAGA TGGA [TAGA]11 [CAGA]5 [TAGA]	*						
Penta E	15	96831015	96831039	5	[AAAGA]5	[ТСТТТ]5	*						
D19S433	19	29926235	29926298	16	[AAGG] AAAG [AAGG] TAGG [AAGG]12	[CCTT]12 CCTA [CCTT] CTTT [CCTT]	*						
DYS19	Y	9684380	9684443	15	[TAGA]3 TAGG [TAGA]12	[TCTA]12 CCTA [TCTA]3	*						
DYS635	Y	12258860	12258951	23	[TCTA]4 [TGTA]2 [TCTA]2 [TGTA]2 [TCTA]2 [TGTA]2 [TCTA]9	[TAGA]9 [TACA]2 [TAGA]2 [TACA]2 [TAGA]2 [TACA]2 [TAGA]4	*						
DYS3891	Y	12500448	12500495	12	[TCTG]3 [TCTA]9	[TAGA]9 [CAGA]3	*						
DYS389II	Y	12500448	12500611	29	[TCTG]5 [TCTA]12 48 nt. [TCTG]3 [TCTA]9	[TAGA]9 [CAGA]3 48 nt. [TAGA]12 [CAGA]5	*						
DYS390	Y	15163067	15163162	24	[TCTA]2 [TCTG]8 [TCTA]11 TCTG [TCTA]4	[TAGA]4 CAGA [TAGA]11 [CAGA]8 [TAGA]2	*						
Y-GATA-H4	Y	16631673	16631720	12	[TAGA]12	[TCTA]12							
DVS285ab	v	18639713	18639756	11	[GAAA]11	[TTTC]11	*						
D13303aD	T	18680632	18680687	14	[GAAA]14	[GAAA]14							
DYS460	Y	18888810	18888849	10	[GATA]10	[TATC]10	*						
DYS392	Y	20471987	20472025	13	[TAT]13	[ATA]13	*						
DVE28751-h	v	23785361	23785500	35	[AAAG]3 GTAG [GAAG]4 [AAAG]2 GAAG [AAAG]2 [GAAG]9 [AAAG]13 [AAAG]3 GTAG [GAAG]4 [AAAG]2 GAAG [AAAG]2 [GAAG]9 [AAAG]								
01120/210	25884581		25884724	36	[AAAG]3 GTAG [GAAG]4 [AAAG]2 GAAG [AAAG]2 [GAAG]10 [AAAG]13	[CTTT]13 [CTTC]10 [CTTT]2 CTTC [CTTT]2 [CTTC]4 CTAC [CTTT]3	*						

D19S433 has been reported on the reverse strand [AAGG] with two uncounted repeats (bold) Reverse complement results in [CCTT] Adjusted reverse complement (first possible repeat motive) results in [TCCT] and a 1 bp shift

D19 rev. TGTTG <u>AAGG</u> **AAAG** <u>AAGG</u> **TAGG** <u>AAGG</u> <u></u>

Potential complications when comparing to earlier sequence data

DYS389 I/II has been reported on the reverse strand Adjusted reverse complement (first possible repeat motive) results in a shift of 1 repeat unit => allele appears one repeat larger

Reverse strand: $[TCTG]_5 [TCTA]_{12} 48 \text{ nt.} [TCTG]_3 [TCTA]_9$ Forward strand: $[TAGA]_9 [CAGA]_3 48 \text{ nt.} [TAGA]_{12} [CAGA]_5$ Forward strand, adj.: $[GATA]_9 [GACA]_3 48 \text{ nt.} [GATA]_{12} [GACA]_6$

MPS data need to be interpreted by software, not manually, to avoid misunderstanding

DYS385a/b includes two inversed regions, [GAAA] (rev) and [TTTC] (for) Using the forward strand, it is not possible to summarize DYS385 a/b repeats by a uniform motif description as was reported in the past.

14

TTTC

GAAA

Introduction into **alignment of sequences** to a reference including supplementary files for orientation Supplementary files include the alignment of 36 autosomal, 29 Y- and 7 X-chromosomal STRs including the special case of D5S2500 that is two different STRs located next to each other (1688 bp)

The case(s) of D5S2500

Lo	cus details	Human genome reference sequence (5' to 3'): repeat region (centre bold) +/- 200 nucleotides of flanking sequence
NCBI GenBank accession number	G08468 (UniSTS ID: 76230)	
Temporary Name	D5S2500.G08468	AAAATTTTAAAAATTAGCTGGACATGGTGGTGCACACCTG
Synonyms	Marshfield: GATA67D03; Whitehead-YAC: CHLC.GATA67D03; rs111362704	TAGACCTGCACACCTGTAGATCGCTGGAGCCCAAACGTT CAAGGTTACAGTGACCTATGGTCATGCCACTGCACTCCA
Forensic Multiplexes	Qiagen HDplex / Mentype® Chimera® kits	GCCTGGGCAACACAGACTCTGTTTCTAATACATATATAG
9947A control DNA genotype	15,16	ATCTATTTTGATCCCATGGGGGGGGGGAGATCACTCCTTTAATAA
Repeat motif in reference sequence	[CTAT]11	TGCAAGAGAGTGAATAAGATGGGGGGGGGGGGGGGGGGG
GRCh38 coordinates of sequence shown	5:59401244-59401655	
GRCh37 coordinates of sequence shown	5:58697070-58697481	
NCBI GenBank accession number	AC008791*	TTGTATCATCCCTGCAAAGTAACGTTTACTGATAAACCAAA
Temporary Name	D5S2500.AC008791	TGATGTGCCATAATTATGTTTTATTATGGAACAACTTTTG TTTTTCTGGAGTTATATATTACCTTCTTTATTGGATTATGT
Synonyms	None identified	GACATTATCACCAATTTTTCTAGACGTCTCCAAAACATAAT
Forensic Multiplexes	NIST miniSTR 26plex / AGCU ScienTech 21-plex	GGTAGACAGACAGACAGACAGACAGACAGACAGACAGA
9947A control DNA genotype	14,23	TAGATAGATAGATTGATTGATTGATTATGGGGCCCACGAGATA
Repeat motifs in reference sequence	[GGTA] ₃ [GACA] ₈ [GATA] ₃ [GATT] ₃	CAGGGAATCTATTACTGCAAACATTTACCCTTTAAGTTACA
GRCh38 coordinates of sequence shown	5:59402932-59403399	AACAATTCAATTATATTCTCCAAACAATTCAATTATATTCTC TTAGTTATTTTGAGATGTATGATAAACTACTGTTGACTGTA
GRCh37 coordinates of sequence shown	5:58698758-58699225	GTCACCCTGTTGAGCTATCAAATACCAGATCTTATTTGT

Philips et al (2016) *in review*

1. Bold segment = the reference genome assembly sequence description D13S317 Ref (11) -Chr13-GRCh38 82148025-82148068 [TATC]₁₁ D13S317[CE12]-Chr13-GRCh38 82148025-82148068 [TATC]₁₂ 82148001-A; 82148069-T

2. Locus name and capillary electrophoresis allele name D13S317[CE12]-Chr13-GRCh38 82148025-82148068 [TATC]₁₂ 82148001-A; 82148069-T

3. Chromosome and human genome assembly version D13S317[CE12]-Chr13-GRCh38 82148025-82148068 [TATC]₁₂ 82148001-A; 82148069-T

4. STR repeat region co-ordinates (start-end) for reference allele D13S317[CE12]-Chr13-GRCh38 82148025-82148068 [TATC]₁₂ 82148001-A; 82148069-T

5. Description of STR motifs D13S317[CE12]-Chr13-GRCh38 82148025-82148068 [TATC]₁₂ 82148001-A; 82148069-T

6. Location of flanking region variants D13S317[CE12]-Chr13-GRCh38 82148025-82148068 [TATC]₁₂ 82148001-A; 82148069-T

Simple STR nomenclature systems typically represent easy-to-read unique identifiers consisting of the STR locus name and the operationally-defined repeat-based allele designation derived from CE (e.g. D13S317 13a1a)

D13S317

																																									3	189	54	00	00	A	•	15	20	20	400	009	N		
					1		1		2		2			2				3		4					5				6			7			8		9		10		0			11		-L		ĩ		ï	4				
A	С	A	т[Т	A 1	т		T A	т	С	Т	A	т	C	т	A	т	С	т	A	т	C	т	A	т	C	т	A	т	С	т	A	Т	C	T /	Т	С	Т	A	т	С	т	A	т	C	A	A	т	C	A	A	т	c /	A	
82148021	82148022	82148023	82148024	82148025	82148026	12031100	001480.00	82148030	82148031	82148032	82148033	82148034	82148035	82148035	82148037	82148038	82148039	82148040	82148041	82148042	82148043	82148044	82148045	82148046	82148047	82148048	82148049	82148050	82148051	82148052	82148053	82148054	82148055	82148056	82148057	82148059	82148060	82148061	82148062	82148063	82148064	82148065	82148066	82148067	82148068	82148069	82148070	82148071	82148072	82148073	82148074	82148075	82148076	82148077	
82722156	82722157	82722158	82722159	82722160	82/22161	00102120	N3166709	82722165	82722166	82722167	82722168	82722169	82722170	82722171	82722172	82722173	82722174	82722175	82722176	82722177	82722178	82722179	82722180	82722181	82722182	82722183	82722184	82722185	82722186	82722187	82722188	82722189	82722190	16122728	82722192	82722194	82722195	82722196	82722197	82722198	82722199	82722200	82722201	82722202	82722203	82722204	82722205	82722206	82722207	82722208	82722209	82722210	82722211	82 12 22 12	

TA 00546005 A/T 1000042500 A/T

STR Sequencing & Exchange

Acknowledgements

FUF Der Wissenschaftsfonds.

FP7-SEC-2011-285487

Translational Research project L397 "EMPOP—an innovative human mtDNA database" Research project P22880-B12 "Genetic discovery of an early medieval Alpine population"

National Institute of Justice 20

2011-MU-MU-K402

"Maximizing mtDNA Testing Potential with the Generation of High-Quality mtGenome Reference Data"

EMPOP

M

Mayra Eduardoff Catarina Xavier Christina Strobl Gabriela Huber Martin Bodner Cordula Berger

Harald Niederstätter

рорн 🎴

Thermo Fisher

Robert Lagacé Sharon Wootton Joseph Chang

illumina

Nicola Oldroyd Angela Kalbande

Collaborators

Arne Dür (Innsbruck) Jodi Irwin, Rebecca Just (AFDIL/FBI) Bruce Budowle, Jonathan King (UNTSC) Lilian Andrea Casas (Colombia) EMPOP collaborators

References

Bodner M et al (2015) Helena, the hidden beauty: Resolving the most common West Eurasian mtDNA control region haplotype by massively parallel sequencing an Italian population sample <u>FSI Genet</u> **15**: 21-26

Borsting C et al (2014) Evaluation of the Ion Torrent HID SNP 169-plex: A SNP typing assay developed for human identification by second generation sequencing FSI Genet 12: 144-154

Brandstätter A et al (2004) Mitochondrial DNA control region sequences from Nairobi (Kenya): inferring phylogenetic parameters for the establishment of a forensic database Int J Legal Med **118**(5): 294-306

Daniel R et al (2015) A SNaPshot of next generation sequencing for forensic SNP analysis FSI Genet 14: 50-60

Eduardoff M et al (2015) Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGM FSI Genet 17: 110-121

Gettings KB et al (2015) STR allele sequence variation: Current knowledge and future issues FSI Genet 18: 118-130

Just R S et al (2015) Full mtGenome reference data: development and characterization of 588 forensic-quality haplotypes representing three US populations <u>FSI Genet</u> **14**: 141-155

King JL et al (2014) High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq <u>FSI Genet</u> **12**: 128-135 LaRue BL et al (2014) Characterization of 114 insertion/deletion (INDEL) polymorphisms, and selection for a global INDEL panel for human identification <u>Leg Med (Tokyo)</u> **16**(1): 26-32

Marcinska M et al (2015) Evaluation of DNA variants associated with androgenetic alopecia and their potential to predict male pattern baldness <u>PLoS One</u> **10**(5): e0127852 Oberacher H et al (2001) On-Line Liquid Chromatography Mass Spectrometry: A Useful Tool for the Detection of DNA Sequence Variation <u>Angew Chem Int Ed Engl</u> **40**(20): 3828-3830

Oberacher H et al (2001) Analysis of polymerase chain reaction products by on-line liquid chromatography-mass spectrometry for genotyping of polymorphic short tandem repeat loci <u>Anal Chem</u> **73**(21): 5109-5115

Parson W et al (2016) Massively Parallel Sequencing of forensic STRs: Considerations of the DNA Commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements FSI Genet

Parson W et al (2015) Massively parallel sequencing of complete mitochondrial genomes from hair shaft samples FSI Genet 15: 8-15

Phillips C et al (2014) Building a forensic ancestry panel from the ground up: The EUROFORGEN Global AIM-SNP set FSI Genet 11: 13-25

Pitterl F et al (2008) The next generation of DNA profiling--STR typing by multiplexed PCR--ion-pair RP LC-ESI time-of-flight MS Electrophoresis 29(23): 4739-4750

Pitterl et al (2010) Increasing the discrimination power of forensic STR testing by employing high-performance mass spectrometry, as illustrated in indigenous South African and Central Asian populations. Int J Legal Med **124**(6): 551-558

Pospiech E et al (2015) Evaluation of the predictive capacity of DNA variants associated with straight hair in Europeans FSI Genet 19: 280-288

Santos C et al (2015) Forensic ancestry analysis with two capillary electrophoresis ancestry informative marker (AIM) panels: Results of a collaborative EDNAP exercise <u>FSI</u> <u>Genet</u> **19**: 56-67

Yang Y et al (2014) Application of next-generation sequencing technology in forensic science <u>Genomics Proteomics Bioinformatics</u> **12**(5): 190-197 Zeng X et al (2015) Selection of highly informative SNP markers for population affiliation of major US populations <u>Int J Legal Med</u> 10.1007/s00414-015-1297-9

Appendix - Considerations of the ISFG on NGS of STRs

Walther Parson, David Ballard, Bruce Budowle, John M. Butler, Katherine B. Gettings, Peter Gill, Leonor Gusmão, Douglas R. Hares, Jodi A. Irwin, Jonathan King, Peter de Knijff, Niels Morling, Mechthild Prinz, Peter M. Schneider, Christophe Van Neste, Sascha Willuweit, Christopher Phillips
Massively Parallel Sequencing of forensic STRs: Considerations of the DNA Commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements
Forensic Science International Genetics (2016) in press

Consideration 1:

MPS analysis should be performed with software that allows STR sequences to be exported and stored in databases as sequence (text) strings to capture the maximum consensus sequence information.

Consideration 2:

The forward strand direction assigned in the human genome has been constant for all assemblies published since the first draft in 2001 and can be used to align STR sequences.

Consideration 3:

The choice of reference sequence is crucial for standardizing STR nomenclature systems. At the time of writing, GRCh38 is the most up to date sequence assembly and is recommended as the framework with which to define repeat region structure for sequence alignment and for the mapping of sequence features such as SNPs. Software will be required to handle comparisons between multiple reference sequences, particularly in the short term, where sequence variants listed by 1000 Genomes currently retain GRCh37 coordinates. Continued discussions are necessary to decide whether or not to adapt to novel genome assemblies.

Consideration 4:

Further work is needed to translate the nomenclature of STR loci thus far coded relative to the reverse strand and repeat region start and end points. There is a need to strictly define these and other anchor points to specify the repeat regions.

Consideration 5:

Although simple STR nomenclature systems may be required at some point in the future to facilitate communication and data exchange, comprehensive STR nomenclature systems are preferred for early adopters of STR MPS analysis in order to ensure compatibility with MPS data generated in the future. Backward compatibility to the repeat-based nomenclature derived from CE needs to be maintained to preserve the universal applicability of established national STR databases.

Consideration 6:

To account for relevant genetic variation outside common repeat regions, STR sequences stored as sequence strings should include flanking sequences as well as the genome coordinates of the sequence read start and end points.

Consideration 7:

Updated allele frequency databases will be necessary to take full advantage of the increased power of discrimination offered by MPS generated STR data. A unified nomenclature system is needed to ensure compatibility of worldwide population databases.

Consideration 8:

Future forensic MPS multiplexes would benefit from retention of past markers for backward compatibility and a marker selection process based on population data, molecular biology, sequencing chemistry, and a continued dialogue between the forensic community and commercial suppliers.

EUROFORGEN-NoE Update: EDNAP Meeting Warsaw 2016

Peter M. Schneider

Institute of Legal Medicine University of Cologne (Germany)

• The EUROFORGEN short term fellowships

- Some statistics and final call 2016
- Some new publications ...

... from 2016

- The Virtual Institute
 - and how to get there

The EUROFORGEN Conference

- in collaboration with IALM, Venice, 23rd June 2016
- Training and education news
 - and a new initiative
- Dissemination activities

• First and second calls 2013-2015

14 fellowships awarded to 28 colleagues from 10 countries visiting host labs in 11 countries

Main purposes of the visits

EUROF

Host institutions

Fellowships relation with WP activities

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

EUROFO

Proposed research topics

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

EUROF

Educational needs identified

• Third and final call 2016

- 20 new fellowships open, also inviting stakeholders from police and judiciary
 - Exchange visits for 3-5 days
 - Active participation in workshops related to EFG aims
 - Other research/training activities related to scope of WPs 2-5
 - Activities to promote closer collaboration between justice, police and scientific community
- Fellowships must be completed until September 30, to allow for reimbursement of costs within 2016
- Travel support up to EUR 500
- Application details on the website

Recent publications

EUROFORGEN Network of Excellence	Login	Search Contact	Sitemap Imprint
fy	► Home ► Dissemination Activities ► Research articles	search	GO
About EUROFORGEN-NoE	Project publications	Newsletter	(1/2016)
The Group		ne -	
The Project	The original articles listed below have been published in scientific journals, and		
Networking Activities	mainly describe results from Work Package 3. In case of co-authorship, the work		
Training	of one or several of the contributing authors has been funded by		
News	EUROFORGEN-NOE.	날 <u>Dowload h</u>	ere
Dissemination Activities			
Consortium publications	2016		
Research articles	Prevalence of human cell material: DNA and RNA profiling of		
Contact	public and private objects and after activity scenarios.		
Login	Forensic science international. Genetics. 2016 Mar;21:81-9		
	Authors: van den Berge M, Ozcanhan G, Zijlstra S, Lindenbergh A, Sijen T		
Tweets by @EUROFORGEN	Pub ed.gov		

SEVENTH FRAMEWORK PROGRAMME

- M. Van der Berge et al.: Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios.
 FSI Genetics. 2016 Mar; 21:81-9
- P. Gill: Analysis and implications of the miscarriages of justice of Amanda Knox and Raffaele Sollecito.
 FSI Genetics. 2016 Mar 3; 23:9-18
- Ø Bleka et al.: EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts.
 FSI Genetics. 2016 Mar; 21:35-44
- M. Eduardoff, T.E. Gross et al.: Inter-laboratory evaluation of the EUROFORGEN Global ancestry-informative SNP panel by massively parallel sequencing using the lon PGM™ FSI Genetics. 2016; in press

The Virtual Institute of Research for Forensic Genetics

About EUROFORGEN-NoE

The Group

The Project

Networking Activities

Training

News

Dissemination Activities

Contact

EUROFORGEN partner area

EUROFORGEN members area

EUROFORGEN course material

EUROFORGEN publications

Recommended open software

Train-the-trainers section

Virtual Institute for Forensic Genetic Research in Europe

Our website will provide a framework for exchange of expertise and data, not only between consortium members but with any other individuals or institutions working in forensic genetics in Europe. It will bring together the knowledge and resources centered on forensic genetics tools and education at a European level, and allow researchers, forensic practitioners, stakeholders and legal experts to interact with the network. Currently, the following resources are available:

- EUROFORGEN Course Material>: Up-to-date lectures and presentations on major topics of forensic genetics derived from the "Train the Trainers" workshop series.
- EUROFORGEN publications>: Original publications from EUROFORGEN Consortium members available for downloading.
- Recommended Open Software>: a list with open software tools is displayed together with a brief description on their applications.
- Train-the-Trainers Section>: it contains the "TTT Blog", a discussion forum to post comments and questions related to training issues, to get directly into contact with the EUROFORGEN trainer team.

Please use the blog for your feedback, and your suggestions for improvement. The contents will be regularly updated and expanded.

Your EUROFORGEN-NoE team.

Logout Search Contact Sitemap Imprint

1.40

search

GO

Quicklinks

You can apply for + short term fellowships.

The European landscape in forensic genetics: + Geographical display and contact data

The winners are found! The EUROFORGEN competitive call review led to 3 proposals with highest score.

Newsletter (4/2014)

Dowload here

Consortium

- Dedicated "for members only" area of website
 - Can only accessed after individual registration, and obtaining a user name and password
 - All colleagues working in institutions that have submitted their contact data by submitting a questionnaire in the initial inquiry will be admitted
 - Please do not hesitate to inquire if you are not sure about the participation of your lab!

The Virtual Institute of Research for Forensic Genetics

L

Home Networking Activities European Virtual Institute of Research in Forensic Genetics

About EUROFORGEN-NoE

The Group

The Project

Networking Activities

European landscape in forensic genetics

EUROFORGEN Network of Excellence

Directory of Forensic Genetic Research Laboratories in Europe

European Virtual Institute of Research in Forensic Genetics

Training

News

Dissemination Activities

Contact

Εl

SEVENTH FRAMEWOR

European Virtual Institute of Research in Forensic Genetics - access query

You are interested in becoming a member of the European Virtual Institute of Research in Forensic Genetics?

If you are a scientist working at a forensic genetics laboratory, or a professional working in an institution of the justice system, you are invited to join the Virtual Institute. Please see our Newsletter 3/2014 for further details.

Please enter your personal contact data, and the data of your institution below. We will verify your request and come back to you in the following days.

One requirement to get access to the EUROFORGEN-NoE Virtual Institute of Research in Forensic Genetics is the participation of your institution by submitting the EUROFORGEN-NoE **D** guestionnaire.

Your EUROFORGEN-NoE team.

- Privileged access to new content:
 - Course Material: Up-to-date lectures and presentations on major topics of forensic genetics derived from the "Train the Trainers" workshop series.
 - Publications: Original publications (PDF) from Consortium members available for downloading.
 - Open Software: a list with open source / accessible software tools is displayed together with a brief description on their applications.
 - Train-the-Trainers Section: a discussion forum to post comments and questions related to training issues, to get directly into contact with the EUROFORGEN trainer team.

In preparation:

- Training videos and online learning tools

EUROFORGEN - International Dissemination Conference "Forensic DNA analysis in the light of the new security needs" Venice, June 23rd 2016

- Session 1: FROM CRIME SCENE TO COURT ROOM
 - Evidence challenges and advanced interpretation methods
 - The interpretation debate: miscarriages of justice
- Challenges in Forensic Genetics (John Butler, NIST)
- The impact of the Innocence Project on forensic science policy and practice – (Sarah Chu, New York)
- The interpretation debate how misleading is DNA evidence? (Peter Gill)

- Session 2: FROM GENOTYPE TO PHENOTYPE
 - The next step in forensic genetic intelligence
 - State-of-the-art and future directions
- Genetics of human visible traits (Ana Valdes & Timothy Spector; King's College)
- Recent progress in predictive DNA analysis (Wojciech Branicki)
- New technologies and approaches in forensic genetics application to real cases (Chris Phillips)

- Session 3: SCIENCE IN SOCIETY
 - Ethical and legal aspects, the societal dimension of forensic genetics
 - Security issues in Europe from a DNA perspective
- Forensic DNA Evidence in Sexual Assault Cases Workflow, Reporting and Information Exchange (Lutz Roewer, Berlin)
- Ethical aspects of the evaluation of the evidence and communication (Erin Murphy, NYU Law School)
- Ethical and social challenges of transnational exchange of DNA data in the EU (Helena Machado, University of Coimbra)

- Session 3: SCIENCE IN SOCIETY
 - Ethical and legal aspects, the societal dimension of forensic genetics
 - Security issues in Europe from a DNA perspective
- Ensuring the social life of innovations in forensic genetics (M. Wienroth, Northumbria University)
- Contribution of DNA typing to the resolution of crimes against humanity (Lourdes Prieto, USC)
- European law regulating the forensic application of DNA testing and its use for national databases (Kristiina Reid, London)

- Round table:
 - Current challenges in Ethics & Legal & Social aspects in different European countries -- Robin Williams (chair and UK),
 - Angel Carracedo (Spain and Portugal),
 - Susi Pelotti (Italy),
 - Peter Schneider (Germany),
 - Christian Doutremépuich (France),
 - Gunilla Holmlund (Sweden)

EUROFORGEN Conference - June 23, 2016

- Venue and registration details
 - www.ialm2016venice.org
 - Venice Convention Center, Lido Island
 - Reduced registration for IALM partner societies available until May 31st, 2016 (€ 465, after this date only onsite registration)
 - Current members of the EUROFORGEN Virtual Institute will get an additional discount after the conference
 - Includes access to all sessions of IALM Symposium
- Session on Forensic Genetics and Genomics, June 24th
 - Speakers: A. Carracedo, M. Kayser, W. Parson, P. Schneider
 - Short presentations

• New WP5 manager since July 2015:

Angel Carracedo (USC)

- New and ongoing activities planned for 2016
 - Extend collaboration with CEPOL: support needed from CEPOL national contact points to express interest for training in forensic DNA analysis and interpretation
 - Initiate collaboration with European Judicial Training Network (EJTN) to offer advanced training on forensic DNA to judiciary
 - Support satellite training workshops at national level with EUROFORGEN teachers
 - Develop new contents on education for the Virtual Institute website
 - Introduce a curriculum for post-graduate education in forensic biology and genetics

WP5: Education, Training and Career Development

- Three CEPOL courses 2012-2015 in Avila / Spain
 - Origin of participants by institutions

WP5: Education, Training and Career Development

- Three CEPOL courses 2012-2015 in Avila / Spain
 - Origin of participants by country

EUROFORC Network of Excel

- Introducing the first EUROFORGEN Summer School
 - scheduled for July 17-21, 2017, to take place in Santiago de Compostela, Spain
 - Audience: Students of Law and Biomedical Sciences, Judiciary, Police personnel at different educational levels
 - Covering relevant basic and advanced topics in forensic genetics
 - Not funded by EC, moderate tuition fees will be charged

• The EUROFORGEN Summer School will continue

- Taking place annually at changing locations in Europe
- Addressing the needs of the community
- Supporting the continuing platform of the Virtual Institute of Research in Forensic Genetics

EUROFORGEN European Forerk of Joined	RGEN
Discussion Members Events Photos Files	Search this group
Write Post Add Photo / Video Create Poll More	ADD MEMBERS # There name or email address MEMBERS 274 Members (3 new) The second
Peter Schneider Yesterday at 4:34pm Very useful to create figures displaying quantitiative research data!	Message · Invite by Email DESCRIPTION Edit The EUROFORGEN Network of Excellence is creating the Europe See More TAG 3 Edit Forensic DNA · Science · Genetics
Carch Republic Image: Carch Republic Demmark Image: Carch Republic Estimate Image: Carch Republic Finand Image: Carch Republic Finand Image: Carch Republic Settemate Image: Carch Republic Generation Image: Carch Republic Lonand Image: Carch Republic Lonand Image: Carch Republic Lated Image: Carch Republic Lated Image: Carch Republic	GROUP CHATS No group chats, start one now. + Start New Chat
Average Average Mexico Mexi	CREATE NEW GROUPS Groups make it easier than ever to share with friends, family and teammates.
options. POLICYVIZ.COM Like Comment Share Thore Egeland, Luis Souto Miranda and 4 others	RECENT GROUP PHOTOS See All

Please do not forget to join our Facebook group! ... already 274 members!

#EUROFORGEN is now on @twitter. Follow us to find out more about #forensic genetics & join our group @facebook.

RETWEETS LIKES

<u>à</u>	GAB?m	k
----------	-------	---

fY

About EUROFORGEN-NoE
The Group
The Project
Networking Activities
Training
News
Dissemination Activities
Contact
Login

Tweets by @EUROFORGEN

#EUROFORGEN will participate in "Security Research & Innovation Event 2016", The Hague; srie2016.com #SRIE2016 #forensicGenetics ► Home

About EUROFORGEN-NoE

The main objective of the European Forensic Genetics EUROFORGEN-NoE -- is the creation of a **Euro Forensic Genetic Research**.

Forensic genetics is a highly innovative field of appl impact on the security of citizens. The project, fu programme of the European Commission under the 7th started in January 2012 and will run for 5 years. It is of Schneider of the Institute of Legal Medicine at the Cologne, Germany.

The network includes 16 partners from 9 countries in European forensic genetic research. It aims to creat existing collaborations as well as to establish new specialized field of security. Therefore, all key plat stakeholders and end-users (e.g. police institutions educational centres and scientific societies will be integ Furthermore, the societal dimension of applying fore investigations, potentially affecting privacy rights and a addressed. Finally, training and educational activitie establish common European-wide standards for ge genetic data related to biological evidence.

SRIE 2016, June 1& 2, 2016

EUROFORGEN-NoE

#EUROFORGEN will participate in "Security Research & Innovation Event 2016", The Hague; srie2016.com #SRIE2016 #forensicGenetics

9:41 AM - 19 Apr 2016

17h00-18h00	0 Panel discussion: Forensics (Connection to the NL PRES event)
Peter	r M. Schneider (Coordinator of EUROFORGEN project, DE)
Arie	Ijzerman (Chair of the COSI)
Jan o	de Kinder (Chair of ENFSI)
Repr	resentative of a Forensic Institute (TBC)
Sessi	ion Chair: Michele Socco (DG HOME, EC)

Thank you very much for your attention!

Asian Forensic Sciences Network Inter-Laboratory DNA Collaborative Exercises

- Proposed by HSA at AFSN Meeting 2014 in Seoul
- Objectives
 - Benchmark processes and capabilities of Laboratories
 - Strengthen cooperation among member institutes
 - Enhance quality of forensic services in the region
- 2 exercises conducted in 2015
 - DNA extraction efficiencies
 - Mixture interpretation approaches
- 3rd exercise being planned for June 2016 Amplification and interpretation of DNA profiles

Asian Forensic Sciences Network Inter-Laboratory DNA Collaborative Exercise 1

- Labs given 2 pairs of replicate blood samples to process.
- Extracted DNA returned to HSA \rightarrow quant and amp.
- 10 Labs from 6 countries participated.
 - Indonesia, Malaysia, Philippines, South Korea, Mongolia, Thailand.

Asian Forensic Sciences Network Inter-Laboratory DNA Collaborative Exercise 2

- Labs were sent electropherograms of six 2- and 3-person mixtures with specified analytical and stochastic thresholds.
- Labs interpreted the profiles, and identified the alleles that would be used for matching → much variation observed.
- 10 Labs from 8 countries participated.
 - China, Indonesia, Malaysia, Mongolia, Phillippines, Singapore, South Korea, Thailand.
- Variation in statistical approaches.
 - Modified Random Match Probability, Combined Probability of Inclusion, Likelihood Ratio.
- Report to Labs included suggested interpretations by Dr Bruce Budowle.

Asian Forensic Sciences Network

- 3rd Inter-Lab Exercise planned for June 2016.
- Labs will be sent 5 lyophilised DNA samples 2 singlesource and 3 mixtures (1:1, 5:1, 5:5:1).
- Labs to re-constitute, amplify, interpret according to internal guidelines.
- Identify the alleles that would be used for matching.
 - Lab's AT and ST? Detection and reporting of the minor contributor? Statistical approach? ...
- AFSN 2016 meeting Bangkok, Aug 2016
- AFSN 2017 meeting China
- AFSN 2018 meeting Singapore

Forensic Samples			R
	HSA Biology Div	ision	
	ASCLD/LAB- International		
	Volume crime	TAT ~ 35 days	
Examination for Biological M	aterial Major crime T	AT ~ 130 days	
KM OBTI AP BAR SA Hexagon OBTI AP BAR & PSA Hexagon Bar AP BAR & PSA BSID-Sementuriter LND BSID-Sementuriter BSID-SEMINA	DNA databas	Sing ~ 14 days	Detection (2 x 3500xl)
			(3 x 3500xl, 1 x 3500)
Extraction	Quantitation		V23

Technology Translation

Validation of software and courtroom experiences

Peter Gill

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

Slide no 1

Contents lists available at ScienceDirect

Science and Justice

journal homepage: www.elsevier.com/locate/scijus

Validation of probabilistic genotyping software for use in forensic DNA casework: Definitions and illustrations

Hinda Haned ^{a,*}, Peter Gill ^{b,c}, Kirk Lohmueller ^d, Keith Inman ^e, Norah Rudin ^f

- ^a Netherlands Forensic Institute, Department of Human Biological traces, The Hague, The Netherlands
- ^b Norwegian institute of Public Health, Oslo, Norway
- ^c Department of Forensic Medicine, University of Oslo, Norway
- ^d Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E, Young Drive South, Los Angeles, CA 90095-1606, United States
- e Department of Criminal Justice Administration, California State University, East Bay, 4069 Meiklejohn Hall, 25800 Carlos Bee Boulevard, Hayward, CA 94542, United State
- ^f 650 Castro Street, Suite 120-404, Mountain View, CA 94041, United States

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

Slide no 3

- Model theory and assumptions were explained and justified in a "statistical specifications" report,
- Model theory was formalized and published in peer reviewed journals.
- operational validation document written

- Model output was compared to expert opinion on 20 cases,
- Model output was compared to the following programs: Lab
- Retriever, LikeLTD, FST, GRAPE
- Performance tests using 211 controlled mixtures (of one up
- to five contributors) and 621 (overall-loci) likelihood ratios
- were compared to expected trends based on gold standard
- conditions where parameters were known.

Step 3. Software validation

- Software output was evaluated analytically, using the Xcas algebra software
- Model output was evaluated on 77 controlled NGM mixtures, and N1000 LRs were computed and compared to expected trends using known parameters
- LRmix output was evaluated against analytical formulae derived for simple examples
- LRmix output was evaluated against an independent reimplementation

of the model (in the Java language), using

77 controlled NGM mixtures, and 1000 LRs were computed and compared

"Over the 1095 LR calculations were submitted to comparisons of LRmix and other software, for all tested samples, the same conclusions were obtained. We therefore concluded that LRmix is validated for use in casework, within the limitations described in the operational validation document."

- Version control is the same as for commercial models.
- Versions can only be changed by the developers. Version changes are recorded of course.
- Users are of course completely free to carry out research on the code – but of course this would create a new software that cannot be uploaded to the official website
- This is no different to practice in medical genetics where the vast majority of software that is produced is open-source.
- Advantages of open-source:
 - Transparency
 - Availability
 - Standardisation
 - <u>http://lrmixstudio.org/faq/and https://en.wikipedia.org/wiki/Open-source_software</u>

EuroForMix

A user-friendly software for evaluating STR/SNP profiles using peak height information

Developed by Oyvind Bleka (FHI)

Forensic Science International: Genetics 21 (2016) 35-44

Research paper

EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts

CrossMark

Øyvind Bleka^{a,b,*}, Geir Storvik^{b,1}, Peter Gill^{a,c,1}

^a Department of Forensic Biology, Norwegian Institute of Public Health, Oslo, Norway

^b Department of Mathematics, University of Oslo, Oslo, Norway

^c Department of Forensic Medicine, University of Oslo, Oslo, Norway

- A Graphical User Interface which implements and extends the continuous model from Cowell et.al (2015). DNAmixtures.
- Parameters for mixture proportion, peak height distribution, stutter proportion and degradation are automatically taken into account. Drop in parameter informed from lab observations.
- Unlike some other continuous models there is no need for calibration, but prior information can optionally be specified.
- Weight of evidence (WoE) calculation of crime samples now uses peak height information!

DNA stain with multiple contributors

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

Slide no 11

- EUROFORGEN Network of Excellence
- No requirement to carry out an assessment of stutter, peak height characteristics as this is automatic – it is accommodated by the data actually evaluated by the model.
- MCMC is not used to evaluate the LR but is used in sensitivity analysis to model the unknown parameters
- This program has been completely rewritten from the original idea from Cowell et al (2015) 'DNAmixtures' which is distributed as open source but requires purchase of HUGIN program.
- Our validation has compared the two programs and we show they produce the same results.
- Open-source is transparent. All of the algorithms are published in sufficient detail for others to implement from scratch

Features

- The continuous model in EuroForMix supports:
 - Multiple contributors in hypothesis
 - Can condition on any number of reference profiles
 - Can specify any number of unknowns (practical limit is 4)
 - Replicated samples
 - Not strictly necessary but will accomodate consensus samples
 - Stutters
 - Allele drop-out
 - Allele drop-in with a peak height model
 - Coancestry effect (Fst-correction)
 - Degradation of peak heights over fragment length

EUROFORGEN Network of Excellence

Deconvolution:

The continuous model

- A robbery was committed. An individual R was apprehended with a balaclava and provided a reference sample which matched sample E.
- R is conditioned under both hypotheses.
- Person S is implicated but he denies wearing the balaclava
- Person S donates a reference sample
- Aim is to determine strength of evidence if S is a possible contributor to the sample
- The likelihood ratio (LR) was calculated using the following alternative hypotheses
- Hp : "Individual R and suspect S both contributed to E"
- Hd : "Individual R contributed to E, but suspect S did not"

The GUI: Import

-Step 1) Ir	nport and select	Population freque	encies		
1) Selec (with fr	t directory equency files)	2) Import from (with frequency	directory files)		
Select k	it:	Select populatio	n: Vi	ew frequencies	
ESX17	•	Norway	•		
Import vid View ev	evidence Im I I	port reference] P4 w references]	mport databas View database	E	

Epg generated by Euroformix

Peak height summary of the crime stain

- Degradation clearly presented.
- D2S441 and D19S433 have much greater sum peak height than the other markers.

The GUI: View data

Model specification

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

>

EN

Results with the ML approach

nerate data	Import d	ata Mode	specification	MLE fit	Deconvolution	Database searc	h Qual. LR		
-Estimates Paramet	under Ho ter estima	i tes:			Estimates und Parameter es	er Hp timates:		Weight-of (MLE base Joint LR	-evidence d)
pa	ram	MLE	Std.Err.		param	MLE	Std.Err.	LR=	8220166
Mix-pro Mix-pro P.H.exp P.H.var Degrad Stutter- Maximu logLik= Lik= Further MCMC Deconv	op. C1 op. C2 op. C3 oectation iability . slope oprop. 	5.179e-01 2.410e-01 2.410e-01 3.055e+03 2.253e-01 7.119e-01 5.547e-02 bod value	3.274e-01 3.142e-01 3.665e-02 1.753e+02 2.678e-02 4.397e-02 2.088e-02		Mix-prop. C. Mix-prop. C. Mix-prop. C. P.H.expectat P.H.variabili Degrad. slop Stutter-prop Maximum Lil logLik= -554 Lik= 2.502 Further Actio MCMC simu Deconvoluti Model valida	1 5.195e-01 2 1.446e-01 3 3.359e-01 ion 3.092e+03 ty 1.895e-01 ie 6.988e-01 ie 6.988e-01 ie 4.494e-02 kelihood value 2e-241 n istion	2.867e-02 1.686e-02 2.443e-02 1.488e+02 1.797e-02 3.680e-02 1.640e-02	LR for ea D3S1358 TH01 D21S11 D18S51 D10S1248 D1S1656 D2S1338 D16S539 D22S1049 VWA D8S1179 FGA D2S441 D12S391 D19S433 SE33	9.505 1.208 1.813 2.222 9.38 13.5 6.12 0.5864 5.4.004 3.337 3.664 1.496 1.694 11.87 0.3723 0.7132

SEVENTH FRAMEWORK PROGRAMME

Model selection

- We investigated the maximum likelihood value (logLik) for several models under the hypothesis H_d.
- We assumed K numbers of contributors.
- ▶ Values of $log_{10} LR_{ML}$ are presented for each model.

K	Stutter	Degrad.	#param	logLik	$\log_{10} LR_{ML}$
3	no	no	4	-587	
3	no	yes	5	-578	
3	yes	no	5	-582	5.1
3	yes	yes	6	-571	7.6
4	no	no	5	-585	4.3
4	no	yes	6	-575	6.7
4	yes	no	6	-582	5.1
4	yes	yes	7	-571	7.6

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

EN

ence

 The idea is to use the simplest model possible that produces the lowest LogLik parameter

Sensitivity analysis

Model validation

► A Probability-Probability plot under *H_d* was produced to check whether the observed peak heights fits the ML fitted model.

PP-plot between fitted model and theoretical model

JROFORGEN work of Excellence

Estimates the cumulative probability of the observed peak heights conditional on the other peak heights

Estimation of the unknown profile

Generate data Import data Model specification MLE fit Deconvolution Database search Qual. LR

rank	D3S135	TH01_	D21511	D18551	D10512	D1S165	D2S133	D16553	D22S10	VWA_g	D8S117	FGA_g3	D2S441	D12539	D1954	SE33_g	posterior
1	15/16	9/9.3	28/30	12/16	15/16	11/15	20/25	12/13	17/17	14/14	12/13	22/24	10/14	16/22	13/15	18/29	0.1522
2	15/16	9/9.3	28/30	12/16	15/16	11/15	20/25	12/13	17/17	14/14	13/14	22/24	10/14	16/22	13/15	18/29	0.1348
3	15/16	9/9.3	28/30	12/16	15/16	11/15	20/25	11/13	17/17	14/14	12/13	22/24	10/14	16/22	13/15	18/29	0.07684
4	15/16	9/9.3	28/30	12/16	15/16	11/15	20/25	11/13	17/17	14/14	13/14	22/24	10/14	16/22	13/15	18/29	0.06801
5	15/16	9/9.3	28/30	12/16	15/16	11/15	20/24	12/13	17/17	14/14	12/13	22/24	10/14	16/22	13/15	18/29	0.02666
6	15/16	9/9.3	28/30	12/16	15/16	11/15	20/24	12/13	17/17	14/14	13/14	22/24	10/14	16/22	13/15	18/29	0.0236
7	15/16	9/9.3	28/30	12/16	15/16	11/15	19/20	12/13	17/17	14/14	12/13	22/24	10/14	16/22	13/15	18/29	0.02306
8	15/16	9/9.3	28/30	12/16	15/16	11/15	19/20	12/13	17/17	14/14	13/14	22/24	10/14	16/22	13/15	18/29	0.02041
9	15/16	9/9.3	28/30	12/16	15/16	11/15	20/25	12/13	17/17	14/14	12/13	22/24	10/14	16/22	13/13	18/29	0.01905
10	15/16	9/9.3	28/30	12/16	15/16	11/15	20/25	12/13	17/17	14/14	13/14	22/24	10/14	16/22	13/13	18/29	0.01686
11	15/16	6/9	28/30	12/16	15/16	11/15	20/25	12/13	17/17	14/14	12/13	22/24	10/14	16/22	13/15	18/29	0.01366
12	15/16	9/9.3	28/30	12/16	15/16	11/15	20/24	11/13	17/17	14/14	12/13	22/24	10/14	16/22	13/15	18/29	0.01346
13	15/16	6/9	28/30	12/16	15/16	11/15	20/25	12/13	17/17	14/14	13/14	22/24	10/14	16/22	13/15	18/29	0.01209
14	15/16	9/9.3	28/30	12/16	15/16	11/15	20/24	11/13	17/17	14/14	13/14	22/24	10/14	16/22	13/15	18/29	0.01191
15	15/16	9/9.3	28/30	12/16	15/16	11/15	19/20	11/13	17/17	14/14	12/13	22/24	10/14	16/22	13/15	18/29	0.01164
16	15/16	9/9.3	28/30	12/16	15/16	11/15	20/25	12/13	17/17	14/14	12/13	22/24	10/14	16/22	13/14	18/29	0.0106
17	15/16	9/9.3	28/30	12/16	15/16	11/15	19/20	11/13	17/17	14/14	13/14	22/24	10/14	16/22	13/15	18/29	0.0103
18	15/16	9/9.3	28/30	12/16	15/16	11/15	20/25	11/13	17/17	14/14	12/13	22/24	10/14	16/22	13/13	18/29	0.009612
19	15/16	9/9.3	28/30	12/16	15/16	11/15	20/25	12/13	17/17	14/14	13/14	22/24	10/14	16/22	13/14	18/29	0.009381

- By conditioning that H_p is true we can estimate the most probable profiles of the unknown individual.
- The method is based on the ML estimated model.
- An individual with reference profile corresponding to rank 4 was later identified.

SEVENTH FRAMEWORK

within the 7th Framework Programme

Peak height summaries for stain

Degradation clearly presented.

Distribution of LR over posterior space of parameters

We have shown that the 5 percentile minimises the number of false positive results (max LR=10 in our validation)

EUROF

• Used to investigate that the specified model is not too "Hp-favoring"

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

EUROFOR

- EuroForMix is open-source and freely available through the R-package euroformix which is downloadable from:
- Homepage:
 - www.euroformix.com
 - There is a tutorial, manual and a vignette which explains all technical details.
 - Being worked on to provide more examples

Court experiences

US: Murder suspect challenging DNA software used to incriminate him by seeking source code

8⁺ 😐 in

f 124

By Mary-Ann Russon October 13, 2015 14:47 BST

Lawyers for a US man who faces the death penalty are trying to disprove the DNA identification software that was used to incriminate him $({\rm iStock})$

The defence lawyers for a man charged with two counts of homicide in the US are trying to gain access to the source code of the DNA software program that incriminated him.

In the US, a court challenge to disclose commercial software was rejected by the judge

- Challenge to the use of a commercial program
- Defence argued that they were unable to evaluate the software/ data in the case (also it had been introduced at relatively short notice by the prosecution)
- The commercial provider agreed to release the software for this purpose
- However there was insufficient time within the trial to allow for a case evaluation to happen.
- The judge ultimately decided to exclude the DNA evidence, based on the inability to challenge it sufficiently in the time frame given.
- One other case in Scotland where there was a successful challenge on the basis that the software could not be challenged

- Sheffield Crown Court May 2015
- A complex DNA profile was obtained from a gun handle where the following propositions were agreed:
 - Hp = Mr Fazal + 2 unknown and unrelated individuals
 - Hd = 3 unknown individuals unrelated to Mr Fazal
- The original report from South Yorkshire Police gave strength of evidence of 1 in 1 billion using the 'matching allele count method'
- The data were analysed by the prosecution scientist using LiRa and the LR=2.9 million
- The defence carried out an analysis with LRmix Studio and the LR=300,000

 A joint report of experts is written that states the areas of agreement and disagreement arising from the conclusions drawn in relation to the DNA profile result obtained from the swab from the gun

- We agree that:
- a) Different solutions have been published in the peer reviewed scientific literature to evaluate the weight of evidence associated with complex DNA profiles. The different solutions are expected to generate different numerical values.
- b) There is no recommended method or gold standard. However, the software methods used in this case, namely LiRa (LGC Forensics) and LRmixStudio (as used by the Netherlands Forensic Institute) are accepted as validated methods for use in forensic casework.

- We agree that:
- a) The statistics calculated by the different methods in this case are:

LiRa	LRmixStudio				
2.9 million	300, 000 (three hundred thousand)				

- b) To place the significance of the above divergence into perspective, Steele and Balding [1] suggest that a difference of about one order of magnitude, e.g. 300,000 vs 3 million, is negligible.
- c) To aid understanding, and to assist the court, we suggest that it may be preferable to convert the numeric strength of evidence into a verbal scale, which operates on an order of magnitude basis, that has been proposed by the European Network of Forensic Science Institutes (ENFSI) [2] and reproduced in its entirety below:

10,000 - 1,000,000	provide very strong support for the first proposition rather than the alternative are far more probable given propositionthan proposi- tion				
1,000,000 and above	provide extremely strong support for the first proposition rather than the alternative are exceedingly more probable given propositionthan proposition				

	LiRa	LRmixStudio			
Statistical evaluation	2.9 million	300, 000 (three hundred			
		thousand)			
Verbal equivalent	Extremely strong	Very strong			

Conclusion

 Therefore, in our opinion, the forensic findings provide [very strong to extremely strong] support for the proposition that the DNA profile has originated from Mr Fazal and two unknown unrelated contributors rather than from three unknown contributors (who are unrelated to Mr Fazal).

- DNAmixtures (gamma model) reported a LR 10²¹
- Compared with LRmix where LR> 1bn
- Therefore there was complete agreement on the strength of the evidence

Conclusions relating to the reporting of complex DNA profiles in general

• What does recent experience show?

- There is no agreed method
- Experience is showing that 'equality of arms' between defence and prosecution is prerequisite, otherwise cases may be rejected on the basis that they 'cannot be properly challenged or evaluated'
- There is no requirement for defence experts to use the same method as the prosecution as there is no best method. Hence we see a developing tendency for open source to be used to challenge expensive commercial software. Time constraints imposed at trial preclude the option of temporary access that may be given by the provider.
- The difficulty (for the court to understand) is that we expect differences in the results
- If the methods are validated, then the results are both correctly reported
- Use of the verbal statement does help to put this into perspective

- The verbal scale operates on orders of magnitude, which is useful.
- The verbal scale limited at 1bn unlikely that greater power is needed.

Drop in

- NFI NGM dataset were analysed
- A set of N = 14757 negative control samples were generated From this data, a total of x = 80 false positive alleles were found (excluding the amelogenin marker), so that the relative frequency of drop-in per STR marker (out of total
- L = 15 markers) was estimated as x * L/N = 0.00036
- The maximum likelihood estimate for the rate parameter is
- = 0:02, and this was used as a plug-in value to model the dropin peak height in EuroForMix

Drop-in distributions

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

Slide no 47

Model specification

ate data Impo	rt data M	odel specification	MLE fit	Deconv	oluti	on Da	tabase searc	h Qual. LR	
Andel energies	tion								
viouei specifica	nuon								
-Contributor(s	s) under H	p:	-D	ata selec	tion				
🔽 known			L	oci:	stain	know	n suspect		
✓ suspect			D	3S1358	V	V	V	Show selected data	
#unknowns ((Hp): 1		Т	H01	1	V	V	Evidence(s)	
			D	21S11	1	V	V	√ stain	
-Contributor(s) under H	d:	D	18551	V	V	V		
📝 known			D	1051248	1	\checkmark	V	Plot EPG	
suspect		_	D	1S1656	1	V	V		
#unknowns ((Hd): 2		D	251338	1	V	V	Calculations	
			D	165539	1	V	V	Continuous LR	
-Model option	15		D	22S1045	1	\checkmark	V	(Maximum Likelihood based	
Detection the	reshold:	150	v	WA	1	V	V		
fst-correction	n:	0.02 n: 0	0.02 C	D	8S1179	V	1	V	Continuous LR
Probability of	f drop-in:			F	GA	1	1	V	(Integrated Likelihood based
Drop-in peak hyperparam	: height (lambda):	0.01	D	25441	V	V		Qualitative LR	
Degradation:		YES O NO	D	125391	1	V	V	(semi-continuous)	
Stutter:		YES O NO	D	195433	1	1	V		
Prior: Stutter function(x)=	-prop.	dbeta(x,1,1)	S	E33	V	V			

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

()

EN

Effect of a single drop in event on the LR vs peak height (mixture of 12A,12B,12C)

LR as a function of a spurious allele a

Peak height y for spurious allele a

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

DNA commission on the evaluation of evidence

Why?

- There have been two commissions on mixture analysis
- Over recent years, there has been development of theory, along with some examples of evaluation of evidence that goes beyond the DNA profile itself – to incorporate the activity of the transfer

Part I

- Where are we with forensic genetics?
- Do we adhere to the principle of 'conservativeness' in everything we do?
- Several methods of complex mixture analysis are in use (see other commissions). We don't intend to advise on which models to use. But we will advise on general usage.
- Numbers of contributors
- Contamination
- Secondary transfer
- How to prepare propositions

What about haploid?

- Although there have been commissions on Y chromosome and mtDNA, we havent formulated clear guidelines on newer methods of analysis, other than the counting method
- Method of Charles Brenner
- Method of Andersen (discrete Laplace method)
- Do we accept these as useful alternatives since we currently greatly underestimate strength of evidence of singletons.

The likelihood ratio

 Discussed in earlier commissions – should be standard by now as it is impossible to use any other method for most modern tests

Part II – beyond the DNA profile

The hierarchy of propositions

- A standard? way to think about evidence
 - Sub-source (the fact of the DNA profile)
 - Source (did the DNA come from a defined body fluid
 - Activity (how did the transfer occur)
 - Ultimate issue (Guilt/innocence)
- The probability (LR) associated with the subsource cannot be automatically be transposed to the source – or the activity level

Example provided by DNA underneath fingernails

Likelihood ratio of interest at activity level

• LR =

Pr of direct transfer matching defendant and no secondary transfer Pr of no direct transfer and secondary transfer matching defendant. Or direct transfer matching defendant from an unknown unrelated assailant

Consider all possibilities

- Offender transferred a reportable DNA profile: either true or false
- Defendant is the offender: either true or false
- There was secondary transfer from the defendant: either true or false
- The DNA matches the defendant: either a correct match, a false positive match, an exclusion, a mixture or no profile to compare

Data

- Data are needed of secondary transfer and direct transfer
- Experimental design needs to accommodate both
- Background experiments
- Scratching experiments

LR for Pr(direct transfer)=0.3

Limitations

- The probabilities used to inform probabilistic models are dependent upon the experimental design.
- Different papers in the literature can reveal markedly different results. This is because of different experimental designs in use.

Part III

- Subjective vs Objective inference
- Forensic genetics is based upon very sound theory
- We must ensure that we maintain an equivalent standard for all other aspects relating to interpretation of evidence 'beyond the DNA profile'

Knowledge bases

- Probabilities depend upon a knowledge base (which might include 'expert opinion')
- However if two experts use two different knowledge bases then we get two different answers.

Expert opinion and cognitive bias

- If opinion is not based on a coherent dataset then there is an increased danger of cognitive bias – or 'belief'
- Belief is a state of mind when someone thinks something is reality, true, when they have no absolute verified foundation for their certainty of the truth or realness of something.

The scientific method

 "a method or procedure that has characterized natural science since the 17th century, consisting of systematic observation, measurement, and <u>experiment</u>, and the formulation, testing, and modification of <u>hypotheses</u>."

Subjectivity vs objectivity

Conclusion

- As the community carries out more research into non-forensic-genetics, we need to be sure that:
 - Experimental designs are sound
 - We develop standard ways to interpret the evidence that are open-source /freely available
 - We adopt the principles of peer review
 - We adopt the same level of quality/ standards that are used for forensic genetics

Zurich Institute of Forensic Medicine

EUROFORGEN / EDNAP mRNA NGS exercise 1 Assay for body fluid/tissue identification

Cordula Haas / Sabrina Ingold / Erin Hanson / Jack Ballantyne

26. April 2016, Warsaw

Association of a Body Fluid with a DNA Profile by Targeted RNA/DNA Deep Sequencing

Cordula Haas*, Sabrina Ingold*, Erin Hanson°, Jack Ballantyne° *University of Zurich, °University of Central Florida

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

1. set up a targeted mRNA/miRNA NGS approach for body fluid/tissue identification

 \rightarrow establish a probabilistic approach to call/predict the presence of a body fluid

- 2. select a set of SNPs for each body fluid/tissue, that discriminates individuals the most
 → assign a body fluid to a specific individual
- 3. combine the RNA analysis with gDNA STR sequencing, allowing simultaneous human individual identification and forensic tissue identification

1A. targeted mRNA NGS approach for body fluid/tissue identification (MiSeq)

- Illumina DesignStudio
- TruSeq Targeted RNA Custom Panel
- TruSeq Targeted RNA Index Kit
- Illumina MiSeq
- Bioinformatics pipeline
- blood, semen, saliva, vaginal secretions, menstrual blood, skin
- 66 mRNA biomarkers evaluated
- TOP6: 33 biomarkers

BODY	Gene Name	20mlau	TOP2	TOP3	10P4 47mley	10P5	10P6
fiuld/tissue	DD1	Sublex	Suplex	55plex	47piex	38plex	33plex
	BDI						
Blood	BD2						
	BD3						
	BD4						
	BDS						
	BD6						
	BD7						
	BDO						
	BD2 = cSNP						
	SE1						
	SE2						
	SE2						
	SE4						
Semen	SE5						
	SE6						
	SE7						
	SE7 - CSNP						
	SA1						
	SA2						
	SA3						
	SA4						
	SA5						
	SA6						
	SA7						
	SA8						
	SA9						
Saliva	SA10						
	SA11						
	SA12						
	SA13						
	SA14						
	SA15						
	SA16						
	SA17						
	SA18						
	VS1						
	VS2						
	VS3						
	VS4						
Vaginal	VS5						
vaginai	VS6						
	VS7						
	VS8						
	VS9						
	VS10						
	MB1						
	MB2						
Menstrual	MB3						
	MB4						
	MB5						
	MB6						
	SK1						
	SK2						
	SK3						
	SK4						
	SK5						
	SK6						
Skin	SK7						
	SK8						
	SK9						
	SK10						
	SK11						
	SK12						
	SK13						
	HKG1						
Housekeeping	HKG2						
	HKG3						

1B. targeted mRNA NGS approach for body fluid/tissue identification (PGM)

- Ion AmpliSeq Designer
- AmpliSeq RNA library preparation kits
- IonTorrent PGM
- Bioinformatics pipeline
- same 33 mRNA biomarkers

fluid/tissue	Gene Name	33plex	61plex		
Huldy Hoode	BD1	oopiex	orplex		
	BD2				
	BD3				
	BD4				
Pland	BD5				
ыооа	BD6				
	BD7				
	BD8				
	BD9				
	BD2 - cSNP				
	SE1				
	SE2				
	SE3				
Semen	SE4				
	SE5				
	SE6				
	SE7				
	SE7 - cSNP				
	SA1				
	SA2				
	SA3				
	SA4				
	SA5				
	SAD				
	SA7				
	548				
Saliva	549				
	SA10 SA11				
	SA11 SA12				
	SA12				
	SA15				
	SA15				
	SA16				
	SA17				
	SA18				
	VS1				
	VS2				
	VS3				
	VS4				
	VS5				
Vaginal	VS6				
	VS7				
	VS8				
	VS9				
	VS10				
	VS11				
	MB1				
	MB2				
Menstrual	MB3				
	MB4				
	MB5				
	MB6				
	SK1				
	SK2				
	SK3				
	SK4				
	5K5				
Skin	5K0				
SKIN	5K/ SK8				
	SKO				
	SK10				
	SK10				
	SK12				
	SK13				
	HKG1				
Housekeeping	HKG2				

Illumina MiSeq Skin (n=8)

PGM Skin (n=2)

- whole miRNome
- miRNeasy mini kit
- DNase treatment
- total RNA quantitation
- NEBNext multiplex small RNA library Prep Set 1
- Illumina HiSeq
- Bioinformatics pipeline

PGM assay prone to adapter-dimers?

2 Experiments:

- 2 samples per body fluid: fresh samples (directly into lysis buffer) vs. 'aged' samples (1-4 weeks on swab at RT)
- pools of 6 samples per body fluid

Correlation loading plots from miRNA results (8 samples per body fluid)

EUROFO

→ associate specific mRNA transcripts to an individual (on mRNA)

- in preparation
- IonTorrent PGM and Illumina MiSeq

 \rightarrow estimate RNA-SNP allele frequency by testing of population samples (on DNA)

- 100 cSNPs
- Ion AmpliSeq Designer
- Ion AmpliSeq Library preparation
- Ion PGM OT2 400 kit
- Ion PGM HiQ Sequencing kit
- IonTorrent PGM
- Bioinformatics pipeline

SNaPshot results

Saliva

HTN3_2	HTN3_3	MUC7_1	MUC7_3	Incidence (No)	(%)	1/frequency	
СТ	GA	GG	CC	5/22	22.7	25.4	
CC	GA	GA	GC	4/22	18.2	31.6	
CC	AA	GG	CC	3/22	13.6	8.2	
CC	GA	GG	CC	2/22	9.1	5.6	
CC	GA	GG	GC	2/22	9.1	9.5	
TT	AA	GG	CC	1/22	4.5	662.4	
СТ	GG	GG	CC	1/22	4.5	70.2	
CC	AA	GG	GC	1/22	4.5	13.7	
СТ	GG	GG	GC	1/22	4.5	117.5	
CC	GG	GG	CC	1/22	4.5	15.6	
CC	AA	GA	GC	1/22	4.5	45.8	

EUROF Network c

NGS results

cSNPs: 25 blood, 6 saliva, 15 semen, 9 vag, 18 mens, 25 skin, 2 nasal

Vaginal secretion

Gene	chr	6	5	6	6	6	7	6	8	6	9	7	0	7	1
V1	chr19	G	G	С	G	С	G	С	G	С	С	С	G	С	G
V1	chr19	С	G	C	G	G	G	0	0	G	G	G	G	С	G
V1	chr19	С	Т	C	С	С	Т	С	С	С	С	С	Т	С	С
V2	chr19	С	Т	C	Т	С	Т	С	Т	С	Т	Т	Т	С	Т
V2	chr19	С	С	C	С	С	С	С	Т	С	Т	С	С	С	Т
V3	chr20	G	G	G	G	С	G	G	G	С	С	С	G	С	G
V3	chr20	А	А	А	А	А	G	А	А	А	G	А	G	А	А
V3	chr20	G	G	G	G	А	G	G	G	А	А	А	G	А	G
V4	chr8	G	G	G	G	G	G	G	G	G	G	G	G	G	G

targeted mRNA NGS approach for the identification of blood, saliva, semen, vaginal secretion, menstrual blood, skin

RNA extraction manual or kit, DNase treatment, quantification

Protocols for PGM and MiSeq will be provided

- PGM (primerpool provided)
- MiSeq (primerpool has to be ordered by the laboratories)

Laboratories will analyse 16 samples provided by UZH and about 30 own body fluid samples

Results (FASTQ files) will be collected and evaluated by UZH

04/2016 Presentation of a collaborative exercise on the developed mRNA NGS method, part 1

- 06/2016 Shipment of samples, primers, protocols
- 10/2016 Submission of results
- 11/2016 Presentation of results at next EDNAP meeting
 - Suggestion for Collaborative exercise, part 2 (cSNPs)

Who wants to participate?

