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A B S T R A C T

DNA profiling of biological material from scenes of crimes is often complicated because the amount of

DNA is limited and the quality of the DNA may be compromised. Furthermore, the sensitivity of STR

typing kits has been continuously improved to detect low level DNA traces. This may lead to (1) partial

DNA profiles and (2) detection of additional alleles. There are two key phenomena to consider: allelic or

locus ‘drop-out’, i.e. ‘missing’ alleles at one or more genetic loci, while ‘drop-in’ may explain alleles in the

DNA profile that are additional to the assumed main contributor(s). The drop-in phenomenon is

restricted to 1 or 2 alleles per profile. If multiple alleles are observed at more than two loci then these are

considered as alleles from an extra contributor and analysis can proceed as a mixture of two or more

contributors. Here, we give recommendations on how to estimate probabilities considering drop-out,

Pr(D), and drop-in, Pr(C). For reasons of clarity, we have deliberately restricted the current

recommendations considering drop-out and/or drop-in at only one locus. Furthermore, we offer

recommendations on how to use Pr(D) and Pr(C) with the likelihood ratio principles that are generally

recommended by the International Society of Forensic Genetics (ISFG) as measure of the weight of the

evidence in forensic genetics. Examples of calculations are included. An Excel spreadsheet is provided so

that scientists and laboratories may explore the models and input their own data.
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1. Introduction

The present recommendations are intended to guide scientists
and laboratories that wish to use probabilistic reasoning to
interpret DNA profiles where drop-out and/or drop-in is consid-
ered. The methods used can be undertaken with the likelihood
ratio (LR) principle that was previously recommended for crime
case work by the DNA Commission of the International Society of
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Forensic Genetics (ISFG) [1] and for paternity/relationship testing
by the Paternity Testing Commission of the ISFG [2,3].

A previous ISFG DNA commission evaluated the advantages of
the likelihood ratio principle in relation to DNA mixture
interpretation [1]. These recommendations are still valid, and
the present work expands on the previous publication.

Many practitioners find the theory difficult to follow, and
doubtless this inhibits the uptake of new statistical models. The
purpose of the present recommendations is to explain established
theory that is more than 10 years old [4]. Although the theory is
easily extended to multiple loci and multiple contributors, in the
present recommendations, we consider only one locus in the
profile but allow for drop-in and drop-out at that locus [4].

http://dx.doi.org/10.1016/j.fsigen.2012.06.002
mailto:peterd.gill@gmail.com
http://www.sciencedirect.com/science/journal/18724973
http://dx.doi.org/10.1016/j.fsigen.2012.06.002


Fig. 1. An example of a simple heterozygote profile where the suspect reference

sample (S) and the crime stain (E) are identical.

1 Also known as the homozygote threshold. The level is often determined by

experimentation and is set to an arbitrary level where it is highly unlikely that a

drop-out event occurs if an allele is above the designated threshold. This enables a

homozygote to be designated with a high degree of confidence. If a single allele at a

locus appears below the stochastic threshold, it is designated aF, where F signifies

that ‘any allele’, including a, may be present. In this paper, we refer to the threshold

for convenience. Strictly speaking, thresholds are not needed in the probabilistic

framework described. But if used, the threshold can be associated with a ‘risk’

defined in terms of the probability of drop-out.
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Nevertheless, an appreciation of the basic principles that are
enumerated in this paper will greatly facilitate understanding of
more complex (multi-locus, multi-contributor) examples. Even so,
the simplest models are still too complex for routine hand-
calculation and the formulae themselves are not easily adapted to
computer algorithms. This problem was solved by Curran et al. [5]
who introduced set theory in order to enable the calculations to be
made, and more importantly to enable expansion from the single
to multiple contributors. This theory forms the basis of available
software approaches, but we do not attempt to explain set theory
in this paper.

The DNA Commission now considers it timely to establish
recommendations on the application of these principles to more
complex DNA results in light of the rapid development of open-
source [6] and closed source [5,7] bio-statistical tools that are now
the subject of court room evaluation in a number of countries.

With any DNA profile, if drop-out and/or drop-in are possible
(this includes any partial DNA profile), it is not possible to think
only in terms of a match or non-match, the various possibilities can
only be properly evaluated in probabilistic terms by means of the
likelihood ratio principles (see Section 8 for a discussion).

We provide two examples applied to a single locus of a sample
from a single contributor. The first example shows how to interpret
a partial profile where drop-out may have occurred, and the second
example shows how to interpret a profile where simultaneous
drop-out and drop-in events have occurred. This would usually
result in exclusion using traditional methods of interpretation. The
theory can be extended to complex mixtures, not described here.
Neither do we detail sub-population correction (FST) but this
extension is straightforward and described by Curran et al. [8].

In real life, crime-stains will show additional complexities
across multiple loci. Mixtures will be common, with varying
amounts of drop-out levels per contributor. The primary purpose
of the paper is to demonstrate why, for many samples, classical
binary models are largely inferior to the probabilistic approach
described here – without going into the additional details and of
how to incorporate mixture theory (e.g. Ref. [5]).

Clearly the adoption of probabilistic models has been inhibited
by the complexity of concepts that are largely outside the
experience of case-working forensic scientists, coupled with lack
of suitable training opportunities. New initiatives, such as the EU-
FP7 funded ‘Euroforgen’ network project http://www.eurofor-
gen.eu/ seek to remedy this problem, strongly supported by the
ISFG that is providing additional training courses.

Some laboratories will wish to quickly adopt probabilistic
methods ahead of the main-stream forensic community. This ISFG
DNA commission strongly supports this approach, since it will
encourage others to follow. In this context, it should be noted that
the approach described here still requires a rigid assessment of the
overall quality of a given DNA profile and its suitability for further
analysis based on criteria described in the laboratory’s quality
management guidelines.

In conjunction with this paper, an Excel workbook (see
electronic supplement) has been released on the ISFG website
http://www.isfg.org/Software. The workbook enables scientists
and laboratories to explore the methods described using their own
data. Further material will be provided as it becomes available.

2. Interpretation of a heterozygous, unmixed sample using
probabilistic reasoning

For a simple heterozygous genotype, the likelihood ratio is
formulated from two alternative hypotheses. The numerator
evaluates the strength of the evidence (E) if the prosecution
hypothesis (Hp) is true and the denominator evaluates the strength
of the evidence if the defence hypothesis (Hd) is true. The
likelihood ratio is formulated by comparing the two hypotheses as
follows:

LR ¼ PrðEjH pÞ
PrðEjHdÞ :

In its simplest form, Hp usually specifies the condition that: ‘the
DNA profile came from the suspect’ and Hd specifies the condition
that: ‘the DNA profile came from an unknown unrelated
individual’. Hypotheses may be much more complex than this.
For example, multiple contributors may be considered in admix-
ture, and relatedness may be an issue if a brother can be the
originator of the DNA profile. However, in this paper, we restrict
the discussion to a single locus where the alternative hypotheses
are restricted to a single suspect (Hp) vs. one (unrelated) unknown
contributor (Hd). The terms Hp, Hd and E are convenient
mathematical notations (an alternative way is to think in terms
of ‘what-if’’ scenarios; see Section 4).

The alleles are designated a and b (Fig. 1). For convenience only,
we further assume that the peak heights of each allele are above a
‘stochastic threshold’ T [9],1 where this threshold is such that the
probability of drop-out Pr(D) of an allele above T will be almost
zero. The level may be determined relative to a pre-determined
Pr(D) by using logistic modelling [9] (see Appendix B). In the
example illustrated in Fig. 1, there is no drop-out to consider if the
suspect (S) is ab and the crime stain (E) is also ab.

3. The match probability and the likelihood ratio

The probability of match is the chance of a random match
between a profile that is evidential (e.g. the crime-stain) and a
profile that is from a specified individual such as the ‘suspect’ or
the ‘random, unrelated’ contributor, whereas the likelihood ratio is
a calculation of the ratio of probabilities of observing the DNA
under two alternative hypotheses.

4. Likelihoods are conditional – they evaluate ‘what-if’
scenarios

We can think of likelihoods as evaluating ‘what-if’ scenarios. As
an example: what-if the suspect really did contribute to the crime
stain? If true, then the observation that the crime stain and the
suspect have the same profile is to be expected and the probability

http://www.euroforgen.eu/
http://www.euroforgen.eu/
http://www.isfg.org/Software


Fig. 2. An example where the reference sample is type ab and the crime stain is type a.
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of a match is 1, given Hp. This forms the numerator of the likelihood
ratio equation.

Continuing the example, the alternative proposition is that
someone other than the suspect must have deposited the crime
stain. The denominator of the likelihood ratio equation deals with
alternative explanations. This asks: what is the chance of observing
the evidence if the suspect has not deposited the crime stain? Often
this is calculated as the probability of observing the profile among
unrelated, randomly selected individuals, i.e. the Hardy–Weinberg
expectation, Pr = 2papb (where the allele frequencies are pa and pb,
respectively).

Putting the numerator and denominator together, we form the
‘classical’ likelihood ratio:

LR ¼ 1

2 pa pb

:

The likelihood ratio provides a relative and numeric ‘strength of
evidence’ of one hypothesis compared to its alternative. This
assessment is always binary if the ‘classical’ approach is used.
Either there is a match or non-match. This is why the numerator is
always one if a match has been declared.2

If the LR is greater than one, it supports the hypothesis of
inclusion, and if it is less than one, it supports the alternative
hypothesis of exclusion.

5. Allele drop-out leads to a partial DNA profile that does not
match the suspect’s reference profile

When the DNA quantity is sufficient to generate peaks above
the (arbitrary) stochastic threshold, T, and the two alleles are a
balanced heterozygote, a ‘match’ between the donor and the crime
stain is usually seen (Fig. 1). As the template DNA level decreases,
the signal level decreases and the heterozygote balance deterio-
rates. This occurs because of ‘stochastic’ or random effects that have
previously been well characterised [10,11]. Allele drop-out is an
extreme example of heterozygote imbalance, where one allele falls
below the limit of detection threshold (LDT). Many laboratories
have typically set this level to 50rfu – this value can vary both
between laboratories and methods or processes used. The
inevitable consequence of allele drop-out is that a partial profile
is generated. This means that the crime-stain DNA profile may not
match the DNA profile of the hypothesised contributor.

Allele drop-out is defined as a signal that falls below the LDT.
Often, a signal that could represent an allele is present but it cannot
be distinguished from irrelevant ‘noise’. The critical issue is that
there is uncertainty about whether the allele is present or not.

6. The terms inclusion and exclusion are binary (absolute)
determinants

Consequently, if there is any uncertainty in a pre-assessment,
then it follows that there is uncertainty about the genotype, and
this means that the probability of a proposed match must be less
than one and greater than zero. This is often referred to as
‘inconclusive’ using the ‘classical’ approach.

Fig. 2 shows an example where allele b may have dropped out.
There is uncertainty about the genotype of the crime stain. In this
example the evaluated hypotheses are: Hp: the suspect contributed
to the crime-sample, Hd: an unknown person, unrelated to the
suspect contributed to the sample. The DNA profile could have come
from the suspect if allele b dropped out. However, in the ‘classical’
2 If a complex DNA profile, such as a mixture, is analysed, then the numerator will

often be less than one, but this will usually be because of the uncertainty of the

genotype frequency, rather than the uncertainty of the genotype designation. If

there is a three-allele profile abc, where the suspect genotype is ab, an unknown

contributor is ac, bc or cc, the Hp probability is therefore 2 pa pc þ 2 pb pc þ p2
c .
approach, this yields a probability of zero under Hp, because the
uncertainty in the crime stain genotype is not taken into account.

If the DNA profile has not come from the suspect, the genotype
could either be explained as a heterozygote, with allele a, and drop-
out of any other allele – including allele b if the true donor has the
same genotype as the suspect. Alternatively, the true donor could be
homozygote, where both alleles are type a, if no drop-out has
happened.

A drop-out event in the crime-stain DNA profile evidence is
often evaluated using the ‘2p’ rule [12]. For example, either: 2papF

(under Hd), where pF = 1, or alternatively:

2 pað1 � paÞ þ p2
a :

The virtual allele Q (frequency pQ = 1 � pa) is also used to signify
that any allele may be present, except for allele a. Q is considered in
the heterozygote part of the calculation (see Appendix A for a
detailed explanation of the ‘virtual’ Q and F alleles).

7. How can uncertainty of matches be accommodated?

7.1. Drop-out

The drop-out probability Pr(D) depends upon the observed allele
or the amount of DNA tested. The lower the peak height of a
‘surviving’ allele, the greater the probability that an unseen
companion allele has dropped out. Pr(D) can be estimated by
logistic analysis [13,14] or by using an empirical approach – for
example [15]. With highly sensitive methods (34 cycles, and new
generation analytical instruments such as the AB 3500 series) high
allele peaks, for low template or degraded samples, may be
associated with occasional drop-out. When such a profile is
evaluated probabilistically, it will decrease the strength of evidence.
Further details are provided in Appendix B to carry out the
experiment in order to generate data for logistic analysis

Fig. 3 shows the LR as a function of the Pr(D). The LRmix module
in the open-source software package Forensim offers biostatistical
tools to perform this analysis [6].

7.2. Drop-in and contamination

The drop-in phenomenon was originally described by Gill et al.
[4]. Drop-in will often affect casework samples [16]. There is no



Fig. 3. Effect of Pr(D) on LR. S is ab, E is a. The likelihood ratio LR = Pr(EjHp)/Pr(EjHd)

is plotted as a function of Pr(D) 2 [0,1]. Locus D18S51 frequencies are used as an

example, where allele a corresponds to D18S51 allele 13 (frequency: 0.135). Using

the 2p rule: LR = 1/(2pa) = 1/(2 � 0.135) = 3.8 (dashed line).
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absolute method to determine if drop-in or contamination has
occurred in a casework sample, but negative controls can be used
to estimate the probability of drop-in within casework samples. In
this context, we distinguish between drop-in and contamination.
The latter term specifically describes more than two or more alleles
that come from a single individual. Conversely, drop-in alleles
come from different individuals. The distinction is important,
because the assumption of independence enables the use of the
product rule to multiply drop-in probabilities, whereas this is not
valid if the events are dependent. Drop-in and contamination may
have occurred even if the negative control is ‘clean’ and does not
show any allele at all.

To recap, the drop-in event is relatively rare and is measured by
reference to negative controls. If n negative controls are analysed
and there are x spurious alleles observed (where the counts are
restricted to one or two events per profile) then Pr(C) is estimated
as x/n. Its level will increase as the sensitivity of the process
increases – e.g. by increasing the number of PCR cycles;
introduction of new highly sensitive genetic analysers like the
AB 3500 series; new multiplex kits; mixtures [17].3 To calculate
the risk of a drop-in event in a casework profile, we multiply
together the probability of drop-in with the probability of the
specific allele a that is conditioned to have dropped in: Pr(C) pa [4].

7.3. Contamination is distinct from drop-in

Contamination profiles are indistinguishable from any other
mixed profile and we define these specifically as profiles that are
unrelated to the case. Evidential material may be ‘contaminated’
before the crime event with ‘background’ DNA profiles. Plastic-ware
contamination is an example of contamination (in the laboratory).
There is no information inherent in the DNA profile that provides
information about ‘how’ or ‘when’ the profile was transferred. These
issues are dealt with separately at trial where the ‘relevance’ of the
evidence is decided by the court (the scientist may be asked to
comment on issues of transfer and persistence to assist the court).

However, the calculation of the likelihood ratio addresses the
alternative propositions that relate solely to the specific issue of
‘source’ of the DNA profile. The expert will evaluate two alternative
hypotheses within the likelihood ratio calculation as described in
Section 2:
3 Drop-in rate may increase for mixed samples; enhanced stutters may be

classified as drop-in events.
(a) What is the strength of the evidence if the DNA profile
originated from the suspect?

(b) What is the strength of the evidence if the DNA profile
originated from an unknown unrelated individual?

8. The classical model vs. probabilistic models

The essential feature of the ‘classical’ model is that under Hp
there is a binary determination of the evidence of a match vs. non-
match that results in a probability of one or zero, respectively.
However, with the probabilistic model, the likelihood of the
evidence of match/non-match (numerator) can have any value
between zero and one.4 Therefore, the probability can be described
as a continuum, and this is the fundamental difference between the
two approaches.

To illustrate, with the binary model, there are just two possible
calculations:

LR ¼ 0

2 pa pb

and LR ¼ 1

2 pa pb

:

The numerator dominates the question of whether the data
provide evidence that there is a match or not.

Fig. 2 shows two DNA profiles that partially match. There is
uncertainty about the validity of the match. Therefore, the
numerator cannot be described as zero or one.

This means that we need to consider a different calculation,
where the numerator is a number that is between zero and one.
Consider the following change to the numerator:

LR ¼ 0:5

2 pa pb

:

This example reduces the likelihood ratio by half. Hence, the
effect of uncertainty in the numerator also reduces the strength of
the evidence.

This cannot be done within the match probability or the
‘classical’ LR frameworks, as the calculation can proceed only with a
definitive decision of Pr(match) = 1 vs. Pr(non-match) = 0.

Some ‘short-cut’ calculations are common. An example is the 2p

rule [12]. The numerator is always one using the ‘classical’
approach. The 2paF match probability addresses the question of
‘the chance of a match’ with a crime-stain, where an allele may
have dropped out. However, the weakness of the 2p rule is that it
does not take account of the uncertainty of the match in the
numerator.

9. Example 1: combining different probabilities – applying
theory to practical examples

The DNA results in Fig. 2, where the suspect (S) is ab and the
crime stain (E) is a, can be explained by considering what must
have happened if (a) the suspect is the donor of the sample, and if

(b) the suspect is not the donor of the sample.
Let the observation be: the crime-stain (E) is type a and the

suspect (S) is type ab.

Question 1: If the suspect is the donor of the sample (Hp), how
may we justify this?

Answer: Given Hp is true, this means that allele a has not
dropped out with probability 1 � PrðDÞ ¼ PrðD̄Þ and allele b has
dropped out with probability Pr(D). The risk of drop-in, Pr(C),
must also be considered. The probability of no drop-in is
4 In the probabilistic framework, it would be unusual for any probability to be

exactly one or zero since there is always a measure of uncertainty that exists.
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1 � PrðCÞ ¼ PrðC̄Þ. The probabilities are combined by multipli-
cation as: PrðDÞPrðD̄ÞPrðC̄Þ.

Question 2: If the suspect did not donate the sample (Hd), what
are the possible genotypes that could have contributed to the
crime-stain DNA profile?

Answer: Under this defence hypothesis, the other possibilities
are considered. The defence hypothesis is not required to accept
that drop-out has occurred. Hence, the obvious genotype to
consider is homozygote aa, where the probability of the
genotype is p2

a and the probability of no drop-out of a
homozygote is PrðD̄2Þ (see Appendix A for a derivation of D2

that refers to homozygote drop-out, and is distinct from D,
which refers to heterozygote drop-out).

Four alternatives can be described as follows:

(1) It could be homozygous, where the probability is the frequency
of the genotype p2

a and the probability of no drop-out PrðD̄2Þ
and the probability of no drop-in is PrðC̄Þ;

(2) It could be heterozygous, where the probability of the genotype
is 2papQ and there is no drop-out of allele a, but allele Q (virtual
allele) is not visible, and has therefore dropped out. There is no
drop-in PrðC̄Þ;

(3) If allele a is a drop-in event, then this has happened with
probability Pr(C)pa and two alleles must have dropped out –
these alleles could be any other allele and the genotype
probability is given as p2

Q with probability of drop-out Pr(D2);
(4) Alternatively, (3) above can also be explained if two alleles that

are not identical have dropped out and this event is described
by the heterozygote 2pQpQ (see detailed explanation of Q alleles
in Appendix A).

These probabilities can be summarised as follows:
:

Part 1 Part 2 Part 3 Part 4

p2
a Pr ðD̄2Þ Pr ðC̄Þ þ 2 pa pQ Pr ðD̄Þ Pr ðDÞ Pr ðC̄Þ þ p2

Q Pr ðD2Þ Pr ðCÞ pa þ 2 pQ pQ 0 Pr ðDÞ2 Pr ðCÞ pa:

No drop-out One drop-out Hom. drop-out Two drop-outs

No drop-in No drop-in One drop-in One drop-in
Therefore, the observations: S = ab and E = a can be reconciled in
four different ways and can be described probabilistically under
Hd. In practice, part 4 has an order of magnitude too small to affect
the overall probability (see electronic supplement – Excel
spreadsheet).

Therefore, the complete likelihood ratio, derived from combin-
ing all of the elements above is given by:

LR ¼ PrðD̄ÞPrðDÞPrðC̄Þ
p2

aPrðD̄2ÞPrðC̄Þ þ 2 pa pQ PrðD̄ÞPrðDÞPrðC̄Þ þ p2
Q PrðD2ÞPrðCÞ pa

þ2 pQ pQ 0PrðDÞ2PrðCÞ pa

:

In contrast to the binary model, the evidence can now be
evaluated on a continuous scale and is no longer restricted by
decisions about match vs. non-match constraints of the ‘classical’ LR.

In this example, we estimate Pr(D2) = aPr(D)2, where D is the

heterozygote drop-out probability and a = 0.5 [18] (see Appendix A).

10. The effect of Pr(D) on LR

Fig. 3 shows how the drop-out probability affects the likelihood
ratio for a single STR allele (D18S51 allele 13), considering the
example 1. The 2p rule is superimposed, giving a horizontal line at
LR = 3.8. When Pr(D) < 0.1 or Pr(D) > 0.9, the LR decreases. This is
dominated by the numerator PrðD̄ÞPrðDÞPrðC̄Þ. If PrðD̄Þ � 0 or
Pr(D) � 0 then the numerator correspondingly becomes very small.
In the former example, if PrðD̄Þ � 0 then we would effectively not
expect to see any DNA profile at all. As previously pointed out by
Buckleton and Triggs [12], the 2p rule can be highly anti-
conservative under some circumstances (see Sections 7.1 and 8).

These principles are easily expanded to encompass complex
mixtures, along with multiple contributors and drop-out [5]. The
solutions can be accommodated most easily by computer
algorithms.

11. Example 2: an example where the binary model would
interpret the evidence as an exclusion

Suppose that a crime stain DNA profile does not match that of
the suspect (Fig. 4). The normal practice under the ‘classical’
approach would be to conclude either ‘exclusion’ or ‘inconclusive’.

Observations: The DNA profile of the crime stain E is ac and that
of the suspect S is ab.

Question 1 (Hp): How can the DNA profiles be explained if the
suspect is the true donor?

Answer: Allele a has not dropped out with probability PrðD̄Þ.
Allele b has dropped out with probability Pr(D) and allele c has
dropped in with the probability Pr(C)pc. This is summarised by
the combined probability PrðD̄ÞPrðDÞPrðCÞ pc .

Question 2 (Hd): How can the DNA profiles be explained if
someone else is the true donor?

Answer: If it is stated that an unknown contributor is the origin
of the sample, and if drop-in and drop-out are possible, five
genotypes are possible (using the Q designation, where Q0 6¼ Q,
and both are different from a and c).

Putative genotype probability
aa p2

aPrðD̄2ÞPrðCÞ pc;
cc p2

c PrðD̄2ÞPrðCÞ pa;

ac 2 pa pcPrðD̄Þ2PrðC̄Þ;
aQ 2 pa pQ PrðD̄ÞPrðDÞPrðCÞ pc;

cQ 2 pc pQ PrðD̄ÞPrðDÞPrðCÞ pa;

QQ p2
Q PrðD2ÞPrðCÞ paPrðCÞ pc;

QQ 0 2 pQ pQ 0PrðDÞ2PrðCÞ paPrðCÞ pc:

Note: The suspect’s ab genotype is encompassed in aQ. The
complete likelihood ratio is:

LR ¼ PrðD̄ÞPrðDÞPrðCÞ pc

ð p2
aPrðD̄2ÞPrðCÞ pc þ p2

c PrðD̄2ÞPrðCÞ pa þ 2 pa pcPrðD̄Þ2PrðC̄Þ
þ2 pa pQ PrðD̄ÞPrðDÞPrðCÞ pc þ 2 pc pQ PrðD̄ÞPrðDÞPrðCÞ pa

þ p2
Q PrðD2ÞPrðCÞ pa PrðCÞ pc þ 2 pQ pQ 0PrðDÞ2PrðCÞ paPrðCÞ pcÞ

In this scheme, we follow Balding and Buckleton [18] to estimate
the probability of homozygote dropout, Pr(D2) = 0.5 � Pr(D) � Pr(D),
hence PrðD̄2Þ ¼ 1 � 0:5 � PrðDÞ � PrðDÞ.



Fig. 5. Effect of Pr(D) on LR. Suspect is ab and crime stain evidence is ac. Locus

D18S51 allele 13 frequency was used to calculate the LR example (pa = 0.135). Since

LR < 1, then this favours Hd. The dashed line indicates LR = 1.

Fig. 4. DNA profiles of the suspect (S) = ab and the crime stain (E) = ac.
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12. The effect of Pr(D) on the LR

Fig. 5 shows the effect of variable Pr(D) on the LR in example 2 for
a certain locus. The LR never exceeds 1 and always favours the
hypothesis of exclusion. The strength of the evidence in favour of the
defence hypothesis is very strong when Pr(D) is small. Note that if
Pr(D) = 0 then this is a non-match where the binary approach would
lead to ‘exclusion’. The example shows that the method also works
when the evidence is in favour of the defence hypothesis.

Occasionally, a spurious allele in an otherwise complete DNA
profile may occur. Practices to deal with such isolated phenomena
vary widely, but it is still common practice in a number of laboratories
to leave the locus out of any statistical calculation and, thus estimate
that the weight is neutral, i.e. LR = 1. If a calculation based on
probabilistic principles indicates that LR < 1, assignation of neutrali-
ty to the results of a locus is prosecution biased as Fig. 5 illustrates.

13. Summary of recommendations of the ISFG DNA
commission

(1) Probabilistic methods following the ‘basic model’ described
here can be used to evaluate the evidential weight of DNA
results considering drop-out and/or drop-in.

(2) Estimates of drop-out and drop-in probabilities should be based
on validation studies that are representative of the method used.
(3) The weight of the evidence should be expressed following
likelihood ratio principles.

(4) The use of appropriate software is highly recommended to
avoid hand-calculation errors.

14. Concluding remarks

The recommendations explain how probabilistic approaches and
likelihood ratio principles can be applied to partial and potentially
compromised DNA profiles. The recommendations concentrate on
situations with only one possible drop-in and/or one drop-out. We
are aware that the approach described here is based on a number of
simplified assumptions that have been made to demonstrate the
underlying principles. Furthermore, we are aware that DNA results of
‘real life’ stains do not always fulfil these assumptions (they may e.g.
comprise multiple contributors) and will therefore require statistical
calculations more complex than those used here. However, the
methods can be extended to multiple loci and multiple contributors
using ‘set theory’ [5]. The recommendations demonstrate why
probabilistic approaches and likelihood ratio principles are superior
to classical methods. The combined efforts of the scientific
community should be focussed at taking into account the stochastic
phenomena that we have all been aware of for many years [10], and
to develop interpretation tools that will become generally accepted
and used. We do not advocate a ‘black-box’ approach.

The introduction of software solutions to interpret DNA profiles
must be accompanied by a validation process ensuring conformity
with existing standard laboratory procedures. Validation studies
should be carried out to characterise drop-out and drop-in
probabilities bearing in mind that these will differ between
processes (some guidance is given in the appendices). Open-source
is strongly encouraged since this solution offers unrestricted peer
review and best assurance that methods are fit for purpose.
Internal laboratory policies are necessary in order to address the
quality of the data that will be required to attempt a comparative
interpretation. Strict anti-contamination procedures must be
established to minimise the introduction of any additional levels
of uncertainty. Software tools used for casework implementation
must be evaluated with known samples and each laboratory will
have to establish reporting guidelines and testimony training to
properly present the results to courts.
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Appendix A

A.1. The evolution of the ‘virtual allele’ and its relationship to drop-out

theory

A.1.1. The ‘F’ designation

The concept of the virtual allele has existed for many years. The ‘F’

designation was used to signify a potential hidden ‘unknown’ allele. It

was applied to an apparent homozygote, where a single present allele

was below the ‘stochastic threshold’, and at a level (peak height) where

it would be reasonable to assume that dropout might have occurred.

This concept gave rise to the 2p � pF rule, where p is the frequency of the

observed allele, and pF is the frequency of some (any) unknown allele,

where pF = 1, hence F is usually omitted in the expression.

A.1.2. The ‘Q’ designation in the classical model

The ‘Q’ designation was a simple extension of the F designation.
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Consider a locus with n alleles such that p1 + . . . + pn = 1, where pi is

the frequency of allele i.

We consider a visualized phenotype a within a stain and a suspect.

There is an allele that could have dropped out.

The possible genotypes under Hd (drop-in and drop-out

probabilities are not considered here):

a) No drop-out: homozygote aa, pa
2

b) Drop-out: heterozygote aQ, 2papQ

The LR is:

LR ¼ 1

p2
a þ 2 pa pQ

: (A.1)

A.1.3. Use of the Q designation in the drop-out model

The probability of drop-out of a homozygote was originally

estimated as Pr(D)2 [4]. However, Balding and Buckleton [18] argued

that the probability of dropout of a homozygote would be over-

estimated using this method: ‘‘both alleles can generate partial signals

that combine to reach the reporting standard, whereas each individual

signal would fail to reach this standard,’’ and suggested an empirical

correction factor (a) to compensate. They used an example where

alpha was set to 0.5. Using the notation Pr(D2) to signify homozygote

dropout, this can be calculated directly from Pr(D):

PrðD2Þ ¼ aPrðDÞ2: (A.2)

Alternatively, Pr(D2) can be empirically estimated.

This resulted in two drop-out parameters, one for both alleles in a

homozygote and one for each allele in a heterozygote.

Eq. (A.1) can be re-evaluated with respect to drop-out probabili-

ties:

If the suspect is ab we require no dropout of allele a, with the

probability PrðDÞ, and drop-out of allele b, with the probability Pr(D).

Under Hd, if there is no drop-out, the genotype is aa with the

probability of PrðD2Þ. Alternatively, if there is drop-out, the genotype

is aQ with the probability of PrðDÞPrðDÞ.
Eq. (A.1) now becomes:

LR ¼ PrðDÞPrðDÞ
p2

aPrðD2Þ þ 2 pa pQ PrðDÞPrðDÞ
: (A.3)

In example 2 (section 11), we consider the simultaneous

possibility of drop-in and drop-out.

In the crime-stain, alleles a and c are observed. The suspect’s

genotype is ab. Hence the observed alleles in the crime-stain are a and

c, and the Q allele is an unobserved allele that can beany allele not

observed in the crime-stain

Under Hp, the suspect is ab, which requires drop-out of allele b and

drop-in of allele c.

Under Hd, all of the pairwise combinations of the set of alleles a, c,

Q are listed below:

Putative genotype probability
aa p2

aPrðD̄2ÞPrðCÞ pc;
cc p2

c PrðD̄2ÞPrðCÞ pa;

ac 2 pa pcPrðD̄Þ2PrðC̄Þ;
aQ 2 pa pQ PrðD̄ÞPrðDÞPrðCÞ pc;

cQ 2 pc pQ PrðD̄ÞPrðDÞPrðCÞ pa;

QQ p2
Q PrðD2ÞPrðCÞ paPrðCÞ pc;

QQ 0 2 pQ pQ 0PrðDÞ2PrðCÞ paPrðCÞ pc:
Note that in the last row we introduce QQ’ to signify dropout of a

heterozygote locus in addition to QQ that signifies dropout of a

homozygote locus, as the formulae (and drop-out probabilities) differ

between these two states.

A.1.4. Further explanation of Q and Q’

To continue the example in section 1.3: for illustration purposes

only, consider that five alleles (a,b,c,d,e) were observed in a

population survey (the principle can be extended to any number of

alleles). QQ defines the genotype if a homozygote has dropped out and

is associated with the probability of dropout, Pr(D2). As we have

already considered the probabilities of aa and cc in the above list in

section 1.3, the Q designation is calculated from the frequencies of

summed (unobserved) genotypes, and in our five-allele example these

are homozygotes bb, dd, or ee. The probability of the QQ genotype is

therefore: p2
Q ¼ p2

b þ p2
d þ p2

e and the probability of the QQ genotype

combined with its probability of dropout is p2
Q PrðD2Þ.

pQQ’ defines the probability of heterozygote genotype QQ’ (where

neither Q nor Q’ is type a or type c (since we have already evaluated

genotypes aQ, cQ in the above list), which corresponds to a

heterozygote locus drop-out. Q6¼Q’ (because the genotype must be

a heterozygote). Therefore, the probability of genotype QQ’ is

constructed from the probabilities of unobserved heterozygote

genotypes in the population of five-alleles, which are 2pbpd, 2pbpe

and 2pdpe:

PrðQQ 0Þ ¼ 2
P

i 2 fb; d; eg
i 6¼ j

pi p j;

¼ 2ð pb pd þ pb pe þ pd peÞ:
(A.4)

Q’ is always used with Pr(D), hence the combined probability of

QQ’ is 2pQpQ’Pr(D)2.

Appendix B

B.1. The logistic model for the estimation of Pr(D)

B.1.1. Experimental design

In order to carry out the estimation of the probabilities of drop-

out using the logistic model of Gill & Puch-Solis [9], it is necessary

to collect data within the range of interest. Laboratories usually

have a good understanding of their STR typing systems, and will

know the limits of the system, where dropout may occur. Many

laboratories use a stochastic threshold (typically 150rfu) where

they decide that alleles below this level may be absent. Gill and

Puch Solis [9] described a method to calculate thresholds relative to

Pr(D). The experiment may be designed, either as a series of

dilutions, either of body fluid, or comprised of naked DNA. The

latter is usually carried out for practical reasons, but may be subject

to the criticism that dilution of naked DNA does not simulate the

diploid cell, since the chromosomal associations are destroyed prior

to dilution [13].

Considering a heterozygote, there are three outcomes (we use a

notation in parentheses where 1 means dropout and 0 means no

dropout):

a) Two alleles are present (0,0);
b) One allele is present and the other is absent, (1,0) or (0,1);
c) Both alleles are absent – locus dropout (1,1).

The experiment needs to be designed so that the data produce all

three types of events. This is easiest to achieve if the laboratory runs a



Table B.2
The table has been modified so that now each peak height is associated with a 0 or 1

binary designation to signify the state of the partner allele as either ‘not dropped

out’ or ‘dropped out’, respectively.

Sample

no.

Allele

designation

Allele

peak

height

Allele

designation

Allele

peak

height

Drop-out

state*

1 17 135 25 193 0

2 11 30 13 80 0

3 29 157 30 160 0

4 14 30 16 142 0

5 13 319 14 117 0

Table B.1
Raw dataset showing allele designation and its recorded peak height (rfu).

Sample no. Allele designation Allele peak height Allele designation Allele peak height

1 17 135 25 193

2 11 30 13 80

3 29 157 30 160

4 14 30 16 142

5 13 319 14 117

6 6 150 9.3 36

7 21 56 23 30

[logitCoef,dev] = glmfit(x,y'binomial ','logit ');
logitFit = glmval(logitCoef,x'logit ');
plot(x,logitFit,'r-');
xlabel('PeakHeight '); ylabel ('Probability ');
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pilot study in order to determine a range of concentrations of DNA

that produce all three states within the same experiment. It is

suggested that a sample size of 100 profiles should be sufficient.

We are interested in the peak heights of the alleles. An allele is

deemed to have dropped out if it is below the limit of detection

threshold (LDT) of 50rfu (for example). To carry out the experiment, it

is useful to lower the detection limit threshold on the sequencing

instrument to 30rfu because this extends the curve and improves the

Pr(D) estimation below the LDT = 50rfu threshold.

A small subset of seven observed heterozygous loci is shown from

a dataset of 496 loci (in total) from a validation exercise of the

standard SGM Plus kit (Table B.1):

Step 1: Taking each row in Table B.1, an allele is designated ‘1’ if its

partner has dropped out (<50rfu), or ‘0’ if it has not dropped out

(> = 50rfu). We only do this for one column in the table5.

Step 2: Pick columns 3 and 6; list them (Table B.3).

B.1.2. An explanation of logistic regression

Ordinary linear regression models follow the formula:

y ¼ a þ bx:

Where y is the dependent variable (the drop-out indicator of the

allele of interest), and x is the explanatory variable (the height of the

partner allele in rfu). Note that y has a linear relationship to x and a

and b are the linear model parameters, which can be estimated via

simple linear regression.

In the example shown in Table B.1, the dependent variable (y) is

binary, either zero or one. In this example, we wish to work out the

probability of dropout as our dependent variable. The logistic

regression works by calculating odds P/(1-P). For example, suppose

we take a subset of data between 125rfu – 175rfu and wish to

calculate the odds of dropout, and we carry out experimentation,

observing that 25 out of 100 loci do indeed exhibit dropout (Pr = 0.25),

we translate this into odds: 0.25/0.75 = 0.33. Conversely, the odds of

no drop-out is 0.75/0.25 = 3.

These two numbers are asymmetrical but applying natural logarithm

regains the symmetry, since ln(0.33) = �1.099 and ln(3) = 1.099, so now

we have symmetry and odds of dropout vs. no dropout are of opposite

sign. Taking the natural logarithm of odds is known as the logit function

and the logistic regression formula is essentially the same as the linear

regression formula, where y = logit Pr(D):

In
PrðDÞ

1 � PrðDÞ

� �
¼ a þ bx:
5 Ideally, one random allele per locus is chosen. If both alleles were used in the

logistic regression, then they act as both the response and the explanatory variables

at the same time. This violates the requirement of independent observations of the

logistic regression.
By algebraic rearrangement, we can calculate Pr(D), the probabili-

ty of dropout as a continuous variable from:

PrðDÞ ¼ 1

1 þ e�ðaþbxÞ :

B.1.3. Software

1) Logistic regression is standard in software applications and is

very easy to carry out. For example in Matlab, the following code will

calculate the regression coefficients and plot a graph. Data are stored

in variable ‘AllData’ as arranged in Table B.3 (peak heights need to be

sorted in descending order):
2) In the open-source software, R, the following commands are

used:

fit = glm(y�x, family = binomial)

summary(fit)

where y is the binomial response and x is the covariate in both

examples.

The Matlab output for a validation exercise carried out by

Norwegian Institute of Public Health (unpublished) for the SGM plus

system, incorporating a total of 495 heterozygote loci from 55

samples is shown in Fig. B.1.

It is informative to plot the logistic regression using log Pr(D) since

this gives a straight line relationship and can be used to evaluate the

risks at very low probabilities. For example, the risk of dropout if there

is a single allele at 250rfu is Pr = 4 x 10-4. Because we have extended

the estimation of the curve to 30rfu, we can comfortably estimate the
6 6 150 9.3 36 1

7 21 56 23 30 1

* Drop-out state = 0 means no drop-out of companion allele and drop-out state = 1

means drop-out is observed. All drop-out states are conditioned on alleles in the

fourth/fifth columns.



Table B.3
Now the data are organised into two columns: peak height and the state of the

partner allele. This data is used for logistic regression.

Sample no. Allele peak height Drop-out state*

1 135 0

2 30 0

3 157 0

4 30 0

5 319 0

6 150 1

7 56 1

* Drop-out state = 0 means no drop-out of companion allele and drop-out state = 1

means drop-out is observed.
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Fig. B.1. Logistic regression analysis of the probability of drop-out using the SGM

Plus kit. E.g., 150 rfu peak height corresponds to Pr(D) = 0.03.
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Fig. B.2. Logistic regression analysis of the probability of drop-out on a log-scale

(SGM Plus kit).
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Fig. B.3. The R-code produces this logistic regression plot. Actual data-points are

shown. The figure also shows the raw data points for drop-out and no drop-out

respectively. See Curran [19] for detailed examples and tutorials.
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lower limit of dropout, Pr(D) = 0.45 at the LDT = 50rfu. This is itself

interesting, because we can equate the LDT with an expectation about

45% of heterozygote alleles given a surviving partner allele peak

height of 50rfu.

Given the size of the peaks illustrated in Figs. 3–5, these

probabilities can be plugged directly into the examples in the text.

B.1.4. Using R code

The following script can be run in R to generate the graph shown in

Fig. B.3.
# Prepare data in 2 columns with first column = peak height and column 2=binary  
response variable
# Save into .csv format and run the code to generate summary statistics and plot
dat<-read.table(file="LogisticTableR.csv",sep=",",header=TRUE )
x=dat[,1]
y=dat[,2]
data1=cbin d.data.frame(x,y )
mod1 = glm(y~x, fa mily = binomial ,data =data1 )
summary(mod1)
plot(x,y,ylab="Probability of dropout",xlab="size (Peak 
Height)",xlim=c(0,300),pch=20)
curve(predict(mod 1,data.frame(x=x),type="resp"),add=TRUE )
The logistic regression is fundamental to an understanding

of dropout. The method is used by e.g. Tvedebrink et al.

[14,20].

Finally, we note that the logistic regression model applies to

heterozygotes only. The estimation is different for homozygotes,
but we do not consider further here since Buckleton [12] showed

that under the condition where E is a and S is aa, there is no

anticonservative issue with reporting pa
2. The issue relates solely

to the E being a and S being ab, where anti-conservativeness is a

possibility with the 2p rule.
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Appendix C. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at http://dx.doi.org/10.1016/j.fsigen.2012.06.002.
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