International Congress Series 1288 (2006) 349-351





# STR data for 15 AmpFLSTR Identifiler loci in a Tibetan population (Nepal)

A. Kido<sup>a,\*</sup>, Y. Dobashi<sup>b</sup>, M. Hara<sup>c</sup>, N. Fujitani<sup>d</sup>, R. Susukida<sup>a</sup>, M. Oya<sup>a</sup>

<sup>a</sup> Department of Legal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
<sup>b</sup> Scientific Crime Detection Laboratory, Yamanashi Prefectural Police Headquarters, Yamanashi, Japan
<sup>c</sup> Department of Forensic Medicine, Saitama Medical School, Saitama, Japan
<sup>d</sup> Department of Environmental Security System, Faculty of Risk and Crisis Management, Chiba Institute of Science, Chiba, Japan

**Abstract.** Allele frequency data for 15 short tandem repeat (STR) loci, D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818 and FGA, were determined in Tibetan individuals using the AmpFLSTR Identifiler Kit. The agreement with Hardy-Weinberg expectation was confirmed for all studied loci with the exception of FGA. © 2005 Elsevier B.V. All rights reserved.

Keywords: Population data; Short tandem repeat (STR); AmpFLSTR Identifiler; Tibetan

### 1. Introduction

In our previous studies, allele frequency data for 15 short tandem repeat (STR) loci, D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818 and FGA, were determined in three Asian populations (Japanese [1], Bangladeshis [2] and Indonesians [2]) using the AmpFLSTR Identifiler Kit. In this study we analyzed the allele frequency distributions and statistical parameters of the 15 STR loci in Tibetan individuals in Nepal.

### 2. Materials and methods

DNA was extracted from serum samples, which were stored at -20 °C for 6 years, in 122 Tibetan individuals living in Katmandu (capital of Nepal) by QIAamp DNA Mini Kit

<sup>\*</sup> Corresponding author. Tel.: +81 55 273 9548; fax: +81 55 273 6753. *E-mail address:* akido@yamanashi.ac.jp (A. Kido).

 $<sup>0531\</sup>text{-}5131/$   $\otimes$  2005 Elsevier B.V. All rights reserved. doi:10.1016/j.ics.2005.08.037

(Qiagen). PCR amplification of the 15 STR loci was performed using the AmpFLSTR Identifiler Kit (Applied Biosystems). Possible divergence from Hardy-Weinberg equilibrium was determined using the exact test. Some statistical parameters of forensic interest such as heterozygosity (Hz), power of discrimination (PD), mean exclusion chance (MEC) and polymorphic information content (PIC) were calculated using the software package PowerStats (Promega).

#### 3. Results and discussion

Allele frequencies and statistical parameters for the 15 STR loci in Tibetans are shown in Table 1. Differences in sample count within the data are due to failed typing. The failures were remarkable in the STR loci with the long fragment. This phenomenon may be attributed to the use of serum samples stored at -20 °C for 6 years. Amelogenin included in this kit was detected in all the samples. The agreement with Hardy-Weinberg expectation was confirmed for all studied loci with the exception of FGA. It appears that this departure is caused by the small number of samples. Among the 15 STR loci, FGA showed the highest PD and the highest MEC. The combined PD and the combined MEC for the 15 STR loci were 0.9999999999999902 and 0.9999988, respectively. Allele frequency distributions of the 15 STR loci in Tibetans were compared with those in other Asian populations (Japanese [1], Bangladeshis [2] and Indonesians [2]). The allele frequencies in Tibetans were significantly different from the 11 loci except for D7S820, CSF1PO, vWA and D18S51 in Japanese, the 10 loci except for CSF1PO, D16S539, D19S433, vWA and D5S818 in Bangladeshis as well as the 10 loci except for D21S11, CSF1PO, D16S539, vWA and TPOX in Indonesians.

Table 1

Allele frequencies and statistical parameters for the 15 STR loci in Tibetans

| Allele | TH01            | TPOX     | D5S818   | D7S820          | CSF1PO          | D13S317          | D16S539         | D8S1179         |
|--------|-----------------|----------|----------|-----------------|-----------------|------------------|-----------------|-----------------|
|        | ( <i>n</i> =86) | (n = 70) | (n = 77) | ( <i>n</i> =51) | ( <i>n</i> =52) | ( <i>n</i> = 86) | ( <i>n</i> =61) | ( <i>n</i> =97) |
| 6      | 0.0899          | 0.0143   |          |                 |                 |                  |                 |                 |
| 7      | 0.2640          |          | 0.0130   |                 |                 |                  |                 |                 |
| 8      | 0.1292          | 0.5357   |          | 0.1863          |                 | 0.2093           | 0.0164          |                 |
| 9      | 0.4494          | 0.1643   | 0.0584   | 0.0980          | 0.0288          | 0.1047           | 0.2213          |                 |
| 9.3    | 0.0674          |          |          |                 |                 |                  |                 |                 |
| 10     |                 | 0.0071   | 0.0909   | 0.1569          | 0.2122          | 0.2267           | 0.1557          | 0.0073          |
| 11     |                 | 0.2500   | 0.3831   | 0.1961          | 0.1923          | 0.2326           | 0.2213          | 0.0206          |
| 12     |                 | 0.0286   | 0.2468   | 0.3235          | 0.4327          | 0.1977           | 0.2541          | 0.1753          |
| 13     |                 |          | 0.2013   | 0.0392          | 0.1250          | 0.0291           | 0.1148          | 0.1856          |
| 14     |                 |          | 0.0065   |                 |                 |                  | 0.0164          | 0.2113          |
| 15     |                 |          |          |                 |                 |                  |                 | 0.1701          |
| 16     |                 |          |          |                 |                 |                  |                 | 0.1443          |
| 17     |                 |          |          |                 |                 |                  |                 | 0.0155          |
| Р      | 0.3920          | 0.3480   | 0.1390   | 0.0523          | 0.2687          | 0.0907           | 0.1013          | 0.0420          |
| Hz     | 0.6347          | 0.6225   | 0.7492   | 0.7862          | 0.6762          | 0.8051           | 0.8030          | 0.8305          |
| PD     | 0.8218          | 0.8018   | 0.8921   | 0.9221          | 0.8442          | 0.9325           | 0.9314          | 0.9481          |
| MEC    | 0.4003          | 0.3688   | 0.5237   | 0.5817          | 0.4258          | 0.6090           | 0.6060          | 0.6576          |
| PIC    | 0.5900          | 0.5668   | 0.7092   | 0.7540          | 0.6252          | 0.7756           | 0.7732          | 0.8073          |

| Allele     | D19S433<br>( <i>n</i> =100) | D18S51<br>( <i>n</i> =56) | D3S1358<br>( <i>n</i> =109) | vWA<br>( <i>n</i> =92) | D2S1338<br>( <i>n</i> =60) | FGA<br>( <i>n</i> =51) | D21S11<br>( <i>n</i> =67) |
|------------|-----------------------------|---------------------------|-----------------------------|------------------------|----------------------------|------------------------|---------------------------|
|            |                             |                           |                             |                        |                            |                        |                           |
| 13         | 0.2850                      | 0.3125                    | 0.0550                      |                        |                            |                        |                           |
| 13.2       | 0.0850                      |                           |                             |                        |                            |                        |                           |
| 14         | 0.2150                      | 0.1875                    | 0.0550                      | 0.2120                 |                            |                        |                           |
| 14.2       | 0.1050                      |                           |                             |                        |                            |                        |                           |
| 15         | 0.0900                      | 0.1429                    | 0.2844                      | 0.0272                 |                            |                        |                           |
| 15.2       | 0.1200                      |                           |                             |                        |                            |                        |                           |
| 16         | 0.0150                      | 0.1339                    | 0.3807                      | 0.2174                 |                            |                        |                           |
| 16.2       | 0.0350                      |                           |                             |                        |                            |                        |                           |
| 17         | 0.0050                      | 0.0714                    | 0.1651                      | 0.2663                 | 0.0250                     |                        |                           |
| 18         |                             | 0.0268                    | 0.0459                      | 0.1902                 | 0.1083                     | 0.0392                 |                           |
| 19         |                             | 0.0804                    | 0.0138                      | 0.0815                 | 0.1500                     | 0.0882                 |                           |
| 20         |                             | 0.0268                    |                             | 0.0054                 | 0.1583                     | 0.0196                 |                           |
| 21         |                             |                           |                             |                        | 0.0583                     | 0.0784                 |                           |
| 22         |                             |                           |                             |                        | 0.0583                     | 0.1078                 |                           |
| 22.2       |                             |                           |                             |                        |                            | 0.0196                 |                           |
| 23         |                             |                           |                             |                        | 0.3333                     | 0.1863                 |                           |
| 23.2       |                             |                           |                             |                        |                            | 0.0588                 |                           |
| 24         |                             |                           |                             |                        | 0.0667                     | 0.2059                 |                           |
| 25         |                             |                           |                             |                        | 0.0250                     | 0.1078                 |                           |
| 25.2       |                             |                           |                             |                        |                            | 0.0196                 |                           |
| 26         |                             |                           |                             |                        | 0.01/7                     | 0.0392                 |                           |
| 27         |                             |                           |                             |                        | 0.0167                     | 0.0294                 | 0.0075                    |
| 28         |                             |                           |                             |                        |                            |                        | 0.0075                    |
| 28.2       |                             |                           |                             |                        |                            |                        | 0.0075                    |
| 29<br>30   |                             |                           |                             |                        |                            |                        | 0.1791                    |
|            |                             |                           |                             |                        |                            |                        | 0.2164                    |
| 30.2<br>31 |                             |                           |                             |                        |                            |                        | 0.0448                    |
| 31.2       |                             |                           |                             |                        |                            |                        | 0.1194<br>0.1119          |
| 31.2<br>32 |                             |                           |                             |                        |                            |                        | 0.0299                    |
| 32.2       |                             |                           |                             |                        |                            |                        | 0.1866                    |
| 33.2       |                             |                           |                             |                        |                            |                        | 0.1800                    |
| 55.2       |                             |                           |                             |                        |                            |                        | 0.0770                    |
| Р          | 0.2207                      | 0.0453                    | 0.2983                      | 0.0600                 | 0.0710                     | 0.0283                 | 0.1107                    |
| Hz         | 0.8047                      | 0.7875                    | 0.7113                      | 0.7805                 | 0.8009                     | 0.8809                 | 0.8378                    |
| PD         | 0.9369                      | 0.9334                    | 0.8712                      | 0.9159                 | 0.9371                     | 0.9745                 | 0.9532                    |
| MEC        | 0.6257                      | 0.6129                    | 0.4777                      | 0.5651                 | 0.6242                     | 0.7609                 | 0.6748                    |
| PIC        | 0.7798                      | 0.7661                    | 0.6658                      | 0.7446                 | 0.7777                     | 0.8696                 | 0.8173                    |

Table 1 (continued)

P: Hardy-Weinberg equilibrium; exact test based on 3000 shufflings.

## References

- M. Hara, et al., Population data of 15 STR loci, D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818 and FGA, in Japanese, 8th Indo-Pacific Congress on Legal Medicine and Forensic Sciences, Abstracts, 2004, p. 61.
- Y. Dobashi, et al., STR data for the AmpFLSTR Identifiler loci in Bangladeshi and Indonesian populations, Leg. Med. 7 (2005) 222–226.