International Congress Series 1261 (2004) 449-451

Allele sharing in related and unrelated individuals: implications in kinship analysis

M.J. Farfán*, V. Prieto, P. Sanz

Servicio de Biología, Instituto Nacional de Toxicología, Apdo. 863, E-41080 Sevilla, Spain

Abstract. The 13 STRs included in CODIS are of extensive use in kinship analysis and forensic DNA testing. Investigation of relationships different from paternity/maternity are in increasing demand in forensic casework. In this study, we evaluate how the determination of allele sharing between two individuals can assist in the discrimination between a first-degree relationship and non-relationship. We have determined the number of shared alleles (0, 1 or 2) among a sample of 400 unrelated individuals, as well as in 205 parent—child pairs and 114 full-sibs pairs for the 13 mentioned STRs. The obtained results on probability of sharing a number of alleles given a relationship and likelihood ratios of a first-degree relationship vs. non-relationship are shown. An exponential correlation between the total number of shared alleles and full-sib index was observed. © 2003 Elsevier B.V. All rights reserved.

Keywords: Allele sharing; CODIS; Kinship analysis; First-degree relationship; Unrelated

1. Introduction

Kinship analyses different from paternity/maternity testing are in increasing demand. These analyses have the drawback that there is no possibility of exclusion, e.g., sibling analysis. In those cases, a more complex statistical analysis is required and sometimes the results are of a low evidentiary weight. In this paper, we make a preliminary evaluation of the practical usefulness of determination of the total number of shared alleles when typing for CODIS, in assisting in discrimination between first-degree related and unrelated individuals.

2. Material and methods

DNA extraction: phenol/chlorophorm method or GFX[™] columns (Amersham-Pharmacia-Biotech). *DNA quantitation*: Quantiblot[®] (Applied Biosystems). *PCR conditions*: according to manufacturer's instructions for kits Profiler Plus[™], COfiler[™] and Identifiler[™] (Applied Biosystems) or PowerPlex[®]16 (Promega). *DNA capillary electrophoresis*: ABI PRISM[™] 310 (Applied Biosystems). *Analysis of DNA fragments*: Genescan[®] and Genotyper[®] (Applied Biosystems). *Data analysis*: Microsoft[®] Excel 2000 (pairing analysis) [1]; PATCAN v. 1.1 (full-sib index calculations) [2].

^{*} Corresponding author. Tel.: +34-954371233; fax: +34-954370262.

E-mail address: farfan@us.es (M.J. Farfán).

Fig. 1. Distribution of the total number of shared alleles for the 13 STRs in all the possible pairs (79800) among a sample of 400 unrelated individuals, as well as in 205 parent-child pairs and 114 full-sibs pairs.

3. Results

Additionally, full-sib index for 114 true full-sibs pairs and 114 pairs of unrelated persons obtained by shuffling the same individuals (false full-sib pairs) were estimated. Full-sib index is actually the LR of both individuals in the pair being full-sibs vs. unrelated, having into account genotype combinations and allele frequencies. An exponential correlation (correlation coefficient: 0.969) between the total number of shared alleles and full-sib index was observed (data not shown).

4. Discussion

The results are shown in Figs. 1 and 2 and Tables 1 and 2.

In this study, first-degree and unrelated individuals typed for CODIS are easily discriminated by the allele sharing test with some restrictions: for sibling analysis there is an ambiguous range between 10 and 13 shared alleles (see Fig. 1 and Table 1). Regardless of the total number of shared alleles, sharing at least 1 allele in more than 10 loci supports the hypothesis of a full-sib relationship vs. unrelated (LR \geq 7.4) (Fig. 2A, Table 2). The same applies to sharing both alleles in more than three loci (LR \geq 21.2) (Fig. 2B, Table 2). On the

Table 1

Shared alleles	Likelihood ratios		
	PC/U	FS/U	
0	_	_	
1-9	0	0	
10	0	0.1	
11	0	0.1	
12	0	0.3	
13	1.6	2.9	
14	19.1	8.4	
15	83.7	49.0	
16	397.7	350.0	
17	2168.8	2100.0	
18	2984.4	4200.0	
19-26	_	_	

Results on likelihood ratios (LRs) of a first-degree relationship vs. non-relationship, given the total number of shared alleles in the 13 CODIS STRs (see Fig. 1)

LRs were calculated as the ratios between the two probabilities involved: PC/U, parent-child vs. unrelated; FS/U, full-sibs vs. unrelated.

Fig. 2. Proportion of pairs vs. the number of loci in which both members share at least one allele (A) or both alleles (B).

other hand, 65% of the full-sibs pairs shared at least 1 allele in 13 or 12 loci (Fig. 2A), as in a parent-child relation, assuming a single mutation in the later case. This could be a serious problem in some identification cases (e.g., common graves, mass disasters). An exponential correlation between the total number of shared alleles and full-sib index was observed.

Acknowledgements

We thank S. Presciuttini for kindly providing the Excel worksheets for pairing analysis and J.A. Riancho and M.T. Zarrabeitia for kindly providing the PATCAN software.

References

- S. Presciuttini, et al., Allele sharing in first-degree and unrelated pairs of individuals in the Ge.F.I. AmpFISTR[®] Profiler Plus[™] database, Forensic Sci. Int. 131 (2003) 85-89.
- [2] J.A. Riancho, M.T. Zarrabeitia, A Windows-based software for common paternity and sibling analyses, Forensic Sci. Int. 135 (2003) 232–234.

Tal	ble	2

Likelihood ratios of a first-degree relationship vs. non-relationship, given the total number of loci in which both members share at least one allele or both alleles (results in Fig. 2A and B)

Number of loci	Likelihood ratios				
	1 or 2 shared alleles		2 shared alleles		
	PC/U	FS/U	PC/U	FS/U	
0	_	_	0.1	0.03	
1	0	0	0.5	0.1	
2	0	0	1.0	0.3	
3	0	0	3.5	1.9	
4	0	0	13.9	21.2	
5	0	0	53.9	88.6	
6	0	0	151.4	700.0	
7	0	0	_	_	
8	0	0	_	_	
9	0	0.2	_	_	
10	0	1.0	_	_	
11	0	7.4	_	_	
12	0	65.8	_	_	
13	2280.0	580.0	_	_	

LRs were calculated as in Table 1.