

Data analysis of 10 STR loci in a population in the province of Neuquen, Argentina

U. Toscanini, G. Berardi, E. Haas, E. Raimondi*

PRICAI-Fundación Favaloro (First Argentine Immunogenetics Center), Av. Belgrano 1782, 1er Subsuelo, 1093 Buenos Aires, Argentina

Abstract

Ten Short Tandem Repeat (STR) loci, CSF1PO, TPOX, THO1, D12S1090, D3S1744, D18S849, FGA, D7S820, D1S533 and D9S304, were analyzed in a population geographically located at the foot of the Andes Range in the province of Neuquen, southwestern Argentina. Allele frequencies and paternity and forensic parameters (power of exclusion, matching probability, and power of discrimination) were calculated for all 10 STR loci. The population was analyzed for Hardy-Weinberg equilibrium (HWE) and allelic and gene frequencies were compared to those observed in the Buenos Aires population. Results indicate that the population was in HWE for these 10 STR loci. Significant differences between allele and genotype frequencies were found for the D7S820 locus (gene and genotypic differentiation test) when compared with data of the Buenos Aires population. These data indicate that the allele frequency estimations can be used to reliably calculate likelihood ratios for paternity and forensic DNA casework.

© 2003 Elsevier Science B.V. All rights reserved.

Keywords: DNA typing; STR; Neuquen; Population

1. Introduction

The population analyzed is geographically located at the foot of the Andes Range, in the province of Neuquen, southwestern Argentina. The most important feature of this population is that it is mainly made up by the mixture of people migrating from the north and center of the country and by aboriginal natives (Mapuche people). The aim of this study was to demonstrate whether this population is in Hardy-Weinberg equilibrium

^{*} Corresponding author. Tel.: +54-11-4384-5400; fax: +54-11-4383-1197. E-mail address: eraimondi@ffavaloro.org (E. Raimondi).

(HWE) for 10 Short Tandem Repeats (STR) loci and to determine if there exist significant differences in allele and genotype frequencies between the population studied and that living in Buenos Aires.

2. Materials and methods

DNA was extracted by a non-organic procedure from EDTA blood [1]. STR loci were amplified in multiplex polymerase chain reactions (PCRs): one triplex reaction for CTT [2] (N=114); one triplex reaction for Multiplex-I [3] (N=164); one tetraplex reaction for Multiplex-II [3] (N=154). Amplified products were electrophoresed in 4% polyacrylamide gels and detection was carried out by silver staining. Alleles were assigned by directly comparing with the allelic ladders provided with each typing kit [2,3].

Table 1 Allele frequencies

Allele	D12S1090	D3S1744	D18S849	CSF1PO	TPOX	TH01	FGA	D7S820	D1S533	D9S304
3.2										
4										0.0519
5										
6						0.3246				0.0130
7						0.2193		0.0065		0.0195
8				0.0088	0.4825	0.0702		0.1039	0.0844	0.3377
9	0.0671			0.0351	0.0439	0.1316		0.0779	0.0779	0.0779
9.3						0.2544				
10	0.0244			0.2719	0.0439			0.1883	0.0260	0.0325
11	0.0427			0.2719	0.3246			0.3961	0.0779	0.0974
12	0.0305		0.0061	0.3158	0.1053			0.1818	0.1948	0.2532
13	0.0122		0.0061	0.0877				0.0390	0.2532	0.1104
14	0.0366		0.0488	0.0088				0.0065	0.2273	
15	0.0061	0.0793	0.2927						0.0390	0.0065
16		0.1524	0.3537						0.0195	
17		0.1585	0.2134							
18	0.0305	0.3476	0.0549				0.0065			
19	0.0488	0.1220	0.0244				0.1234			
20	0.0671	0.0793					0.1169			
21	0.0854	0.0549					0.1299			
22	0.1463	0.0061					0.1104			
23	0.1098						0.0909			
24	0.0793						0.1299			
25	0.1037						0.1688			
26	0.0366						0.0909			
27	0.0366						0.0325			
28	0.0122									
29										
29.2										
30	0.0061									
31	0.0183									

Locus	Genic differentiat	ion test	Genotypic differentiation test		
	P-val	S.E.	P-val	S.E.	
CSF1PO	0.53363	0.01103	0.6720	0.0069	
TPOX	0.09240	0.00544	0.1094	0.0067	
TH01	0.32531	0.01058	0.3157	0.0101	
D12S1090	0.10801	0.00935	0.0733	0.0068	
D3S1744	0.38600	0.01231	0.4083	0.0123	
D18S849	0.17058	0.01121	0.2012	0.0091	
FGA	0.28946	0.01087	0.3711	0.0117	
D7S820	0.00078	0.00049	0.0023	0.0006	
D1S533	0.27483	0.01188	0.2883	0.0117	
D9S304	0.14692	0.01013	0.1993	0.0088	

Table 2 Neuquen population and Buenos Aires population differentiation test

Allele frequencies and paternity and forensic parameters (power of exclusion, matching probability and power of discrimination) were calculated for all 10 STR loci using the PowerStat software (Promega). Exact tests (heterozygote deficit and excess, and probability test) for HWE equilibrium and gene and genotypic differentiation tests were performed using Genepop Software (Raymond M. & Rousset F., Version 3.3, March 2001).

3. Results

Allelic frequencies are shown in Table 1. When compared to data of the Buenos Aires population, significant differences were found in allele and genotype proportions for the D7S820 locus (Table 2).

The population was found to be in HWE. Table 3 shows *P*-values (*P*-val) and standard error (S.E.) for heterozygote deficit and excess tests, and probability test for all 10 STR loci.

Table 3 HWE exact tests

Locus	Heterozygote deficit		Heterozygot	Heterozygote excess		Probability test	
	P-val	S.E.	P-val	S.E.	P-val	S.E.	
CSF1PO	0.1860	0.0143	0.8063	0.0162	0.2716	0.0171	
TPOX	0.1266	0.0065	0.8813	0.0063	0.2193	0.0081	
TH01	0.9215	0.0056	0.0698	0.0047	0.6990	0.0079	
D12S1090	0.3929	0.0333	0.5209	0.0370	0.4632	0.0355	
D3S1744	0.6392	0.0164	0.3796	0.0186	0.4005	0.0149	
D18S849	0.0365	0.0061	0.9658	0.0075	0.1813	0.0157	
FGA	0.1204	0.0123	0.8378	0.0142	0.1740	0.0125	
D7S820	0.4826	0.0220	0.4625	0.0217	0.3980	0.0190	
D1S533	0.3199	0.0196	0.6531	0.0199	0.9411	0.0059	
D9S304	0.3843	0.0235	0.5676	0.0235	0.5800	0.0245	

D7S820

D1S533

D9S304

Combined

Matching probability (MP), power of discrimination (PD) and power of exclusion (PE)						
Locus	MP	PD	PE			
D12S1090	0.022	0.978	0.825			
D3S1744	0.073	0.927	0.678			
D18S849	0.114	0.886	0.402			
CSFIPO	0.130	0.870	0.580			
TPOX	0.191	0.809	0.308			
THO1	0.116	0.884	0.679			
FGA	0.038	0.962	0.683			

0.896

0.944

0.925

99.999999991%

0.585

0.633

0.538

99.993%

Table 4
Matching probability (MP), power of discrimination (PD) and power of exclusion (PE

0.104

0.056

0.075

8.8e - 12

Power of exclusion, matching probability and power of discrimination for single loci and the combined values of each parameter for all 10 STRs are indicated in Table 4.

4. Conclusion

We conclude that these allele frequency estimations can be used to reliably calculate likelihood ratios for paternity and forensic DNA casework.

References

- [1] J. Grimberg, S. Nawoschik, L. Belluscio, R. McKee, A. Turck, A. Eisenberg, A simple and efficient nonorganic procedure for the isolation of genomic DNA from blood, Nucleic Acids Res. 17 (1989) 8390.
- [2] GenePrint® STR Systems (Silver Stain Detection) Technical Manual—Promega.
- [3] Quick-Type™ Multiplex-I, Multiplex-II User's Manual—Lifecodes.