DNA research in sexual offences: experience in Ecuador

Fabricio González-Andradea,*, Dora Sánchez-Qa, Begoña Martínez-Jarretab

aMolecular Genetics Department, Metropolitan Hospital, Av. Mariana de Jesus y Occidental, Meditropoli Medical Center, Quito 2119, Ecuador
bDepartment of Legal Medicine, University of Zaragoza, Spain

Abstract. To assess the technical and judicial consequences resulting from the practical application of DNA testing in forensic research in the numerous sex crimes in Ecuador. Twenty-six sex offence cases were studied using the DNA technique and were analysed in the Genetics Department of the Ecuadorian Red Cross. For the tissue mixtures, we performed differential extraction using one separation solution for the female fraction and another for the male fraction, in accordance with our protocols. An ABI 310 sequencer was used for typing. The fragment size was determined and the allelic designation of the different loci made by comparing them with the PowerPlex 16 kit allelic ladders; the software package Grape 1.1 was used for analysis of the mixtures and for DNA fingerprinting. Statistical Evaluation. Only 15% of all cases reach the stage of Public Investigation, and the sentence is incriminating in only 12.5% of these cases. © 2003 Published by Elsevier B.V.

Keywords: Ecuador; STR; Criminality; Sex offences; PCR; Justice

1. Introduction

The DNA analysis technique has not been in use for many years in Ecuador and filiation and paternity studies have been carried out more than any other kind so far [1,2]. However, in the sphere of criminality the application of this technique is still at the early stages, despite an increase since the establishment of the new Criminal Procedural Code [3]. Furthermore, there is a high rate of reports, which, together with the absence of a legal, social and family response, contribute to establishing impunity and covering-up as the norm [4]. In the year 2002, the National System of Legal Medicine and Forensic Science was created in Ecuador [5,6].

2. Material and methods

Samples: Twenty-six cases of sexual offences were studied by means of the DNA technique and analysed in the Molecular Genetics Department between July 2002 and

* Corresponding author. Tel./fax: +593-2-2248902.
E-mail address: fabriciogonzales@usa.net (F. González-Andrade).
DNA extraction: Phenol–Cloroform–Isoamilic Alcohol, and proteinase K was used for the remains. For the unquestioned samples, we used the Wizard Genomic DNA Purification Kit System method. The DNA was quantified by means of UV absorbance. For the tissue mixtures, we made a differential extraction using a separation solution for the female fraction Tris/EDTA/NaCl 400 \(\mu l \), sarkosyl 25 \(\mu l \), proteinase k (20 mg/ml), and for the male fraction Tris/EDTA/NaCl 150 \(\mu l \), sarkosyl 20\%, proteinase k (20 mg/ml) and DTT 0.39 M, in accordance with our protocols. PCR: Amplification was carried out in a Genius® thermocycler. We used an ABI 310 sequencer. The fragment size and the allelic designation of the different loci were established by comparison with the allelic ladders of the PowerPlex 16 kit (Promega) and they were subsequently interpreted with the Gene Scan Analysis Software programme. We followed the recommendations of the DNA Commission of the International Society of Forensic Genetics for STR analysis. Analysis of data: The Grape 1.1 software, for DNA fingerprinting, Statistical Evaluation was used for analysis of the mixtures.

3. Results and discussion

DNA analyses have mainly been useful for the exclusion of suspects and to clarify the role of each person involved in a sexual offence. An interesting fact is that a high percentage of the victims are under the age of 18, and the fact that there is a considerable number of boys among these. In all inclusion cases, the Likelihood Ratio was over one million. The criteria we used in the interpretation of the mixture profiles were: firstly, to
identify the presence of a mixture profile; secondly, to identify the possible number of
ccontributions to the mixture; thirdly, to estimate the relative proportion of the individuals
that comprise the mixture and the combinations of possible genotypes; fourthly, to compare with genetic profiles obtained in the reference samples and, fifthly, to assess
the results obtained and make statistical calculations where relevant (Tables 1–3).

References