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Forensic interpretation of haploid DNA mixtures
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Abstract. The mathematical concept previously introduced for the forensic interpretation of DNA

mixtures using non-associated genetic markers has been adapted to the assessment of haplotypes.

Such calculus is required, for example, when mitochondrial or Y-chromosomal markers are used in

forensics. Two approaches exist to its practical computational implementation, involving either the

inclusion–exclusion principle of probability theory or a recursion in the number of unknown

contributors invoked. The former approach scales better in cases of practically relevant complexity

and for sufficiently diverse markers. Simulation based upon the Y-chromosomal Haplotype

Reference Database suggests that the exclusion chance of a non-contributor varies between 95%

in the case of two contributors to the trace, and 70% for five contributors. These estimates are

however likely to be conservative since only haplotypes known to occur in YHRD have been

involved in the simulations. D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In forensics, the interpretation of a DNA mixture naturally entails the assessment of the

probability that a given number of known and unknown individuals, respectively, have

contributed to the DNA pool in a sample of biological material taken from a crime scene or

victim [1]. With currently available molecular genetic technology, it will not generally be

possible to infer the number of contributors to the DNA pool from the laboratory results

alone. Rather, the information available for inference making will comprise sets of alleles,

known to be present in the mixture for a particular genetic marker. Without loss of

generality, we may assume that all known contributors bmatchQ the trace, i.e. that their

alleles are included in the trace for all markers. For this situation, Weir et al. [1] have

provided a general framework for quantifying the evidence in favour, or against, particular

hypotheses about the creation of the DNA mixture in the trace.
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2. The analytical framework

For a given marker, let V denote the set of alleles in the trace and letW denote the set of

alleles that are included in the trace but which are not found in any of the known

contributors. The key quantity of interest is the probability of making precisely this

observation, namely a trace that contains alleles V and for which a subset W is not

explained by known contributors. This probability, denoted by

Pn V ;Wð Þ; ð1Þ

obviously depends upon the number n of unknown contributors. Assuming that the

population of interest is in Hardy-Weinberg equilibrium, Pn(V;W) can be calculated from

known allele frequencies using the inclusion–exclusion principle from probability theory

[1], viz

Pn V ;Wð Þ ¼ f Vð Þx �
X
ToW

� 1ð Þcard Tð Þ�1
d f Vð Þ � f Tð Þ½ �x: ð2Þ

Here, f(X) denotes the total frequency of alleles in set X, summation is over all non-

empty subsets T of W, and x equals 2n for diploid and n for haploid markers.

3. Trace probabilities for haploid markers

Most of the genetic markers currently used in forensic practice have been specifically

designed and selected to be statistically independent, i.e. they should show neither linkage

disequilibrium nor any other type of allelic association in the population under

consideration. The probability of observing a trace comprising alleles from multiple loci

can be obtained simply by multiplying the marker-specific probabilities obtained from

formula (2). Although this is possible for virtually all autosomal loci of practical interest, it

is obviously not valid for markers on the Y chromosome or the mitochondrion. The major

purpose of this article is to address the specific mathematical and inferential problems

arising in the forensic interpretation of haploid DNA mixtures. For mitochondrial DNA

markers, these problems may no longer arise since currently available molecular

techniques including denaturing high-performance liquid chromatography (DHPLC)

allow the physical separation and subsequent characterisation of the individual

components of a mitochondrial DNA mixture provided they are sufficiently different

[2]. In the following, I will therefore concentrate on the forensic use of Y-chromosomal

variation since the length and dispersion of useful variants of the Y chromosome still

render the physical separation of haplotypes impracticable. Nevertheless, Y-chromosomal

markers are particularly useful in forensics because they are sensitive to male, and

insensitive to female, contributions. This implies that, for crimes like prostitute murder or

gang rape, the genetic identification of potential perpetrators from the DNA pool of a trace

would not be obscured by female genetic material, which is usually present in much larger

quantities. Furthermore, the use of Y-chromosomal markers allows evidence about the

contribution of a male suspect to be obtained from the analysis of close male relatives.

This circumstance, however, may also represent a disadvantage of Y-chromosomal

markers; in that close male relatives of a contributor can not be excluded from being

contributors themselves. One of the biggest disadvantages, however, is the formal
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equivalence of the Y chromosome to a single albeit highly diverse locus. This limitation

implies that the population frequency of individual allele combinations, or haplotypes, is

difficult to estimate accurately from reasonably sized databases. Furthermore, the

calculation of match probabilities, for which knowledge of the population frequencies is

a prerequisite, is not as straightforward as in the case of single autosomal loci.

The approach by Weir et al. [1] of using the exclusion–inclusion principle for the

calculation of trace probabilities has recently been extended to haploid, statistically non-

independent markers [3]. This extension was based upon the notion that, generally, for m

loci, and Vi and Wi defined as before at the ith locus, the probability of observing the

complete DNA pool can be written as

Pn

Ym
i¼1

Vi;
Ym
i¼1

Wi

 !
: ð3Þ

As mentioned above, the Cartesian product formation over allele sets in formula (3) is

equivalent to product formation over probabilities in the case of independent loci. For non-

independent loci, the inclusion–exclusion principle has to be applied to the whole

Cartesian set products themselves. Thus, for Vi={1, . . ., si} and Wi ={1, . . ., ki} with

kiV si, we have

Pn

Ym
i¼1

Vi;
Ym
i¼1

Wi

 !

¼
X

Tp i;jð Þ:iVm;jVkif g
� 1ð Þcard Tð Þ

dPn

Ym
i¼1

Viq j : i; jð ÞaTf g
 !

: ð4Þ

Here, Pn(X) denotes the probability that n individuals have all their alleles in set product

X. If the potential contributors are unrelated, Pn(X) equals P1(X)
n. The base of the latter term

is simply the frequency of all haplotypes included in X. Instead of using the inclusion–

exclusion principle, the probability given in formula (3) can also be calculated by recursion

over n [3]. It can be shown, however, that this is computationally less efficient in most

practically relevant situations, namely when the number of unknown contributors invoked

is larger than twice the average number of mandatory alleles in the trace [3].

At some stage, both the exclusion–inclusion principle and the recursion approach will

involve nested sums of the formX
j1aX1

N
X

jmaXm

f j1 N jmð Þ ð5Þ

where the f( j1, . . ., jm) are haplotype frequencies. The efficiency of these summations

can be increased in two ways. First, calculation can be conditioned upon the presence

of the respective pair-wise allele combinations in the population of interest, i.e. jk is

only taken into consideration if sub-haplotype jk�1jk exists. Second, it may sometimes

be more efficient to take all haplotypes in a forensic database into account

sequentially, and to assess whether each haplotype would be compatible with the

product of the Xi or not, rather than running through all haplotypes in the set product

during summation.
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4. Graphical models

An alternative approach to computing probabilities for complex genetic problems, also

suggested for the forensic interpretation of stain mixtures [4], is the use of graphical

models [5]. The most important type of graphical models are so-called bBayesian
networksQ, which are directed, acyclic graphs with node set K. The nodes kaK represent

random variables Y=(Yk)kaK that have a joint probability distribution function of the form

f yð Þ ¼
Y
kaK

f yk jypa kð Þ
� �

: ð6Þ

i.e. the nodes k are statistically independent given the bparentsQ, pa(k), of each node. A

Bayesian network suitable for the analysis of trace mixtures is given in Fig. 1. Mortera et

al. [4] noted, however, that this representation of the DNA mixture problem by a graphical

model is computationally very inefficient. If the nodes representing haplotypes of

unknown contributors, YU1 to YU3, are assumed to be independent, then computation of

the probability in (3) using the Bayesian network from Fig. 1 is even less efficient than

recursion over the number of unknown contributors n. However, graphical models are

more flexible in practical terms because they allow a variety of hypotheses to be included

in one model. This is reflected in Fig. 1 by the possible introduction of an extra latent node

for quantity n. This node would take values according to a particular prior distribution if

such a prior distribution is indeed known (for a detailed discussion, see below).

Furthermore, the node representing the suspect haplotype YS can be turned from an

observable into a latent variable, and linked to another latent node YRS representing the Y-

chromosomal haplotype of a close male relative. In any case, if such flexibility is not

needed, following the approach of Weir et al. [1] would be computationally superior to the

use of graphical models. This is particularly true since an alternative and potentially more

efficient graphical model suggested by Mortera et al. [4] cannot easily be transferred to the

Y-chromosomal situation as it would require a number of latent nodes that is proportional

to the number of known haplotypes. Even for the small number of Y-chromosomal
Fig. 1. Graphical model of a Y-chromosomal DNA mixture. Latent random variables are depicted by open circles,

observable variables are blackened. The dotted arrow connects an optional latent node for the unobserved number,

n, of unknown contributors to the network. In the inset, an extension is depicted whereby the suspect node YS

becomes latent and is linked to the observed haplotype, YRS, of a male relative.
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microsatellite markers currently used in forensics [6], this leads to a prohibitively high

complexity of the resulting model.

5. Unknown number of unknown contributors

So far we have assumed that the number of unknown contributors to a trace is

known exactly. In practice, however, this will not generally be the case. One way

around this problem would be to replace Pn(V;W) by the aggregate f(V) that takes only

the match between the suspect and trace into account. Inference making in forensics

has generally been accepted to be based upon the likelihood ratio L(E) of the

prosecutor and defence hypothesis, given the evidence E. In the case of a mixture

trace, these hypotheses usually entail different numbers of known and unknown

contributors, so that

L Eð Þ ¼
Pnp V ;Wp

� �
Pnd V ;Wdð Þ ð7Þ

If only the match itself is considered, the likelihood ratio would simplify to

L Eð Þ ¼ 1

f Vð Þ ð8Þ

which does not depend on n anymore. However, a lot of information, specifically about

the genotype of the suspect, is lost, which implies that the mere evaluation of a match

according to formula (8) would be extremely inefficient and therefore not practically

useful. If prior probabilities for n were known, then the nominator and denominator in

formula (7) would turn into weighted sums of trace probabilities. However, unless the

number of unknown contributors is known from eyewitnesses, it is difficult to imagine

how reliable priors could be provided by anybody involved in a particular case. In order to

solve this problem, Brenner et al. [7] and Lauritzen and Mortera [8] proposed the

calculation of an upper limit for the denominator in formula (7), thereby obtaining a

lower limit for the respective likelihood ratio. However, these authors assumed that the

prosecution hypothesis would invoke a fixed number of unknown contributors whereas

the defence would consider varying values of n. It is not however clear why this

should generally be true. It would also appear plausible that the defence hypothesis, in

place of the suspect, merely invokes one more unknown contributor than the

prosecution, i.e.

L Eð Þ ¼ Pn V ;WqSð Þ
Pnþ1 V ;Wð Þ ð9Þ

where S is the set of suspect alleles. If n is allowed to vary in formula (9), a useful

lower limit for L(E) may no longer exist since the likelihood ratio will often be a

decreasing function of n that converges to zero, i.e. the more unknown contributors are

invoked the less incriminating is a match. Therefore, it is not generally possible to

minimise L(E) as an act of courtesy to the suspect. Instead, a coherent solution can be

provided if the philosophy of the Neyman-Pearson theorem [9], which is reflected in
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the widely accepted use of the likelihood ratio as a decision making criterion in

bsimpleQ forensic cases, is also followed for composite hypotheses. In this case,

L Eð Þ ¼
maxiPi V ;Wp

� �
maxj Pj V ;Wdð Þ ð10Þ

should be used for decision making. In other words, if the prosecution and the defence

put forward different but non-overlapping sets of hypotheses, then the most logically

coherent way in which a decision should be made, on the basis of some evidence E,

would allow both sides to maximise the probability of E over their specific sets of

hypotheses. There is no reason why the two mutually exclusive hypotheses chosen in

formula (10) should be in any way be linked (as, for example, by the same number of

unknown contributors).

6. Practical use of Y-chromosomal markers

In terms of their practical use, one of the major problems of haploid markers is that the

highly diverse spectrum of allele combinations, likely to be present in a population as a

whole, is difficult to capture by reasonably sized databases. This implies that many rare

haplotypes are probably first seen when they occur in the context of an actual crime case.

If a suspect matches the Y-chromosomal profile of a trace for which there is no reason to

believe that it represents a mixture of different male contributions, Dawid and Mortera [10]

rightly maintained that the probability of a match under the defence hypothesis is

approximately equal to the inverse of the database size if the suspect/trace haplotype is not

found in the database. With DNA mixtures, however, the situation may be more

complicated. For example, all those involved in a case may have agreed upon a certain

number of unknown contributors being correct, but the number of haplotypes present in a

database that need to be invoked in order to produce the trace in question turns out to be

higher than this. This may either lead to a situation where some evidence that is

independent of the genetic finding needs to be revisited, and its impact upon the case

revised, or the DNA expert is asked for a guess of the match probability assuming the

existence of hitherto not observed haplotypes. The haplotype frequencies necessary for the

latter calculations can potentially be derived by extrapolation, exploiting the molecular

relationship between the haplotypes present in a database [11], but this method has not yet

been validated systematically nor has it been adopted to the simultaneous extrapolation of

more than one haplotype frequency.

In any case, simulations based upon the Y Haplotype Reference Database [6] have

shown that the median likelihood ratio for a suspect and an additional unknown trace

donor is about 40:1 if the suspect DNA is in the trace, and 10:1 if the suspect DNA is not

in the trace [3]. The exclusion chance of a non-donor is approximately 95%. These

simulations have taken the seven microsatellites comprising the so-called bcore haplotypeQ
set into account [6]. The median likelihood ratio drops to 2:1 for a non-donor, and to 5:1

for donors, if five or four unknowns have contributed to the trace, respectively. In this

case, the exclusion chance of a non-donor is approximately 70%. These estimates may

appear sobering at first glance, but they are likely to be very conservative. This is because

many low frequency haplotypes occurring in the German population had not been
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included in the simulations, and database counts tend to overestimate haplotype

frequencies [3].

7. Conclusions

In summary, the coherent interpretation of haploid DNA mixtures in a forensic context

can follow the same principles as derived earlier for statistically independent, autosomal

systems. Specific problems may arise, however, from the formal equivalence of haploid

genomes to single highly diverse loci. In order to maintain the potential of haploid DNA

systems for solving otherwise intractable forensic cases, national and international

collaborations are thus upon to establish appropriate databases fit to this task.
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