EUROPEAN DNA PROFILING GROUP (EDNAP) MEETING

Copenhagen, Denmark

28 April 2015

Host: Niels Morling Chairman: Niels Morling.

A list of participants is attached.

Welcome

Professor Niels Morling welcomed members to Copenhagen.

Update on exercises

mRNA exercises Cordula Haas The results of mRNA exercise 6 (skin and contact traces) has been published. After thorough investigations, it was decided not to perform the planned collaborative exercise concerning quantification of mRNA (presentation attached).

EDNAP ancestry informative marker exercise Chris Phillips The manuscript with the results of the Ancestry Informative Marker (AIM) exercise has been reviewed. Christopher Philips, University of Santiago de Compostela (USC), is revising the manuscript.

A SNaPshot based method targeting18 common mtDNA mutations Arnoud Kal Arnoud Kal presented the plans for the collaborative EDNAP exercise concerning typing of 18 mtDNA SNPs with the SNaPshot method (presentation attached). Titia Sitien and Arnoud Kal will send out reagents in the spring 2015. Participants are asked to submit the results before 15 September 2015.

Updates from other groups

ENFSI guideline for the formulation of evaluative reports in forensic science The guidelines have been published.

Forensic Science Regulator, OK

Gillian Tully gave an overview of the work of the Forensic Science Regulator (presentation attached).

EMPOP

Walther Parson gave an update on EMPOP-related publications, the database developments and the next EMPOP-related meetings. Four mtDNA articles have been published since the last meeting in Zürich. The EMPOP query engine is now capable of taking more complex phylogenetic events into consideration, i.e. insertions and deletions that simultaneously involve more than one nucleotide, e.g. 523del 524del (presentation attached).

Niels Morling

Gillian Tully

Walther Parson

Nomenclature of STR sequences

Walther Parson gave an update on the discussion of the nomenclature of STR sequences that are being produced in large numbers using massively parallel sequencing. The ISFG is not yet ready to formulate recommendations. The issue is being discussed in the forensic genetic community. A round table on STR nomenclature will take place at the upcoming ISFG conference in Krakow to discuss the different approaches.

High quality STR sequence database

Walther Parson and colleagues have updated STRbase (presentation attached). The system will be adapted for quality control of STR data and will most likely be used for the reviewing process of FSI Genetics. A new name for the database is needed to avoid confusion with NIST STRbase. "STRIDER", STR for Identity ENFSI Reference Database, has been suggested (presentation attached).

Interpol

Richard Scheithaur gave a short summary of the DNA activities of Interpol.

EUROFORGEN-NoE – General update

Peter Schneider gave an update concerning the project (attached).

EUROFORGEN-NoE - EuroForMix

Peter Gill introduced the EuroForMix software for the interpretation of results of investigations of DNA mixtures with 'continuous models'. The software is freely available Rpackage (two presentations attached).

Interpretation and communication of results

Peter Gill discussed the challenges of interpreting DNA results in crime case investigations. The communication of the results to the users was also discussed (presentation attached).

EDNAP web site update (<u>www.isfg.org/EDNAP</u>)

Members are encouraged to visit the website. Suggestions are welcome.

Future activities

Please see the planned mtDNA exercise above.

Next meeting

The next EDNAP meeting will be held on 20 October 2015 in Santiago de Compostela.

Any other business

There was no other business.

Closing of the meeting

The meeting closed with sincere thanks to Niels Morling and colleagues at the laboratory in Copenhagen.

Attachments are found at the EDNAP website http://www.isfg.org/EDNAP/Meetings:

- List of participants
- Presentations
 - ENFSI guideline for the formulation of evaluative reports in forensic science
 - Peter Gill: EuroForMix (2 presentations)
 - Peter Gill: Interpretation and communication of results

Walther Parson

Walther Parson

Richard Scheithaur

Peter Schneider

Peter Gill

Peter Gill

Peter Schneider

Niels Morling

Niels Morling

Niels Morling

- o Cordula Haas: mRNA exercise
- o Jodi Irwin: FBI update
- Walther Parson: EMPOP report
- Walther Parson: High quality STR database
- Peter Schneider: EUROFORGEN-NoE report
- Gillian Tully: Forensic Science Regulator, UK
- Maria Vouropoulou: Quantifiler Trio.

Dr. Sofia Belabas Direction Generale la Surete National Alger Algeria Tel: +213 555 924358 Fax: E-mail: sofiabelabas@yahoo.fr

Prof. Dr. Walther Parson Institute of Legal Medicine Medical University of Innsbruck Müllerstrasse 44 A-6020 Innsbruck Austria Tel: +43 512 9003 70640 Fax: +43 512 9003 73640 E-mail: walther.parson@i-med.ac.at

Prof. Dr.med. Richard Scheithauer Institute of Legal Medicine Medical University of Innsbruck Müllerstrasse 44 A-6020 Innsbruck Austria Tel: +43512 9003 70600 Fax: +43 512 9003 73600 E-mail: richard.scheithauer@i-med.ac.at

Dr. Fabrice Noël National Institute of Forensic Science 98-100 Chaussée de Vilvorde B-1120 Bruxelles Belgium Tel: +32 2243 4604 Fax: +32 2240 0501 E-mail: fabrice.noel@just.fgov.be

Dr. Helle Smidt Mogensen Section of Forensic Genetics Department of Forensic Medicine Faculty of Health Sciences University of Copenhagen Frederik V's Vej 11 DK-2100 Copenhagen Denmark Tel: +45 3532 6212 Fax: +45 3532 6270 E-mail: helle.smidt@sund.ku.dk

Professor, dr.med. Niels Morling Section of Forensic Genetics Department of Forensic Medicine Faculty of Health Sciences University of Copenhagen Frederik V´s Vej 11 DK-2100 Copenhagen Denmark Tel: +45 3532 6115 Fax: +45 3532 6270 E-mail: niels.morling@sund.ku.dk

Dr. Bo Simonsen Section of Forensic Genetics Department of Forensic Medicine Faculty of Health Sciences University of Copenhagen Frederik V´s Vej 11 DK-2100 Copenhagen Denmark Tel: +45 3532 6136 Fax: +45 3532 6270 E-mail: bo.simonsen@sund.ku.dk

Dr. Auli Bengs Department of Biology Forensic Laboratory National Bureau of Investigation Jokiniemenkuja 4, PO BOX 285 FIN-01310 Vantaa Finland Tel: +358 2954 6377 Fax: +358 2954 6303 E-mail: auli.bengs@poliisi.fi Dr. Regine Banemann KT31 Bundeskriminalamt Thaerstrasse 11 D-65193 Wiesbaden Germany Tel: +49 61155 16053 Fax: +49 611 5545 089 E-mail: regine.banemann@bka.bund.de

Dr. Ingo Bastisch KT31 Bundeskriminalamt Thaerstrasse 11 D-65193 Wiesbaden Germany Tel: +49 61155 16030 Fax: +49 611 5545 089 E-mail: ingo.bastisch@bka.bund.de

Prof.Dr. Peter M. Schneider Institute of Legal Medicine University of Cologne Melatenguertel 60-62 D-50823 Cologne Germany Tel: +49 221 4788 8345 Fax: +49 221 4788 8370 E-mail: peter.schneider@uk-koeln.de

Dr. Maria Vouropoulou Dept. Biological Material Analysis Forensic Science Division Hellenic Police Antigonis 2-6 & L.Anthinon GR-104 42 Athens Greece Tel: +30 210 510 3407 Fax: +30 210 510 3408 E-mail: m.vouropoulou@astynomia.gr

Dr. Dyan Daly

DNA Section Forensic Science Laboratory Garda Headquaters Phoenix Park Dublin 8 Dublin Ireland Tel: +353 1666 2989 Fax: +353 16662929 E-mail: ddaly@fsl.gov.ie

Dr. Francesca Brisighelli Laboratoria Genetica Forense Instituto di Sanita Publica Universita Cattolica Largo Francesco Vito 1 I-00168 Roma Italy Tel: +39 6 3550 7031 Fax: +39 6 3550 7033 E-mail: francesca.brisighelli@rm.unicatt.it

Dr. Abdellatif El Hilali Labotoire de Police Scientifique Direction Generale de la Srete National Casablanca Morocco Tel: +212660233389 Fax: E-mail: hildi.abdal@gmail.com

Professor Peter Gill Department of Forensic Biology National Institute of Public Health PO Box 4404 Nydalen N-0403 Oslo Norway Tel: Fax: E-mail: peterd.gill@gmail.com

Dr. Eirik Hanssen

Page 3

Department of Forensic Biology National Institute of Public Health PO Box 4404 Nydalen N-0403 Oslo Norway Tel: Fax: E-mail: eiha@fhi.no

Dr. Magdalene Debska Central forensic Laboratory of the Police Alujazdowskie 7 00-735 Warsaw Poland Tel: +48 602 751 701 Fax: E-mail: magdalena.debska@policja.gov.pl

Dr. Maria João Anjos Porto Forensic Genetic Service Instituto de Medicina Legal University of Coimbra Largo da Sé Nova P-3000-213 Coimbra Portugal Tel: +351 239 854230 Fax: +351 239 826132 E-mail: mariajoao.porto@dcinml.mj.pt

Ms. Crystal Lai Biology Division & DNA Profiling Laboratory Applied Sciences Group Health Sciences Authority 11 Outram Road 169078 Singapore Singapore Tel: + 65 6213 0783 Fax: +65 6213 0855 E-mail: Crystal_Lai@hsa.gov.sg

Dr. Christopher Syn

Biology Division & DNA Profiling Laboratory Applied Sciences Group Health Sciences Authority 11 Outram Road 169078 Singapore Singapore Tel: + 65 6213 0779 / 682 Fax: +65 6213 0855 E-mail: Christopher_SYN@hsa.gov.sg

Dr. David Fernandez Bautista Policia de laGeneralitat Mossos d'Escuadra Regional Police of Catalonia Spain Tel: Fax: E-mail: itpg7603@gencat.cat

Dr. Oscar Garcia Forensic Science Unit Autonomous Police of the Basque Country Laurrauri Mendotxe 18 489950 Erandio (Bizkaia) Spain Tel: +34 94 607 9533 Fax: +34 94 607 9500 E-mail: ogarcia01@hsdi.ej-gv.es

Dr. Ricky Ansell National Laboratory of Forensic Science S-58194 Linköping Sweden Tel: +46 1056 28119 Fax: +46 13 14 57 15 E-mail: ricky.ansell@polisen.se

Dr. Cordula Haas Institut für Rechtsmedizin Zurich Winterthurerstr. 190 CH-8057 Zurich Switzerland Tel: +41 44 635 5656 Fax: +41 44 635 6858 E-mail: cordula.haas@irm.uzh.ch

Dr. Arnoud Kal Department of Human Biological Traces Netherlands Forensic Institute Laan van Ypenburg 6 24 97 GB The Haque The Netherlands Tel: +31 708 886 729 Fax: -E-mail: a.kal@nfi.minvenj.nl

Dr. Denise Syndercombe Syndercombe Court Forensic and Analytical Science King's College London Franklin Wilkins Building Waterloo SE1 9NH London UK Dr. Gillian Tully Home Office Forensic Science Regulator Unit 5 St. Philips Place, Colmore Row B3 2PW Birmingham UK Tel: Fax: E-mail: gillian.tully@forensicscienceregulator.gsi.gov.uk

Dr. Jodi Irwin DNA Support Unit FBI Laboratory 2501 Investigation Parkway VA 221355 Quantico USA Tel: +1 703 632 7946 Fax: E-mail: Jodi.Irwin@ic.fbi.gov

mRNA quantification

Cordula Haas, Erin Hanson, Jack Ballantyne EDNAP meeting, 28. April 2015, Copenhagen

mRNA profiling workflow

- RNA extraction
- DNase treatment (TURBO DNA-free kit)
- total mRNA quantification
- Reverse transcription (RT)
- body fluid specific PCR-multiplex
- Capillary electrophoresis
- → too little RNA into RT: no result too much RNA into RT: cross contamination

Total mRNA quantification

- RiboGreen & Qubit (Fluorescence)
- RiboGreen & ELISA-Reader (Fluorescence)
- Bioanalyzer (Chip-Gelelectrophoresis)
- NanoDrop (Absorption A₂₆₀)

Human specific mRNA quant assay - UCF

- developed by Jack Ballantynes group
- Housekeeping gene
- qPCR assay
- TaqMan MGB probe
- qPCR standard
- human specific
- abundant in body fluids
- > sensitive

2 ul RNA into RT

25 ng into RT

25 ng corresponds to							
8.00 ul (1)	8.00 ul (4)						
2.24* ul (2)	1.36 ul (5)						
2.44* ul (3)	6.38 ul (6)						
* 1:10 dilution							

human-specific quantification

MB-specific marker expression

mRNA quantification – way forward?

- Correlation between RNA-concentration (copy numbers) and body fluid specific expression (peak height in RFU) only marginal
- Collaborative exercise?
- Test 'no quant' compared to 'some sort of quant' (however imperfect with respect to human specificity)?

'no quant' compared to 'some sort of quant'

- 5 saliva and 5 vaginal donors saliva samples: 5 ul and 50 ul stains vaginal samples: ½ and 1/64 swabs
- Qiagen AllPrep RNA/DNA mini Kit
- RT a set input volume regardless of the quant (2 ul, 8 ul) RT a set using a defined total input (15 ng)
- assess the RTs with

 a body fluid multiplex (including markers for all body fluids)
 EDNAP vag and saliva triplexes

'no quant' compared to 'some sort of quant'

Saliva

RNA mini Kit

		Qubit	RiboGreen	Quantus
		ng/ul	ng/ul	ng/ul
1	50 ul	2.3	2.9	1.7
1	5 ul	too low	0.7	0.4
2	50 ul	4.0	3.2	2.7
2	5 ul	too low	0.7	0.5
3	50 ul	3.4	4.6	3.4
3	5 ul	too low	0.7	0.6
4	50 ul	4.1	5.6	3.2
4	5 ul	too low	0.6	0.6
5	50 ul	too low	1.3	1.4
5	5 ul	too low	0.2	0.4

Vaginal secretion

AllPrep

		Qubit	RiboGreen	Quantus
		ng/ul	ng/ul	ng/ul
6	1/2	42.2	19.1	16.0
6	1/64	too low	0.6	0.2
7	1/2	too low	0.3	0.1
7	1/64	too low	0.5	0.2
8	1/2	too high	91.7	73.0
8	1/64	33.8	17.1	14.0
9	1/2	98.0	67.9	53.0
9	1/64	22.7	12.4	15.0
10	1/2	11.9	5.9	4.5
10	1/64	4.2	3.4	1.3

'no quant' compared to 'some sort of quant'

Saliva

RNAminiK	t	2ul into	RT						8ul into	RT					
	Quantus	Saliva				Vag			Saliva				Vag		
	HS	HTN3	HTN1	STATH	MUC7	ΜΥΟ	СҮР	MUC4	HTN3	HTN1	STATH	MUC7	MYO	СҮР	MUC4
	ng/ul	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu
1 50 u	l 1.7	836	354	1014	1197	0	0	0	4565	344	2720	3826	0	0	0
1 5 ul	0.37	0	0	0	80	0	0	0	120	0	0	132	0	0	0
2 50 u	l 2.7	568	147	399	526	0	0	0	2349	635	2275	1103	0	0	0
2 5 ul	0.53	0	0	0	0	0	0	0	167	0	54	95	0	0	0
3 50 u	l 3.4	0	63	0	397	0	0	0	623	275	873	1073	0	0	1234
3 5 ul	0.56	0	0	0	94	0	0	0	0	0	0	246	0	0	0
4 50 u	l 3.2	0	0	0	160	0	0	0	670	147	747	884	0	0	0
4 5 ul	0.55	0	0	0	0	0	0	0	0	0	0	114	0	0	0
5 50 u	l 1.4	0	0	0	149	0	0	0	118	90	269	262	0	0	0
5 5 ul	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0

'no quant' compared to 'some sort of quant'

Vaginal secretion

AllPre	ep		2ul into	RT						8ul into	RT					
		Quantus	Saliva				Vag			Saliva				Vag		
		HS	HTN3	HTN1	STATH	MUC7	ΜΥΟ	СҮР	MUC4	HTN3	HTN1	STATH	MUC7	ΜΥΟ	СҮР	MUC4
		ng/ul	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu	rfu
6	1/2	16	0	0	0	0	150	8202	8032	0	0	0	0	104	8330	8123
6	1/64	0.17	0	0	0	0	0	0	1287	0	0	0	0	0	1364	4748
7	1/2	0.14	0	0	0	0	0	766	1167	0	0	0	0	338	0	2367
7	1/64	0.17	0	0	0	0	0	0	0	0	0	0	0	0	0	2597
8	1/2	73	0	0	0	0	1674	7950	7957	0	0	0	0	1491	8119	7976
8	1/64	14	0	0	0	0	939	8323	8216	0	0	0	0	833	8396	8128
9	1/2	53	0	0	0	0	623	8211	8263	0	0	0	0	480	8265	8288
9	1/64	15	0	0	0	0	198	8465	8324	0	0	0	0	546	8129	8218
10	1/2	4.5	0	0	0	0	451	952	8172	0	0	0	0	1349	1267	8129
10	1/64	1.3	0	0	0	0	375	0	7859	0	0	0	0	0	1455	8357

Incis -

'no quant' compared to 'some sort of quant'

'no quant' compared to 'some sort of quant'

UCF		DNA	RNA		
Donor	Swab size	Quant (ng/ul)	Quant (ng/ul)		
VS1	1/2	1004.0	3.7		
VJI	1/16	77.0	1.4		
VSA	1/2	1292.0	21.4		
V 54	1/16	107.0	13.1		
VS12	1/2	0.4	undet		
V 31 3	1/16	0.1	undet		
V62E	1/2	120.0	6.0		
V 325	1/16	22.0	7.2		
1/520	1/2	279.0	3.7		
v 329	1/16	58.0	3.5		

ZH		DNA	RNA		
Donor	Swab size	Quant (ng/ul)	Quant (ng/ul)		
6	1/2	10.2	16.0		
U	1/64	0.8	0.2		
7	1/2	6.0	0.1		
/	1/64	1.3	0.2		
Q	1/2	18.5	73.0		
0	1/64	3.4	14.0		
٥	1/2	14.6	53.0		
9	1/64	4.1	15.0		
10	1/2	19.1	4.5		
10	1/64	4.4	1.3		

80ul extract

30ul extract

14ul extract

20ul extract

'no quant' compared to 'some sort of quant'

- not much cross-reactivity
- no real advantage to RT a defined total input (15 ng) compared to a set input volume (2 ul, 8 ul)
- only marginal correlation between DNA and RNA quants
- ➢ no collaborative exercise

Thank you for your attention!

Jack Ballantyne, Erin Hanson,

Cordula Haas, Sabrina Ingold, Corinne Moser

Netherlands Forensic Institute Ministry of Security and Justice

A SNaPshot targeting common mtDNA mutations

19 November 2014

Current method is time consuming

Mini-mtDNA method: 10 amplicons in 2 multiplexes Sequencing reaction: 10x forward + 10x reverse = 20 sequencing reactions for 1 sample

- Time consuming
- Labour intensive
- Expensive
- Example: Case with 30 hairs \rightarrow 600 sequencing reactions! (2011.09.15.067)

A SNaPshot targeting common mtDNA mutations | 19 November 2014

SNP analysis for mtDNA screening

Need for a quicker examination of mtDNA samples

- Selection of mtDNA samples for sequencing analysis
- Increasing sample throughput

Chemale et al. (2013) published a mtDNA screening tool

- SNaPshot assay targeting common SNPs in mtDNA HVS fragments
- Feasibility for degraded DNA?
- Focus on Brazilian population

Aim of project

Develop and optimise a SNaPshot assay targeting common mtDNA mutations in HVS fragments relevant to the Dutch Criminal casework, reflecting the individuals present in the National DNA database

Project carried out by:

Natalie

Same PCR product for SNaPshot and mini-mtDNA

Example: Case with 30 hairs \rightarrow 600 sequencing reactions! (2011.09.15.067)

Same PCR product for SNaPshot and mini-mtDNA

Example: Case with 30 hairs \rightarrow 600 sequencing reactions! (2011.09.15.067) SNaPshot: Selection of 3 hair samples \rightarrow 60 sequencing reactions

> A SNaPshot targeting common mtDNA mutations | 19 November 2014

SNP selection

	SNP	Base change	Frequency	Haplogroup
	73	A>G	0.5483	HV, H, V
Selection criteria:	146	T>C	0.0917	
1 UVS fragmants (mini mtDNA)		T>a	0.0001	
I. TVS Hayments (mini-mtDNA)	150	C>T	0.1023	
2.Limited number of SNPs	152	C>g T>C	0.0001	
2 High discrimination nowor	182	C>T	0.0089	
3. High discrimination power	185	G>A	0.0548	
4 Hanlogroup information		G>t	0.0031	
		G>c	0.0004	
5.Non redundant SNPs	195	I>C	0.1963	
C CNDe with high and low frequency	490		0.0002	N4 / 1
6.SNPS with high and low frequency	489	C>T	0.0434	K
in Dutch population	16126	T>C	0.1821	
	16129	G>A	0.0662	
		G>c	0.0112	
	16223	C>T	0.1285	
	16270	C>T	0.0891	
Final selection: 18 SNPs	16278	C>T	0.0657	
	16294	C>1	0.1077	
Divided in two multiplex systems		C>a	0.0003	
mp1, 0 CNDc (cott mini mtDNA)	16311	C>g T>C	0.1692	
-mp1: 9 SNPS (Sel1 mm-mcDNA)	16362	T>C	0.0700	
-mp2: 9 SNPs (set2 mini-mtDNA)	16519	T>C	0.6441	

A SNaPshot targeting common mtDNA mutations | 19 November 2014

High power of discrimination for mtDNA

Power of the SNaPshot assay to discriminate mtDNA samples using the 18 SNPs selected

- Pair-wise comparisons between sequence data of 155 unrelated samples from NFI elimination dataset
- Number of differences: 0 - 15

Power of discrimination: > 97.2%

Optimised SNaPshot assay

Note: some extension primers have degenerate bases

A SNaPshot targeting common mtDNA mutations | 19 November 2014

SNaPshot of mixture

A SNaPshot targeting common mtDNA mutations | 19 November 2014

Optimised SNaPshot assay, summary

Conclusion

MtDNA SNaPshot is a fast and efficient screening tool to discriminate mtDNA samples and facilitates the selection of samples for subsequent mtDNA sequencing

MtDNA SNaPshot can be incorporated into the existing workflow

MtDNA SNaPshot does not consume extra DNA extract

EDNAP Exercise proposal

Excercise on 10 samples (10 x SNaPshot, 2 x Sanger)

NFI provides:

- Protocols
- Primers
- Samples

Labs provide:

• All other chemistry

2015 Q1: start2015 Q2: data collection2015 Q3: data analysis, preparation of manuscript

Interested in joining the EDNAP excercise?

Contact:

Titia Sijen T.sijen@nfi.minvenj.nl

Arnoud Kal <u>A.kal@nfi.minvenj.nl</u>

> A SNaPshot targeting common mtDNA mutations | 19 November 2014

Regulator's Update

Dr Gillian Tully

EDNAP Copenhagen, 28 April 2015

Role of Regulator

...but NOT regulating the market

Expert Evidence Framework

Regulation: Advice Structures

FSR Quality Framework

Errors, complaints and openness

Current Documents & Drafts

- The Management & Use of Staff Elimination Databases
 - □ FSR-P-302 Published 12 Sept 2014
- The control and Avoidance of Contamination in Laboratory Activities involving DNA Recovery & Analysis
 - □ FSR-G-208 Consultation completed
 - □ 161 specific points raised: being considered
 - Next back to DNA SG summer

Current Documents & Drafts

- The Control and Avoidance of Contamination in Crime Scene Examination involving DNA Evidence Recovery
 - FSR-G-206 Consultation closed
- Appendix: Bloodstain Pattern Analysis
 - FSR-C-102 Consultation closed
- Cognitive Bias Effects Relevant to Forensic
 Science Examinations
 - Consultation closed

Continuous improvement

Other DNA-Related Activities

- Collaborative study on mixture analysis and interpretation
 - Organised on behalf of FSR by PFS & NIST
 - First since introduction of 17/20-plexes
 - Analytical variability
 - Interpretation variability
 - Jim Thompson presenting at Interpretation sub-group of ENFSI meeting
 - Designed to assess current status and stimulate improvement

Expert Evidence Framework

CPS Gatekeeping Role

 To comply with the FSR's Codes of Conduct and Practice

- To ensure Quality Standards and Assurance processes are applied which are nationally consistent and compliant with appropriate ISO standards, United Kingdom Accreditation Service (UKAS) accreditation, EU directives and clear development and validation processes...
- 3. To provide clear communication and interpretation of scientific processes, procedures, strengths, weaknesses and meaning.
- To engage with Streamlined Forensic Reporting (SFR) process ...
- 5. To be fully aware of and compliant with CPIA Disclosure and Expert Witness obligations

Expert Evidence Framework

Court

Criminal Practice Directions 2015

- Part 33 admissibility
- Extent & quality of data
- Validity of methods
- Safety of inference
- Uncertainty, accuracy, reliability
- Peer review
- Expert's field of expertise
- Completeness of information
- Following established practice

Judge is ultimate arbiter of admissibility Working with senior judiciary

Thank you, good to be here!

..and thanks to The Forensic Science Regulation Unit: June Guiness Dr Jeff Adams Simon Iveson

EMPOP Update

Dr. Walther Parson

assoc. Professor, Institute of Legal Medicine, Innsbruck

adj. Professor, Forensic Program, Penn State University, PA, USA

walther.parson@gmail.com

EMPOP update

1. New EMPOP related publications

- 1. King et al (2014) Nature Communications
- 2. Gomes et al. (2015) PLoS ONE
- 3. Xavier et al. (2015) PLoS ONE
- 4. Naue et al (2015) Mitochondrion
- 2. EMPOP database
- 3. EMPOP workshops

ARTICLE

Received 5 Aug 2014 | Accepted 21 Oct 2014 | Published 2 Dec 2014

DOI: 10.1038/ncomms6631

OPEN

Identification of the remains of King Richard III

Turi E. King^{1,2}, Gloria Gonzalez Fortes^{3,4,*}, Patricia Balaresque^{5,*}, Mark G. Thomas⁶, David Balding⁶, Pierpaolo Maisano Delser¹, Rita Neumann¹, Walther Parson^{7,8}, Michael Knapp⁹, Susan Walsh^{10,11}, Laure Tonasso⁵, John Holt¹², Manfred Kayser¹¹, Jo Appleby², Peter Forster^{13,14}, David Ekserdjian¹⁵, Michael Hofreiter^{3,4} & Kevin Schürer¹⁶

527 years, oldest identification full mitogenome sequence (J1c1) 2 living maternal relatives (19/21 gens) discrepancy at 8994 - phylogenetic hotspot

Y-STR exclusion between 5 living relatives

nature

Evidence	LR	Posterior – sceptical prior	Posterior – 50/50 prior									
All	6.7 million	0.999994	0.9999999									
Genetic	79	0.67	0.987									
Non-genetic	85,000	0.9995	0.999988									
All exc. mtDNA	14,000	0.99993										
All exc. Y	41 million	1.0000000										
mtDNA only	478	478 0.92										
For illustrative purp	oses, below we give lik	elihood ratios calculate	d using the European									
mitochondrial DNA control region database												
mtDNA only	6847	0.994	0.9999									
Genetic	1127	0.97	0.999									
All	96 million	0.9999996	0.99999999									

Gomes et al. BMC Genomics (2015) 16:70 DOI 10.1186/s12864-014-1201-x

BMC Genomics

RESEARCH ARTICLE

Human settlement history between Sunda and Sahul: a focus on East Timor (Timor-Leste) and the Pleistocenic mtDNA diversity

Sibylle M Gomes¹⁺, Martin Bodner²⁺, Luis Souto^{1,3}, Bettina Zimmermann², Gabriela Huber², Christina Strobl², Alexander W Röck², Alessandro Achilli^{4,5}, Anna Olivieri⁴, Antonio Torroni⁴, Francisco Côrte-Real⁶ and Walther Parson^{2,7*}

RESEARCH ARTICLE

Admixture and Genetic Diversity Distribution Patterns of Non-Recombining Lineages of Native American Ancestry in Colombian Populations

Catarina Xavier^{1,2,3}, Juan José Builes^{4,5}, Verónica Gomes^{1,2}, Jose Miguel Ospino⁵, Juliana Aquino⁶, Walther Parson^{3,7}, António Amorim^{1,2,8}, Leonor Gusmão^{1,2,6}, Ana Goios^{1,2}*

Contents lists available at ScienceDirect

Mitochondrion

journal homepage: www.elsevier.com/locate/mito

Mitochondrion

Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA

Jana Naue ^{a,b,*}, Steffen Hörer ^a, Timo Sänger ^a, Christina Strobl ^c, Petra Hatzer-Grubwieser ^c, Walther Parson ^{c,d}, Sabine Lutz-Bonengel ^a

2. EMPOP database - Alignment free searches

Röck FSIG 2010

SAM - alignment-free search software guarantees that matches are found regardless of alignment and notation of haplotypes

Database matches and neighbors

	# differences	Example 1	Example 2
matches	0	0	0
	1	0	274
neighbors –	2	0	3,847
L	3	1	14,519

of neighbors important for understanding matches

Problem of determining neighbors in an alignment free search

16304C 16519C 263G 315.1C 456T 523del 524del 16304C 263G 315.1C 456T 523del 524del - neighbor at 1 16304C 16519C 263G 315.1C 456T - neighbor at 1

16304C 16519C 263G 315.1C 456T 523del 524del 16304C 263G 315.1C 456T 523del 524del - neighbor at 1 16304C 16519C 263G 315.1C 456T - neighbor at 1

523/4del are two individual differences, but **one** phylogenetic event (because we never observed just one nucleotide being inserted/ deleted)

CCAGC ACACACACAC CGCTGC - rCRS CCAGC ACACACAC CGCTGC CCAGC ACACAC CGCTGC CCAGC ACACACACACAC CGCTGC

Problem of telling the search engine what is a phylogenetic event if sequences are unaligned (have no positional numbers)

Solution:

"Event-based SAM"

- 1) SAM set # neighbors high enough to include all indels
- 2) Determine events based on observed length variants

(may also be relevant to MPS STRs)

Frequent events in the CR

AC-repeat between 514 and 525

"Chibcha-deletion"

6 bp deletion between 105/106 and 110/111

...

Rare events in the CR

16033+CTCTGTTCTTTCAT (14) 398+ACCAGATTTCAAAT (14) 291+ACATCATAACAAAAAA (16) 563+AACAAAGAAC...AAA (204)

Increasing the number of neighbours included in a query has a significant impact on the performance of the search engine (time)

Optimize programming code

. . .

Currently data mining for full mitogenomes for determining events in the coding region

EMPOP mtDNA database, v3/R11

Home News Introduction Contribute Your Account Terms of Use

QUERY POPULATIONS TOOLS

Query Result Details Neighbors

 Sample ID
 (none specified)

 Ranges
 16024-576

 Profile
 16304C 263G 315.1C 456T 523- 524

198 of 198 haplotypes shown

Origin					Metapopulation					Haplogroup		
filter origins					filter metapopu		filter #			filter haplog	roup	
Continent	Region	Country	Province	City		Cost		Mutations	lgnored Mutations	Rank 1 Rank 2		Publications
Europe	Southern Europe	Portugal	Central Portugal		Eurosion	0.42	2	C16519T (0.25) AC524- (0.17)	C309.1-	H5 🚯	Н5 🚯	Rocha 2012
Americo	Northern America	United States of America	Texas		Eurosion	0.42	2	C16519T (0.25) AC524- (0.17)	C309.1- C309.2-	H5 🚯	Н5 🚯	AFDIL 2012

Metapopulation		filter #			Haplogroup							
nice nicepope	Cost	- Count	Mutations	lgnored Mutations	Rank 1	Rank 2						
Eurasian	0.42	2	C16519T (0.25) AC524- (0.17)	C309.1-	Н5 🕄	Н5 🗊						
Eurasian	0.42	2	C16519T (0.25) AC524- (0.17)	C309.1- C309.2-	н5 🚯	Н5 🚺						

3. EMPOP Meetings

26th Congress of the International Society for Forensic Genetics

Title: EMPOP advanced practical course

Date: August 31, 2015

Time: 9:00 - 18:30

Workshop presenters: Catarina Xavier, Martin Bodner, Walther Parson

3. YHRD/EMPOP Meeting

Save the date Haploid Markers Meeting May 19-21 2016, Berlin 20th anniversary

EDNAP Meeting, Copenhagen, Denmark, April 28, 2015

ENFSI DNA WG STRbase Update and development

Dr. Walther Parson

assoc. Professor, Institute of Legal Medicine, Innsbruck

adj. Professor, Forensic Program, Penn State University, PA, USA

walther.parson@gmail.com

History

2001 Collaborative ENFSI DNA WG population study SGMplus 24 populations, approx. 5700 samples

- 2003 Gill et al FSI 131 (2003) 184-196
- 2004 STRbase V1 (GMI funded)

HOME CALCULATE CONTACT ABOUT

ENFSI DNA WG STR Population Database

The European Network of Forensic Science Institutes (ENFSI) has undertaken an extensive study collecting STR-data from 24 European populations (5700 profiles) using the AMPFLSTR SGM Plus system [6], which has become one of the standard STR multiplexes to be used within Europe for the purpose of constructing national DNA criminal intelligence databases. This allele proportion (frequency) database - further referred to as the 'ENFSI DNA WG STR Population Database' - can be used to calculate match probabilities of DNA profiles from cosmopolitan Caucasian populations across all Europe, regardless of their specific country of origin.

Differences in allele proportions between populations of the different countries have been quantified by estimating Fst [1], showing that the effect is small (Fst is approximately 0.001). Nevertheless, the effect cannot simply be ignored because match probabilities of DNA profiles derived from a European database will tend to be lower than those derived from an appropriate cognate population database. In order to take account of both sampling error and population sub-structuring effects, various methods can be applied including the Balding size bias correction [2], the Balding and Nichols Fst correction [3], and an upper bound of a 95% confidence interval [4], which are summarized among others in a recent publication [5].

The task of this website is to make the ENFSI DNA WG STR Population Database generally available, so that it can be used by forensic laboratories to enable the calculation of a match probability for a sample using the above mentioned adjustment factors.

Formulae

A comparison of adjustment methods to test the robustness of an STR DNA database comprised of 24 European populations

Peter Gill^{a,*}, Lindsey Foreman^b, John S. Buckleton^c, Christopher M. Triggs^d, Heather Allen^a

Actual matching probability		Balding size bias correction (1995)					
$P_m = 2p_i p_j$	Heterozygotes	$P_m = \frac{2(x_i + 2)(x_j + 2)}{(x_i + 2)}$	beterozvaotes				
$P_m = p_i^2$	Homocygotes	$(n+4)^2$	heterozygotes				
$P_m = 2p_i - p_i^2$	Single alleles	$P_m = \frac{(x_i + 2)^2}{(n+4)^2}$	homocygotes				
Balding & Nichols (1994)							
$2(\Theta + (1 - \Theta)p_i)(\Theta + (1 - \Theta)p_j)$		Confidence Intervals (NRC-Report 1996)					
$P_m = \frac{1}{(1+\Theta)(1+2\Theta)}$	Balding-Nichols heterozygotes	$Var(ln(2p_ip_j)) \approx \frac{p_i + p_j - 4p_ip_j}{2Nn_in_j}$	Confidence interval heterozygotes				
$P = \frac{(2\Theta + (1-\Theta)p_i)(3\Theta + (1-\Theta)p_i)}{(1-\Theta)p_i}$	Deldie a Niek als besternetse						
$(1+\Theta)(1+2\Theta)$	Balaing-Nichols homocygotes	$Var(ln(2p_i^2)) \approx \frac{2(1-p_i)}{Nr}$	Confidence interval homocygotes				
$p = (2\Theta + (1 - \Theta)p_i)(3\Theta + (1 - \Theta)p_i)$		Np_i					
$P_m = \frac{1}{(1+\Theta)(1+2\Theta)}$	Balding-Nichols single alleles	$Var(ln(2p_i - p_i^2)) \approx \frac{2(1 - p_i)^3}{Np_i(2 - p_i)^2}$	Confidence interval single alleles				
		$\Gamma = \sqrt{V_1 + V_2 + \dots + V_k}$					
		$Upperbound = \log^{-1}(\log_{10}(P_m)) + 1.96\Gamma$					

Query genotype added to database

Successful Monopoly 2010 Application

"Upgrading the ENFSI STRbase"

HOME/2010/ISEC/MO/4000001759

30-CE-0457625/00-76

EUROPEAN COMMISSION DIRECTORATE-GENERAL HOME AFFAIRS

Directorate A : Internal Security Unit A4 : Financial support – Internal Security

GRANT AGREEMENT FOR AN ACTION WITH MULTIPLE BENEFICIARIES

AGREEMENT NUMBER – HOME/2010/ISEC/MO/4000001759 ABAC number: 30-CE-0457625/00-76 Financial aspect: Personnel cost IT-Hardware

0 Euro 19,000 Euro

depreciation rate ENFSI DNA WG 7,499 Euro <u>3,000 Euro</u> **10,499 Euro**

Operational aspect:

Application 2010 Project start 2012 Project end 2014

Successful Monopoly 2010 Application

"Upgrading the ENFSI STRbase"

Project Activity Timeline Form (ENFSI Monopoly Programme Bid 2010)

Project Title :	Upgrading the ENFSI STR BASE																																			
Project Leader :	Ingo Bestisch											ENERI																								
Project Activity	1	2	3	MONTH (YEAR 1) MONTH (YEAR 1)								YEAR 2) 19	20	21	22	23	24	MONTH (YEAR 3)																		
Topot Found	Jän.12	Feb.12	Mär.12	Apr.12	Mai.12	Jun.12	Jul.12	Aug.12	Sep.12	Okt.12	Nov.12	Dez.12	Jän.13	Feb.13	Mär.13	Apr.13	Mai.13	Jun.13	Jul.13	Aug.13	Sep.13	Okt.13	Nov.13	Dez.13	Jän.14	Feb.14	Mär.14	Apr.14	Mai.14	Jun.14	Jul.14	Aug.14	Sep.14	Okt.14	Nov.14	Dez.14
STR loci																																		\square		\square
Collation of STR population data, review process																																				
Population genetic analysis																																				
Dissemination of data																																				
New database software																																				
Review of current web architecture and software																																				
Server infrastructure/setup																																				
Analysis & specification of requirements																																				
Database design (ERM)																																				
Development																																				
Quality Control, software testing, documentation																																				
Deployment of new software																																				

Extension of STR-Markers

Forensic Science International: Genetics 6 (2012) 819-826

European Network of Forensic Science Institutes (ENFSI): Evaluation of new commercial STR multiplexes that include the European Standard Set (ESS) of markers

L.A. Welch^{a,*}, P. Gill^{b,i,**}, C. Phillips^c, R. Ansell^d, N. Morling^e, W. Parson^f, J.U. Palo^g, I. Bastisch^h

^a Centre for Forensic Science, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G42 9TA, United Kingdom

^b Department of Forensic Genetics, Norwegian Institute of Public Health, Oslo, Norway

^c Forensic Genetics Unit, University of Santiago de Compostela, Spain

^d Swedish National Laboratory of Forensic Science, Sweden

^e Department of Forensic Medicine, University of Copenhagen, Denmark

f Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, 6020 Innsbruck, Austria

^g Laboratory of Forensic Biology, University of Helsinki, Finland

h Bundeskriminalamt, Germany

¹University of Oslo, Oslo, Norway

High quality STR genotypes

STRBASE ENFSI DNA WG STR Population Database, v2

QU	ERY	SGMplus Identifiler Powerplex 1		Y AB	оит	FREQUENC	CIES	FORMULAE	CONTACT	TERMS OF USE
Qu	iery	Powerplex 1 Powerplex 2 Fusion	8							
The	second mercia	ESSplex ESSplex SE NGM NGM-SE	51	'R loci define high quality p	d in the sp opulatior	pecifications of the El a data are available. 1	NFSI DNA Those loc	A WG. Additional loci inclu i are dimmed in the input	ided in : form.	
Mor Kit	e	ESI-16 ESX-16 ESI-17	_				✓	check/uncheck all		
FST	×	ESX-17 Globalfiler	it with cor	mma as de	cimal s	engrator	⊻	AUSTRIA BELGIUM		
	0.0	Juch					2	BOSNIA AND HERZE	GOWINA	
	D3S1358	B VWA	D16S539	CSF1PO	TPOX		√	CZECH REPUBLIC		
								FINLAND		
	Y indel	D8S1179	D21511	D18551	DYS39	1		FRANCE		
							 ✓ 	GERMANY		
								HUNGARY		
	D2S441	D195433	TH01	FGA				IRELAND		
							 ✓ 	MONTENEGRO		
							2	POLAND		
	D22S104	5 D55818	D13S317	D75820	SE33			SLOVAKIA		

STRBASE ENFSI DNA WG STR Population Database, v2

QUERY	BATCH QUERY	ABOUT	FREQUE	NCIES	FORMULAE	CONTACT	TERMS OF USE
The CSV file re as field enclos Download a se	equires <i>commas (,)</i> as delimiters ure characters. ample CSV file.	and double quotes	5 (")	💽 ch 🗌 Al	neck/uncheck all JSTRIA ELGIUM		
FST	0.01 output with com	nma as decima	l separator 🗌	BC	DSNIA AND HERZEGO	WINA	
File format	● CSV ○ GeneMapper				ENMARK NLAND		
CSV file	Datei auswählen Keine D	atei ausgewäh	lt	Sector FR	ANCE ERMANY		

Query	sample1	sample2	sample3	sample4	sample5	sample6	sample7	sample8	sample9	sample10	sample11	sample12	ß	0
						Act	ual Matching	Bal	ding Size Bias			NRC II	Upper	Bound
Origin							Probability		Correction	Balding	& Nichols FST	Confide	nce In	tervals
AUSTRIA							3.7701e-11		4.9920e-11		1.1486e-10		2.08	62e-10
BELGIUM							3.7032e-11		5.1496e-11		1.2325e-10		2.38	34e-10
CZECH REP	UBLIC						5.1497e-11		6.9368e-11		1.4980e-10		3.00	55e-10
FRANCE							1.2532e-8		1.5323e-8		2.6431e-8		5.32	260e-8
GERMANY							5.4901e-11		6.0192e-11		1.5974e-10		1.45	10e-10
HUNGARY							4.0100e-11		5.4661e-11		1.3480e-10		2.44	14e-10
SLOVAKIA							1.0727e-10		1.3608e-10		3.0290e-10		5.17	74e-10
SLOVENIA							5.9386e-9		7.4287e-9		1.3523e-8		2.74	422e-8
AUSTRIA, E SLOVAKIA,	ELGIUM, CZ SLOVENIA	ECH REPUBL	LIC, FRANCE, (GERMANY, H	UNGARY,		4.7203e-11		4.8699e-11		1.4265e-10		8.30	08e-11
Europe							4.5991e-11		4.6677e-11		1.3899e-10		6.78	821e-11
Entire Data	base						4.5991e-11		4.6677e-11		1.3899e-10		6.78	821e-11

STRBASE ENFSI DNA WG STR Population Database, v2

QUERY BATCH QUERY ABOUT FREQUENCIES FORMULAE CONTACT TERMS OF USE

Frequencies

These tables include allele frequencies and number of samples (n) from the most recent database release sorted by marker and country. This data can be downloaded as 🔂 XML file.

VWA

Allele	AUSTRIA	BELGIUM	BOSNIA AND HERZEGOWINA	CZECH REPUBLIC	DENMARK	FINLAND	FRANCE	GERMANY	GREECE	HUNGARY	IRELAND	MONTENEGRO	NORWAY	PO
	222	206	171	200	200	230	208	662	208	224	304	200	202	
11								7.5529e-4						
12									4.8077e-3					
13			1.1696e-2					2.2659e-3	2.4038e-3	2.2321e-3			2.4753e-3	
14	1.0586e-1	1.0680e-1	1.1111e-1	1.0000e-1	7.0000e-2	1.3043e-1	8.6539e-2	9.7432e-2	9.3750e-2	1.1161e-1	1.1349e-1	1.4500e-1	8.6634e-2	7.76
15	9.2342e-2	1.2136e-1	1.2573e-1	9.7500e-2	9.7500e-2	5.2174e-2	1.2740e-1	1.0347e-1	7.9327e-2	1.1384e-1	1.0197e-1	9.0000e-2	9.9010e-2	8.49
16	1.7568e-1	1.9903e-1	2.0468e-1	1.7500e-1	2.6000e-1	1.7609e-1	2.4038e-1	2.2130e-1	1.6827e-1	2.0536e-1	2.1875e-1	1.7500e-1	2.2277e-1	2.23
17	2.8604e-1	2.7185e-1	2.3977e-1	3.1250e-1	2.3000e-1	2.7174e-1	2.3317e-1	2.5453e-1	3.1731e-1	3.0134e-1	2.7138e-1	2.8750e-1	2.8960e-1	2.76
18	2.5901e-1	2.0146e-1	2.1053e-1	2.2750e-1	2.4000e-1	2.0435e-1	2.1154e-1	2.2054e-1	2.4279e-1	1.7634e-1	1.9243e-1	2.1250e-1	1.9802e-1	2.47
19	7.2072e-2	8.0097e-2	9.0643e-2	7.2500e-2	8.2500e-2	1.3696e-1	8.6539e-2	8.6103e-2	7.4519e-2	7.1429e-2	9.3750e-2	7.2500e-2	8.6634e-2	8.00
20	9.0090e-3	1.9418e-2	5.8480e-3	1.5000e-2	1.7500e-2	2.1739e-2	1.4423e-2	1.2840e-2	1.4423e-2	1.5625e-2	8.2237e-3	1.7500e-2	1.4852e-2	9.70
21					2.5000e-3	6.5217e-3		7.5529e-4	2.4038e-3	2.2321e-3				

THO1

Allele	AUSTRIA	BELGIUM	BOSNIA AND HERZEGOWINA	CZECH REPUBLIC	DENMARK	FINLAND	FRANCE	GERMANY	GREECE	HUNGARY	IRELAND	MONTENEGRO	NORWAY	POLA
	222	206	171	200	200	230	208	662	208	224	304	200	202	:
5	2.2522e-3	2.4272e-3						1.5106e-3		2.2321e-3			2.4753e-3	

Future developments

Further extension of markers and populations

EMPOP example Quality control of datasets by database curators Provision of (shuffled) genotypes via the database

Current discussions in EDNAP, ENFSI and with FSIG

Adaptation of formulae

Currently based on ENFSI study and paper 2003 More/alternative approaches to be included Collaboration with research groups

Layout may be subject to changes to easy readability

Future developments

Funding application Monopoly 2014

International application (AT, CZ, DE, ES, FR, NL, NO, PL, SE) New query engine (string-based) to meet NGS formats Extension of STR maskers and populations Update and provision of online quality control tools User-friendly access from other platforms (mobile devices) Link to other software packages (LRmix, ...)

Proposal currently on waiting list (Apr 2015)

New name to avoid confusion with NIST STRbase

- 1. To achieve a steady, effective pace
- 2. To attain a maximum level of competence

EUROFORGEN-NoE Update: EDNAP Meeting Copenhagen 2015

Peter M. Schneider

Institute of Legal Medicine University of Cologne (Germany)

- Expansion of the EUROFORGEN Consortium
 - 3 new projects with 4 partners
- Study on DNA profiling success rates
 - Based on actual casework results
- The Virtual Institute
 - and how to get there
- Dissemination and Training news
 - and other sources of support

These 3 projects and 4 partners have been accepted:

• EP4: Dr. C. Haas, Zürich

"Association of a Body Fluid with a DNA Profile by Targeted RNA and DNA Deep Sequencing"

- EP5: Dr. M. Vennemann, Münster; Dr. L. Dennany, Glasgow "Development of innovative electrochemical biosensor technologies for the detection of tissue specific DNA methylation"
- EP6: Prof. M. Kayser, Rotterdam
 "Forensic DNA phenotyping of hair structure for investigative purposes"

- To determine the relative chance of obtaining a DNA profile per sample category using data of six EUROFORGEN laboratories.
- Data were compiled by the NFI report to be published
- A total of 27,401 casework samples analysed after December 2012 in six forensic laboratories is used.
- 44 categories of typical crime scene samples, each sample category containing data from 16 to 7,925 samples.
- Blood stains, cigarette ends and the collar of a coat are more useful sample types than the handle of a knife, a plastic bag or 'plugs and cables'.
- 32% of analysed samples are contact traces, and about 20% produce informative partial/full profiles

Average total DNA yield in ng of six laboratories – log10 scale

DNA profiling success rates of typical crime scene samples

EUROFOR

ence

DNA profiling success rates of typical crime scene samples including mixture information

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

EUROFOR

DNA yields based on sample types (I)

Expected results	Average yield (ng)	Sample category	Details regarding sample category	% Samples in dataset	% mixtures
	1969,8	Muscles	Usually obtained from unidentified bodies	0,4%	0%
	518,0	Bones	Usually obtained from unidentified bodies	0,2%	0%
	515,3	Semen	Intimate swabs and stains	1,4%	24%
	77,9	Saliva other	Spit, toothpicks, apple cores, drinking straws, etc.	1,6%	4%
	53,8	Blood	All stain sizes	28,9%	3%
	42,8	Chewing gum		0,4%	32%
	34,7	Teeth		0,1%	0%
	32,9	Toothbrush (head)		0,1%	27%
	30,1	Clothing other/all	Data originating from laboratories not using subcategories	5,2%	12%
e	24,4	Cigarette end	Ends of cigarette, sigar end smoked joints	22,2%	6%
rofi	17,8	Upper body clothing	Blouse, t-shirts, sweaters , etc.	0,9%	27%
d IIn	17,0	Balaclava	Can contain both saliva and epithelial cells	0,4%	36%
Ē	15,4	Drinking item/Eating utensil	Plastic bottles, glasses, coffee cups, cans, spoons, etc.	3,5%	9%
	14,7	Gloves (all sorts)	Data originating from laboratories not using subcategories	0,4%	51%
	14,7	Facial protecion	Mouthcaps, safety glasses, facial masks, etc.	0,4%	13%
	14,6	Hair root (pulled)		1,2%	0%
	9,0	Gloves (textile)	Non disposible multiple wear gloves, etc.	3,6%	3%
	8,4	Headwear	Caps, hats, helmets, etc.	1,7%	14%
	7,9	Coat (collar)		1,0%	7%
	6,5	Contact trace on smooth surface		0,3%	36%
	5,3	Grip traces other	Grabbed clothing , flashlight, etc.	0,2%	24%
	5,2	Tiewrap		0,2%	15%

DNA yields based on sample types (II)

Expected results	Average yield (ng)	Sample category	Details regarding sample category	% Samples in dataset	% mixtures
	4,9	Таре		2,1%	12%
	3,5	Car door & Steering wheel	Data originating from laboratories not using subcategories	3,6%	3%
ile	3,4	Personal Item	Watches, (sun)glasses, jewelery, etc.	0,6%	11%
prof	3,3	Skin flakes	Epithelial cells, for instance dandruff	0,5%	0%
ull 1	3,1	Feaces		0,1%	0%
al/f	3,0	Bag (textile)	Bags designed for long(er)term use	0,5%	35%
arti	2,7	Contact trace in manual strangulation	DNA collected from the perpetrator of the skin of the victim	0,1%	0%
ve p	2,7	Knife (handle)		0,3%	40%
nati	2,0	Bag (plastic)	Largely disposable bags, single use	0,4%	46%
form	2,0	Tools	Screwdrivers, crowbars, hammers, etc.	4,8%	3%
Ē	1,9	Gloves (non-textile)	Disposable gloves for example worn in drugslabs	0,4%	48%
	1,4	Steering wheel (car)		0,2%	15%
	1,4	Mobile phone		0,2%	11%
y ile	1,2	Contact trace on rough surface	Stones, bricks, etc.	1,0%	7%
sibly	1,2	Lid of bottle	Lids from drinking bottles or items like jerrycans	0,3%	7%
pos ve p	1,0	Touch traces other		1,4%	7%
ial, nati	1,0	Door bell /door/window		5,6%	1%
Part forr	0,9	Firearms		1,9%	6%
Ē.	0,7	Handle (bike/scooter)		0,1%	13%
al e, e ati	0,6	Plugs and cables	Battery chargers, electric tools, etc.	1,1%	3%
arti, rofil o bi orm ve	0,3	Car door handle (CT)		0,3%	4%
P ur t inf	0,1	Bullets		0,2%	9%

The Virtual Institute of Research for Forensic Genetics

About EUROFORGEN-NoE

The Group

The Project

Networking Activities

Training

News

Dissemination Activities

Contact

EUROFORGEN partner area

EUROFORGEN members area

EUROFORGEN course material

EUROFORGEN publications

Recommended open software

Train-the-trainers section

Virtual Institute for Forensic Genetic Research in Europe

Our website will provide a framework for exchange of expertise and data, not only between consortium members but with any other individuals or institutions working in forensic genetics in Europe. It will bring together the knowledge and resources centered on forensic genetics tools and education at a European level, and allow researchers, forensic practitioners, stakeholders and legal experts to interact with the network. Currently, the following resources are available:

- EUROFORGEN Course Material>: Up-to-date lectures and presentations on major topics of forensic genetics derived from the "Train the Trainers" workshop series.
- EUROFORGEN publications>: Original publications from EUROFORGEN Consortium members available for downloading.
- Recommended Open Software>: a list with open software tools is displayed together with a brief description on their applications.
- Train-the-Trainers Section>: it contains the "TTT Blog", a discussion forum to post comments and questions related to training issues, to get directly into contact with the EUROFORGEN trainer team.

Please use the blog for your feedback, and your suggestions for improvement. The contents will be regularly updated and expanded.

Your EUROFORGEN-NoE team.

Logout Search Contact Sitemap Imprint

1.40

search

GO

Quicklinks

You can apply for + short term fellowships.

The European landscape in forensic genetics: + Geographical display and contact data

The winners are found! The EUROFORGEN competitive call review led to 3 proposals with highest score.

Newsletter (4/2014)

Dowload here

Consortium

- Dedicated "for members only" area of website
 - Can only accessed after individual registration, and obtaining a user name and password
 - All colleagues working in institutions that have submitted their contact data by submitting a questionnaire in the initial inquiry will be admitted
 - Please do not hesitate to inquire if you are not sure about the participation of your lab!

The Virtual Institute of Research for Forensic Genetics

L

Home Networking Activities European Virtual Institute of Research in Forensic Genetics

About EUROFORGEN-NoE

The Group

The Project

Networking Activities

European landscape in forensic genetics

EUROFORGEN Network of Excellence

Directory of Forensic Genetic Research Laboratories in Europe

European Virtual Institute of Research in Forensic Genetics

Training

News

Dissemination Activities

Contact

Εl

SEVENTH FRAMEWO

European Virtual Institute of Research in Forensic Genetics - access query

You are interested in becoming a member of the European Virtual Institute of Research in Forensic Genetics?

If you are a scientist working at a forensic genetics laboratory, or a professional working in an institution of the justice system, you are invited to join the Virtual Institute. Please see our Newsletter 3/2014 for further details.

Please enter your personal contact data, and the data of your institution below. We will verify your request and come back to you in the following days.

One requirement to get access to the EUROFORGEN-NoE Virtual Institute of Research in Forensic Genetics is the participation of your institution by submitting the EUROFORGEN-NoE **D** guestionnaire.

Your EUROFORGEN-NoE team.

- Privileged access to new content:
 - Course Material: Up-to-date lectures and presentations on major topics of forensic genetics derived from the "Train the Trainers" workshop series.
 - Publications: Original publications (PDF) from Consortium members available for downloading.
 - Open Software: a list with open source / accessible software tools is displayed together with a brief description on their applications.
 - Train-the-Trainers Section: a discussion forum to post comments and questions related to training issues, to get directly into contact with the EUROFORGEN trainer team.

- Ethical, Social and Policy Aspects of Forensic Genetics: A Systematic Review
 - on history of forensic genetics, situates current research in this field within the broader research and innovation agenda of the EU
- Public perspectives on established and emerging forensic genetics technologies in Europe: A preliminary report
 - insights into some discussions around public perspectives on forensic genetic technologies, as well as an introduction to the diverse range of organized public actors interested in forensic genetics
- A comparative audit of legislative frameworks within the European Union for the collection, retention and use of forensic DNA profiles
 - a number of countries have started to amend and revise existing laws in most cases to facilitate the use of DNA data and the database storage of DNA profiles from suspects and convicted offenders
 - Will be published soon!

Consortium publications

EUROFOR

Three 'Train the Trainers' workshops in Copenhagen

20-22 participants from all European countries

Subject: Statistical methods in forensic genetics

1st Workshop 7-10 October 2013 2nd Workshop 20-23 May 2014 3rd Workshop 20-23 April 2015

Organized by: Niels Morling

Teachers: Thore Egeland (team leader)

Guro Dørum, Oskar Hansson, Daniel Kling

Pre-Congress Workshops at the next ISFG Congress in Kraków 2015 will be supported by EUROFORGEN

• First Call 2013

- 14 fellowships awarded to 13 colleagues from 9 countries
- Details on website

• Second Call 2014-2015

- 20 new fellowships open
 - Laboratory visits for 3-5 days
 - Active participation in workshops related to EFG aims
 - Other research/training activities related to scope of WPs 2-5
- Application details on the website
- Travel support up to EUR 500

... and finally announcing:

- International dissemination conference "DNA in Forensics 2016"
 - Topics
 - Integrated presentation of the network's activities
 - Covering results from all work packages
 - Dissemination of the results addressing the relevant stakeholders, end users (police and security agencies, policymakers and to the wider public)
 - A session on ethical, legal and social issues in forensic genetics

Organization

- To be organized with entire consortium
- Open to the public
- Accepting contributions from the scientific community
- Details of the conference will be widely announced in order to ensure the attendance of key agencies and journalists across Europe

EUROFOI Network of Joine	RGEN A Share Notifications
EUROFORGEN - European Forensi Members Events Photos	Files Search this group
🖉 Write Post 🛛 🖸 Add Photo / Video 🛛 🔄 Ask Question	ABOUT 193 members
	🚱 Public Group
vvnte sometning	The EUROFORGEN-NoE proposal aims to
CENT ACTIVITY	creation of a European Virtual Centre of
	Forensic Genetic Research. It is funded by the
Peter Schneider	Forensic genetics is a highly innovative field of
Today is the 10 years anningsany of the Conservable Draiset	applied science with a strong impact on the security of citizens. However, the genetic
congratulations for this impressive initiative!	methods to identify offenders as well as the creation of national DNA databases have
	caused concerns to the possible violation of
,1	privacy rights. Furthermore, studies to assess the societal dimension of security following the
	implementation of even more intrusive methods
	visible characteristics are highly relevant for
1	their public acceptance. The network includes some of the leading
K. Comment	groups in European forensic genetic research.
	collaborations, as well as establishing new
	interactions in the field of security, as all key players are addressed: scientists
	stakeholders, end-users, educational centres
	and scientific societies. Only if a long-term collaborative network can be established it will
The Genographic Project by National Geographic -	become possible to connect all scientific
Human Migration, Population Genetics	and to initiate a sustained effort covering all
Led by National Geographic Explorer-in-Residence Dr. Spencer Wells, the	aspects of research. These efforts have to be
Genographic Project uses advanced DNA analysis to better understand human	most innovative ideas to meet the challenges

Please do not forget to join our Facebook group! ... already 194 members!

RE

Thank you very much for your attention!

EuroForMix

A user-friendly software for evaluating STR/SNP profiles using peak height information

- A Graphical User Interface which implements and extends the continuous model from Cowell et.al (2015).
- Parameters for mixture proportion, peak height distribution, stutter proportion and degradation are automatically taken into account.
- No need for calibration, but prior information can be specified.

 Weight of evidence (WoE) of an obtained crime sample now uses peak height information!
 DNA stain with multiple contributors

Features

- The continuous model in EuroForMix supports:
 - Multiple contributors in hypothesis
 - Can condition on any number of reference profiles
 - Can specify any number of unknowns (practical limit is 4)
 - Replicated samples
 - No need for making a consensus sample
 - Stutters
 - Allele drop-out
 - Allele drop-in with a peak height model
 - Coancestry effect (Fst-correction)
 - Degradation of peak heights over fragment length

EUROFORGEN Network of Excellence

Deconvolution:

The continuous model

To obtain P(E|H), the probability of observed sample E given hypothesis H, an inference approach must be applied

- EuroForMix supports two approaches:

Approach 1) Maximum likelihood estimation P(E|H) estimated with $\max_{\theta} p(E|H,\theta)$

Approach 2) Bayesian (integrates out model parameters) P(E|H) estimated with $\int_{\theta} p(E|H,\theta)p(\theta)d\theta$

The GUI: Import

-Step 1) Im	port and select	Population fre	quencies			
1) Select (with fre	directory quency files)	2) Import fro (with freque	om directory ncy files)			
Select kit		Select popula	ation:	View frequer	icies	
ESX17	•	Norway	•			
Import e vid1 View evi	vidence Imp Vie dence Vie	port reference P4 w references	Import da	tabase		

The GUI: View data

The GUI: Specify the model

F	requenc	ies Optim	ization	MCMC	Int	egration	Decor	nvolut	ion	Databa	ise search	n Qu	ial LR	
nera	te data	Import data	Mode	l specifica	tion	MLE fit	Decon	volutio	on D	Database	search	Qual. I	LR	
M	lodel sp	ecification												
	Contrik	outor(s) und	er Hp:—			-D	ata sele	ction						
						L	oci:	evid1	P4					
	#unkn	owns (Hp):	1			0	3S1358	V	1		Show se	elected	l data	
	Contrik	outor(s) und	er Hd:			Т	H01	V	v		-Evider	ice(s)		
	D 4					C	21511	V	V		√ evi	d1		
	P4	(110)	-			C	18551	V	1				1	
	#unkn	owns (Ha):	2			C	1051248	V	1		Plot	EPG	ļ	
	Model	Parameters				C	1S1656	V	1					
	Detecti	on threshold	+ 150			C	2S1338	V	1		Calcula	tions		
	fst-cor	rection:	0	-1		C	165539	V	1		Conti		IP	
	ist con	CCHOIL				C	2251045	V	1		(Maxi	mum l	Likelih	ood based)
	Advand	ed Paramet	ers			v	WA	V	V					
	▼ 0-a	ssignation				C	851179	V	V		Conti	nuous	LR	
	Stutter	proportion	(xi):			F	GA	V	1		(Integ	rated l	Likelin	ood based)
	Probab	ility of drop	-in: 0		- 1	C	25441	V	1		Qualit	ative L	R	1
	Drop-ii	n peak heigh	nt o		- 1	C	125391	V	1		(semi-	conti	nuous)	
	hyperp	param (lamb	da):			C	195433	V	V					
	Prior d function	ensity of xi: on(x)=	db	eta(x,1,1)		S	E33	V	V					
	Degrad	lation:	۲	YES ON	0									

The GUI: Maximum Likelihood estimates

Using 3 random start points:

- Uses 4 seconds!

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

The GUI: Integrated Likelihood (Bayesian)

Using relative error 0.01:

Uses 3:45min receiving log10= 6.981 [6.972 , 6.99]

Using relative error 0.1:

Uses 0:32min receiving log10= 6.958 [6.874 , 7.042]

Distribution of LR over posterior space of parameters

log10 LR

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

EUROFOR

ence

• Used to investigate that the specified model is not overfitting

EUROFORGEN-NoE is funded by the European Commission within the 7th Framework Programme

EUROFOR Network of Exc

The GUI: Deconvolution

7% E	uroFor	Mix v1																	
File	Freq	uencies	Optimiza	ation M	ICMC I	ntegratior	n Deconv	olution	Databa	se search	Qual L	R							
Gen	erate o	data Imp	ort data	Model sp	ecificatio	on MLE fr	Deconvo	olution	Database	search Q	ual. LR								
Γ	rank	D201250	TH01 a2	D21511	D19551	D105124	D151656	D25122	016552	D225104	101/0 a	D951170	EGA a2	D25441	D12C201	D105422	SE32 m2	portorior	
		15/16	0.2/0.2	021311	15.07	12/15	12/17.2	10/22	11/12	15/10	14/17	14/15	21 (22	10/14	10 2/22	12/15/2	3E35_92	posterior	
	1	15/10	9.3/9.3	21/29	15/17	13/15	12/17.3	19/23	11/12	15/10	14/17	14/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.929342065414233	
	2	15/16	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	15/16	14/1/	14/15	22/22	10/14	18.3/22	13/15.2	30.2/33.2	0.012810/344949412	
	3	15/16	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	15/16	14/17	14/15	21/99	10/14	18.3/22	13/15.2	30.2/33.2	0.0124096304469715	
	4	15/16	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	15/16	14/17	14/15	21/22	10/14	18.3/22	14/15.2	30.2/33.2	0.00784080344508265	
	5	15/16	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	16/16	14/17	14/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.00741835164656859	
	6	15/16	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	15/16	14/17	14/15	21/21	10/14	18.3/22	13/15.2	30.2/33.2	0.00595183876119175	
	7	15/16	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	15/16	14/17	14/15	22/99	10/14	18.3/22	13/15.2	30.2/33.2	0.00553505815273729	
	8	15/16	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	12/12	15/16	14/17	14/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.00536379120531789	=
	9	15/16	9.3/9.3	27/29	15/17	13/15	12/17.3	20/23	11/12	15/16	14/17	14/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.00442000926011209	
	10	15/16	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	15/16	14/17	15/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.0013482060240806	
	11	15/16	6/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	15/16	14/17	14/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.00122981029737823	
	12	15/16	7/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	15/16	14/17	14/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.000820093065767984	
	13	15/15	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	15/16	14/17	14/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.000658253279872308	
	14	15/16	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	10/12	15/16	14/17	14/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.00064649185565427	
	15	16/16	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	15/16	14/17	14/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.000537271587811873	
	16	15/16	9.3/9.3	27/29	15/17	15/15	12/17.3	19/23	11/12	15/16	14/17	14/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.000397394223548685	
	17	15/16	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	15/16	14/17	13/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.000263702397508635	
	18	15/16	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	15/16	14/14	14/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.000213003335229593	
	19	15/16	9.3/9.3	27/29	15/17	13/15	12/17.3	19/23	11/12	15/16	14/15	14/15	21/22	10/14	18.3/22	13/15.2	30.2/33.2	0.000195828364561315	-

Save table

- EuroForMix is open-source and freely available through the R-package euroformix which is downloadable from R-forge.
- Homepage:
 - www.euroformix.com
 - Here is tutorial, manual and a vignette which explains all technical details.

EFM

Model specification

Peak height drop-in distribution with threshold 150

Matching allele count method supported (as an exploratory tool)

Random match probability having number of allele matches>=k

k number of allele matches

Quality indicators

The **purpose** of the MCMC simulation is to use it as an **exploratory tool** to show:

That the optimizer has found the global maximum.

The shape of the posterior distribution of the parameters.

Distribution of the LR

Distribution of LR over posterior space of parameters

Database search

7 EuroForMix v1	
File Frequencies Optimization MCMC Integ	gration Deconvolution Database search
Qual LR	
Generate data Import data Model specification	ALE fit Deconvolution Database search Qual. LR
Model specification	
evidence(s)	
Contributor(s) under Hp: (DB-reference already included)	
#unknowns (Hp): 1	
-Contributor(s) under Hd:	Data selection
=unknowns (Hd): 2	D3S1358 🔽
Continuous Model Parameters	VWA 🔽
Probability of Dropin: 0 fst-correction: 0	D165539 🗹 D2S1338 🗸
Qualitative Model Parameters	D8S1179 V D21S11 V
Probability of Dropin: 0.05	D18S51 🔽
fst-correction: 0.02	D19S433 🔽
Advanced Parameters	FGA 🗹
Q-assignation	
Stutter ratio (xi): 0	
Dropin peak height hyperparam (lambda):	
-Database(s) to search - databaseESX17	
Show selected data Plot EPG	Calculations Continuous LR (Maximum Likelihood based) Continuous LR (Integrated Likelihood based) Qualitative LR (semi-continuous)

Database search

Sort table:				
○ contLR	s			
Referencename	contl R	quall R	MAC	nlocs
00-IP00059-14 20142342311 NO-32459	0	0.0701780831825805	17	10
00-JP000J3-14_20142342311_100-324J	0	0.0108803211364561	15	10
00-IP00025-14 20142342311 NO-32425	0	0.00301914772329738	15	10
00-JP00066-14 20142342311 NO-32466	0	0.00288931410515813	15	10
00-JP00056-14 20142342311 NO-32456	0	0.000384457117711553	13	10
00-JP00016-14 20142342311 NO-32416	0	0.000262888561019409	15	10
00-JP00012-14_20142342311_NO-32412	0.00218226816989195	6.46136171288449e-06	12	10
00-JP00023-14_20142342311_NO-32423	0	5.54742328627009e-06	13	10
00-JP00054-14_20142342311_NO-32454	0	1.63511624777566e-06	12	10
00-JP00057-14_20142342311_NO-32457	0	6.19659449652904e-07	14	10
00-JP00036-14_20142342311_NO-32436	0	5.77669808155908e-07	14	10
00-JP00031-14_20142342311_NO-32431	0	1.36809287284205e-07	12	10
00-JP00042-14_20142342311_NO-32442	0	7.63830975309722e-08	13	10
00-JP00043-14_20142342311_NO-32443	0	7.63473407173389e-08	12	10
00-JP00045-14_20142342311_NO-32445	0	3.82116544916808e-08	11	10
00-JP00033-14_20142342311_NO-32433	0	2.5590512710862e-08	13	10
00-JP00035-14_20142342311_NO-32435	0	1.73873435962397e-08	12	10
00-JP00067-14_20142342311_NO-32467	0	6.60980707007234e-09	12	10
00-JP00024-14_20142342311_NO-32424	0	4.92470446405633e-09	13	10
00-JP00075-14_20142342311_NO-32475	0	4.37109114304118e-09	11	10
00-JP00040-14_20142342311_NO-32440	0	4.24011046972718e-09	12	10
00-JP00073-14_20142342311_NO-32473	0	3.41918898389529e-09	12	10
00-JP00010-14_20142342311_NO-32410	0	2.5565113447415e-09	12	10
00 1000054 44 004 400 40044 NIO 00454	0	2 20101145544255 - 00	12	10

Qualitative LR (LRmix)

7⁄4 EuroForMix v1
File Frequencies Optimization MCMC Integration Deconvolution Database search Qual LR
Generate data Import data Model specification MLE fit Deconvolution Database search Qual. LR
Analysis of qualitative LR Preanalysis Sensitivity Conservative LR Calculation Dropout prob: 0.05 Calculate LR Save table Postanalysis Select reference to replace with non-contributor: Suspect Sample non-contributors

Lrmix output

7∕6 EuroForMix v1		- • •
File Frequencies Optimization MCMC	Integration Deconvolution	Database search Qual LR
Generate data Import data Model specificat	ion MLE fit Deconvolution D	atabase search Qual. LR
	-Weight-of-Evidence	e
Analysis of qualitative LR	Loci	
Preanalysis Sensitivity Conservative LR Calculation Dropout prob: 0.0096 Calculate LR Save table Postanalysis Select reference to replace with non-contributor:	Locus LR D3S1358 2.285 VWA 5.143 D16S539 7.839 D2S1338 2.597 D8S1179 2.664 D21S11 0.06179 D18S51 0.000668 D19S433 0.7085 TH01 2.899 FGA 0.0511	log10LR 0.3593 0.7117 0.8943 0.4145 0.4256 -1.209 5 -3.175 -0.1497 0.4623 -1.292
Sample non-contributors	Joint LR 0.002763 log10LR -2.559	

Non-contributor tests supported for all modules

Non-contributor test for Suspect with 1e+06 samples.

Simulation

7% E	uroForMix v1						
File	Frequencies	Optimization	MCMC Int	tegration	Deconvolu	ition Dat	abase search Qual LR
Ger	nerate data Imp	ort data Model	specification	MLE fit	Deconvolut	ion Datab	ase search Qual. LR
	Parameters						
	mu (amount o	f dna)	1000]			
	sigma (coeffec	ient of variation)	0.15]			
	xi (stutter ratio)	0.1				
	mx1 (mix-prop	ortion contr. 1)	0.667				
	mx2 (mix-prop	ortion contr. 2)	0.333				
	Edit						
	Loci	Evidence (allele	,heights)		Referenc	e(s)	
	D3S1358	15,16,18	603,711,28	32	16,15	16,18	
	VWA	14,17,18	646,875,83	35	14,17	18,18	
	D16S539	10,11,12,9	315,570,67	5,215	11,12	10,9	
	D2S1338	19,20,23	768,406,87	7	23,19	23,20	
	D8S1179	13,14,15	432,934,61	.6	14,15	14,13	
	D21S11	27,29,30,32.2	539,707,36	57,269	29,27	32.2,30	
	D18S51	14,15,17	547,789,47	75	17,15	15,14	
	D19S433	13,15,15.2	805,318,57	7	13,15.2	15,13	
	TH01	6,8.3,9,9.3	237,156,24	7,1402	9.3,9.3	9,6	
	FGA	21,22,25	983,814,37	9	22,21	25,21	
	Import/Export	profile					
	Store evidenc	Store ref1	Store re	f2			
	Load evidenc	e Load ref1	Load ref	f2			
	Further action						
	Contract						
	Generate agai	in					
	Plot EPG						

Generates alleles using the population frequencies and simulates peak heights for a specified hypothesis (see Figure 32) using the continuous model. The generation may simulate alleledropout, drop-in (with a peak height model) and (n-1)-stutter. Allele-dropout is indirectly simulated if the peak height is below the defined threshold.

Home page

🗲 🔿 😋 🗋 www.euroformix.com		ර සි 🔳
Apps 🚺 Customize Links 👫 Free Hotmail 🐄 Windows Marketplace 💐 Windows	Media 🦓 Windows 🚦 🗋 10 👧 Google Scholar	Cther bookmark
	EuroForMix An open-source software for quantitative DNA interpretation	
	EuroForMix is a graphical layer for the functions in the R-package <i>euroformix</i> .	
	About the R-package euroformix: euroformix contains procedures for maximization and integration of the likelihood function of a gamma-continuous model for single (or replicated) STR/SNP DNA data for a general specifications of hypotheses. Sensitivity analysis of unknown parameters can be carried out using Markov Chain Monte Carlo method. It also contains procedures for deconvolution and database search conditioned on the maximum likelihood approach which may take care of stutters, allele drop-out and allele drop-in.	
	The R-package euroformix is:	
	 Entirely open source and is independent of any external software for running. Based on the continuous model presented in the article by Cowell et.al (2015). Entirely programmed by Øyvind Bleka Validated with the R-software DNAmixtures (see Validation). 	
	Installation and getting started:	
	 Install and run R (>=3.1.0) in Windows, Linux or MAC (http://cran.r-project.org/). Note that this is only tested on a Windows 7 OS (at current moment). Copy and run these commands in the R-software to install the required packages install.packages('gWidgetstcltk') install.packages('forensim') install.packages('cubature') install.packages('euroformix',repos='http://R-Forge.R-project.org') 	
	3. Run these commands in the R-software to start the GUI:	
	 library(euroformix) efm() 	
	The tutorial and manual for EuroForMix is found below.	
	Files:	

Research and Validation Efforts at the FBI Laboratory

EDNAP April 2015

Jodi Irwin FBI Laboratory

Recent Reorganization of FBI DNA Units

- Former:
 - Nuclear DNA Unit
 - Mitochondrial DNA Unit
- Now:
 - DNA Caseworking Unit
 - DNA Support Unit
 - QC
 - Training
 - Validation
 - Research

Direct Support of Operational Efforts

- Standardization of workflows for nuclear DNA and mitochondrial DNA testing
 - Standardized calcified tissue extraction
 - New shed hair extraction protocol that yields 2-10X more DNA than previous method
- Validation of GlobalFiler and Fusion direct amplification kits for offender samples
- Performing validation of STRmix, using Identifiler Plus data from the 3130XL

Direct Support of Operational Efforts

- Streamlining and Improving mtDNA Casework
 - Automation
 - Extraction, qPCR, amplification, sequencing
 - We hope to do this for both questioned and known specimens
 - Starting with knowns
 - Once implemented, the changes are expected to save over \$500,000/annually in mtDNA casework

Direct Support of Operational Efforts

- Development of reference population databases with expanded loci
 - 2011 samples typed with GlobalFiler and Fusion
 - New markers beyond the CODIS 13 will be required for NDIS as of January 2017

Population	Ν
Caucasian	202
African American	209
SW "Hispanic"	209
SE "Hispanic"	263
Filipino	91
Chamorro	95

Population	Ν
Navajo	235
Apache	196
Bahamian	159
Jamaican	177
Trinidadian	78
Alaska Native American	96

NGS Research

- Our focus, currently, is in developing NGS to *expand* institutional capabilities.
 - mtDNA mtGenome recovery
 - mtDNA mixtures aren't routinely interpreted now.
 Can we start teasing out contributors with NGS?
 - Can NGS help with our most difficult specimens?
 - When there's no hit for a crime scene profile in the CODIS database, can we can glean any other information from the sample? Phenotype? Ancestry?

NGS mtDNA data development

- A number of methods already published and tested for forensic application, not to mention numerous publications in other disciplines
- Technically, pretty low hanging fruit
 - Molecular biology largely in place
 - Paradigm and data type (sequence data) already in place and well-established in forensics
 - Data analysis and existing bioinformatic packages and pipelines really need only minor tweaks for basic casework functionality
- Development of detailed interpretation guidelines still required

Value of Complete mtGenome Data

U.S. Caucasians (n=263)

	HV1/HV2	CR	mtG
Unique Haplotypes	170 (65%)	196 (75%)	259 (>98%)

U.S. Hispanics (n=155)

	HV1/HV2	CR	mtG
Unique Haplotypes	121 (78%)	124 (80%)	146 (94%)

African Americans (n=170)

	HV1/HV2	CR	mtG
Unique Haplotypes	119 (71%)	126 (75%)	168 (99%)

Just et al. 2015, FSI:Genetics

mtGenome PCR Strategies

8 amplicons per mtGenome

2 amplicons per mtGenome

NGS Concordance Study

- Collaboration with the Armed Forces DNA Identification Laboratory
- 90 high-quality population samples MP sequenced for the complete mtGenome
 - Sanger data available for comparison

Replicate Data Analysis Performed in Both Laboratories

NGS Concordance Study

- Average read coverage ~2000X, 90 samples
- 99.9994% Concordance between Sanger and NGS
- 19 discordant sites out of ~3,000,000 positions analyzed
 - 6 point heteroplasmies not detected by Sanger
 - 13 due to misalignment or low read coverage
- In addition, 2 mixtures detected (~1:20 and ~1:50)

Lower Limits of Read Coverage

- What practical effect on data reliability does low read coverage have?
 - Compared coverage between libraries
 - Compared noise at 3195 variant positions

Site	Library 1 Cov	Library 1 Noise	Library 2 Cov	Library 2 Noise	Coverage Diff	Noise Level Diff
146	1033	0.2%	51	2%	95%	1.8%

- Despite large differences in coverage, the level of background noise is not terribly different
- In 99.5% of the cases (3148), the difference in noise level between low and high coverage sample was <1%
- In 99.5% of the cases, the noise was less than 3% of the true signal

mtDNA Summary

 Straightforward and robust targeted amplification protocols for entire mtGenome development from <u>high-quality samples</u>

Forensic Science Volume 12, S	ce International: Genetics September 2014, Pages 30–37	ELS	EVIER	Contents lists available at SciVerse ScienceDirect Forensic Science International: Genetics journal homepage: www.elsevier.com/locate/fsig	
Massively parallel pyrosequencing of the mitochondrial genome with the 454 methodology in forensic genetics Martin Mikkelsen , Rune Frank-Hansen, Anders J. Hansen ¹ , Niels Morling ¹ .			valuation of next generation mtGenome sequencing using the Ion ∴orrent Personal Genome Machine (PGM) [*] Valther Parson ^{a,b,*} , Christina Strobl ^a , Gabriela Huber ^a , Bettina Zimmermann ^a , ibylle M. Gomes ^c , Luis Souto ^c , Liane Fendt ^{a,d} , Rhena Delport ^e , Reina Langit ^f , haron Wootton ^f , Robert Lagacé ^f , Jodi Irwin ^g		
Foren	Isic Science International: Genetics Volume 13, November 2014, Pages 20-29	GENETICS	ELSEVIER	Forensic Science International: Genetics Volume 12, September 2014, Pages 128–135	
Forensic Population Genetics – Original Research Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq Jennifer A. McElhoe [*] • • • • • • • • • • • • • • • • • • •		High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq Jonathan L. King ^{s, 1} • • • , Bobby L. LaRue ^{s, 1} , Nicole M. Novroski ^s , Monika Stoljarova ^s , Seung Bum Seo ^s , Xiangpei Zeng ^s , David H. Warshauer ^s , Carey P. Davis ^s , Walther Parson ^{b, c} , Antti Sajantila ^{s, d} , Bruce Budowle ^{s, c}			

Development of mtGenomes from challenging samples

- Recovery of large fragments unlikely in most mtDNA cases
- But, to cover the entire mtGenome in ~300bp amplicons would require 50 or 60 amplicons
- Can we efficiently, and cost-effectively, develop mtGenome profiles from challenging samples?

mtGenome PCR Strategy from shed hair

8 amplicons per mtGenome

mtGenome MPS of challenging samples

Entire mtGenomes from Single Hairs

Target Enrichment

Genomic Sequencing – Hair Sample

- Of the reads that mapped to the human genome:
 - mtDNA reads 0.07% and 0.12%
 - complete mtGenome coverage up to 139 reads

nucDNA reads – 99.93% and 99.88%

Entire mtGenomes from Single Hairs

mtDNA Summary

 Protocols for entire mtGenome development from <u>low-quality samples</u>

Massively parallel sequencing of complete mitochondrial genomes from hair shaft samples, in press, FSI:Genetics

Walther Parson, Gabriela Huber, Lilliana Moreno, Maria-Bernadette Madel, Michael D. Brandhagen, Simone Nagl, Catarina Xavier, Mayra Eduardoff, Thomas C. Callaghan, Jodi A. Irwin

mtDNA Summary

- When compared to mtDNA data currently generated via Sanger sequencing
 - 16X the data for known samples
 - 25X the data for questioned samples
 - Rough calculations suggest that we could obtain entire mtGenomes with NGS for half the current cost of HVI/HVII or CR

Promega PowerSeq

- All of the standard markers currently used in forensic casework – just in a single NGS assay
- Triplex auSTRs, YSTRs and mtDNA control region
 - 24 autosomal STRs, 150-300bp amplicons
 - 21 Y-STRs, 150-300bp amplicons
 - mtDNA control region, 150-250bp amplicons
- Duplex auSTRs and mtDNA control region
- Multiplexing 12 samples results in:
 - STR allele coverage between 3,000-10,000 reads
 - mtDNA control region coverage avg: 65,000

Illumina ForenSeq Beta Kit

- 63 STRs
 - 29 autosomal STRs, along with 9 X and 25 Y STRs
- In addition:
 - 95 identity-informative SNPs
 - 56 ancestry-informative
 - 22 phenotypically-informative SNPs

2800M Standard, 1ng

63/63 STRs (25 Y markers)

95/95 SNPs

Profile Recovery from Low Quantity Samples

	STRs		SNPs	
50 pg 2800M Standard*	63/63	100%	94/95	99%
100 pg Backpack Swabbing	34/38	89%	92/95	97%
23 pg Bottle Cap Swabbing	30/38	79%	81/95	85%
61 pg Lanyard Swabbing	35/38	92%	87/95	92%
41 pg Computer Mouse Swabbing	33/38	92%	89/95	94%

* Average of triplicates

** A minority of loci had imbalance or interpretation threshold issues

Value for Other Sample Types

What about bone and hair samples that yield little or no nuclear DNA?

The vast majority of such samples tested at the FBI Laboratory yield nucDNA quantities (loosely inferred from mtDNA quantities) of 50pg or more However, it is also a question of DNA quality...

Shed Hair

Not tested with Identifiler+ Estimated 60-100pg input

5 STRs

3 Identity SNPs Many AI/PI SNPs

Most <150bp

Degraded Bone Sample

No Data with Identifiler + 0.002ng/ul, 10pg total input

19 STRs Vast majority <225bp

53 Identity SNPs

Hybridization Capture

- Recently purchased baits for both:
 - The entire mtGenome
 - All markers targeted in the Illumina ForenSeq kit
 - Baits for 63 STRs and 173 SNPs
- Testing of 4,000 year-old mummified remains at the request of a US museum, with the primary question one of gender.
- Ultimately, these efforts are intended to expand the lower range of sample quality from which probative DNA data may be recovered in forensic casework

Near Term NGS Goals

- Efforts are primarily geared towards developing NGS as a "rescue" technology for the worst specimens
- Initiate reference population databasing:
 - mtGenomes
 - STRs
 - SNPs

Acknowledgements

Federal Bureau of Investigation Laboratory:

 Lilly Moreno, Mike Brandhagen, Tom Callaghan, Tony Onorato, Tamyra Moretti, Eric Pokorak

Armed Forces DNA Identification Laboratory:

 Michelle Peck, Rebecca Just, Kimberly Sturk, Charla Marshall, Odile Loreille

Institute of Legal Medicine, Innsbruck, Austria

Walther Parson

Disclaimer

Names of commercial manufacturers are provided for identification purposes only, and inclusion does not imply endorsement of the manufacturer, or its products or services by the FBI. The views expressed are those of the author's and do not necessarily reflect the official policy or position of the FBI or the U.S. Government.

Cross-Technology/Platform Comparison on the lowest quality samples

(shed hair, degraded skeletal remains, other low quant/qual samples)

- Directly assess data recovery from the same extracts with:
 - Currently employed, CE-based assays:
 - Identifiler Plus
 - Minifiler
 - Sanger-based mtDNA control region sequencing
 - NGS/MPS
 - Commercially available assays
 - Shotgun sequencing
 - Hybridization capture

Presentation of evidence so that it can be understood

Peter Gill

Background

- Recently there have been some publicised appeal court rulings which show misunderstanding e.g. R v T; R v Dlugosz
- How much are we to blame for the miscommunications?
- What can we do?

- Lindsey et al (2003) Communicating statistical DNA evidence, 43 Jurimetrics J. 147-163
- Carried out an experiment with mock jurors and gave them two statements
 - There is only a 2% chance the defendant's hair would be indistinguishable from the perpetrator if he were innocent
 - In a city of 1,000,000 people there would be 20,000 such individuals
- Juries were less likely to convict with the second statement
- Also shown experimentally that understanding of probabilities was compromised compared to natural frequencies

Consider the two 'equivalent' statements below

- The probability that the suspect would match the blood specimen if he was not the source is one in 1 million.
- One in 1 million people in Manchester who are not the source would also match the blood specimen
- The latter statement is a direct cue to think about people other than the defendant ie *the number of false positives* in a relevant population

Doheny Adams court ruling supports natural frequencies

 "Members of the jury, if you accept the scientific evidence called by the Crown, this indicates that there are probably only four or five white males in the United Kingdom from whom that [crime] stain could have come. The defendant is one of them. If that is the position, the decision you have to reach, on all the evidence, is whether you are sure that it was the defendant who left that stain or whether it is possible that it some other individual"

Cognitive thinking affects interpretation

- People do not usually conform to Bayesian rules when reasoning with probability
- Expressions of probabilities that are mathematically equivalent are not psychologically equivalent
- However frequencies expressed as simple counts are more readily understood.
- Likelihood ratios are poorly understood (there is a body of literature which discusses this).

Complex DNA profiling

- Now we have reached a position where complex DNA profiles can be analysed
- We have to decide propositions
- We have to decide software
- We have to accept that there is no gold standard
- We have to accept different software give different answers

How will complex software analysis develop now

Forensic Science International: Genetics xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Genotyping and interpretation of STR-DNA: Low-template, mixtures and database matches—Twenty years of research and development

Peter Gill^{a,b,*}, Hinda Haned^c, Oyvind Bleka^a, Oskar Hansson^a, Guro Dørum^d, Thore Egeland^{a,d}

^a Norwegian Institute of Public Health, Department of Forensic Biology, PO Box 4404 Nydalen, 0403 Oslo, Norway

^bDepartment of Forensic Medicine, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway

^cNetherlands Forensic Institute, Department of Human Biological Traces, The Hague, The Netherlands

^d Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas, Norway

A diversity of methods

I conclude: «While there can be incorrectly calculated LRs, finding a • perfect LR solution for all situations is not possible. Balding [65] states: "Likelihoods depend on modeling assumptions, and there can be no "true" statistical model for a phenomenon as complex as an LTDNA profile" Consequently, there is no agreement within the forensic community on the best approach, and it is unrealistic to suppose that any single method will be universally adopted. This means that in practice a diversity of methods will be used for the foreseeable future. In principle, there is nothing wrong with this. It will encourage research. An inevitable outcome, to be encouraged, is that court-reports will be routinely prepared and challenged by different software that use different modeling assumptions. Typically, commercial software will not be available to defence experts and they will default to open source or non-commercial software. However, if similar answers are obtained, then confidence in results should increase. Here, we follow, Steele and Balding [37], and suggest that a difference in the order of one ban (one unit in log10 scale) is negligible."

Positioning commercial vs open-source software

- There needs to be an debate on how commercial vs open source software interact
- There is a particular problem for the defence re availability of commercial software
- The obvious alternative is for defence to use open-source
- Open source is also available to the prosecution for counter argument so it should represent a level playing field
- But different answers are expected between different software that may be several orders of magnitude difference
- Will courts be confused?
- A possible way forward is to position ourselves to recommend testing with alternative software. The expert then recommends the court to accept the most conservative answer.

The importance of non-contributor tests to qualify the LR

- It is difficult to simplify the likelihood ratio construct itself
- But maybe we can think in terms of a two stage process:
 - The experts agree on the model to be used
 - Agree propositions to be tested (in particular)
 - Then non-contributor tests can be applied to place the evidence into perspective
 - A large LR cannot necessarily assumed to be probative
 - How likely is it that a random man will give a probative LR

LRmix studio non-contributor tests

 Easy to simulate a million non-contributors in LRmix studio

Step 1

- •The crime-stain is from an epithelial swab taken from the female victim
- •There are two suspects accused of sexual assault, S_1 and S_2 respectively; both deny the offence.

•This epg is classified as a low template of three or more individuals since there are multiple alleles per locus that fall within the criterion of the low template zone (between the LDT and the stochastic threshold (*T*))– we expect dropout may occur, but the profiles appear to be well represented.

Step 2: List the alleles with informative formatting

	Crime-stain alleles									
Marker	Allele1	Allele2	Allele3	Allele4	S 1	S 1	S 2	S 2	Unique alleles	
AMEL	Х	Y			Χ	Y	Χ	Y	2	
D3S1358	14	16	17	(15)	16	17	15	17	4	
VWA	16	17	18	19	16	18	18	19	4	
D16S539	11	12	13	15	12	13	12	12	4	
D2S1338	17	19	20	(24)	19	20	17	18	4	
D8S1179	9	10	13	14	9	13	13	13	4	
D21S11	29	31	32		28	32	30	30	5	
D18S51	12	16	(15)		12	15	12	20	4	
D19S433	12	14	15.2	15.2 16		16	12	15	5	
TH01	6	9.3			6	9.3	6	9.3	2	
FGA	19	24	26		19	21	20	21	5	

Key:

Alleles that are shared between victim and S_1 or S_2 (green background).

Alleles that are found in the crime stain and not observed in any known individual (blue background, not applicable in this case). Alleles that are below the detection threshold but appear to be distinct (bracketed).

Alleles that are found in the crime stain that match a known individual under Hd (victim) (red typeface).

LRmix Studio summary output

	Studio - Z						
Help							
Sample File	es Reference Files Profil	 □ Text Colour □ Background Colour □ Bold □ Italic 					
	High	Print					
Select	Name	Replicate	Suspect1	Suspect2	Victim	Distinct Alleles	
Select	Name	Replicate	Suspect1	Suspect2	Victim	Distinct Alleles	
Select	Name Epithelial D3S 1358	Replicate	Suspect1	Suspect2	Victim 14 16	Distinct Alleles	
Select	Epithelial D3S1358 VWA	Replicate 14 16 <u>17</u> 16 17 <u>18 19</u>	Suspect 1	Suspect2	Victim 14 16 17 19	Distinct Alleles	
Select	Name Epithelial D3S1358 VWA D16S539	Replicate 14 16 <u>17</u> 16 17 <u>18 19</u> 11 <u>12</u> 13 15	Suspect 1 16 17 16 18 12 13	Suspect2	Victim 14 16 17 19 11 15	Distinct Alleles	
Select	Name Epithelial D3S1358 VWA D16S539 D2S1338	Replicate 14 16 17 16 17 18 19 11 12 13 15 17 19 20	Suspect 1 16 17 16 18 12 13 19 20	Suspect2 15 <u>17</u> 18 <u>19</u> 12 <u>12</u> 17	Victim 14 16 17 19 11 15 17 24	Distinct Alleles	
Select	Name Epithelial D3S1358 VWA D16S539 D2S1338 D8S1179	Replicate 14 16 <u>17</u> 16 17 <u>18 19</u> 11 <u>12</u> 13 15 <u>17</u> 19 20 9 10 <u>13</u> 14	Suspect 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Suspect2 15 <u>17</u> 18 <u>19</u> 12 <u>12</u> 17 18 13 <u>13</u>	Victim 14 16 17 19 11 15 17 24 10 14	Distinct Alleles	
Select	Name Epithelial D3S1358 VWA D16S539 D2S1338 D8S1179 D21S11	Replicate 14 16 <u>17</u> 16 17 <u>18 19</u> 11 <u>12</u> 13 15 <u>17</u> 19 20 9 10 <u>13</u> 14 29 31 32	Suspect 1 5 17 16 18 12 13 19 20 9 13 28 32	Suspect2 15 <u>17</u> 18 <u>19</u> 12 <u>12</u> 17 18 <u>13 13</u> 30 30	Victim	Distinct Alleles	
Select	Name Epithelial D3S1358 VWA D16S539 D2S1338 D8S1179 D21S11 D18S51	Replicate 14 16 <u>17</u> 16 17 <u>18 19</u> 11 <u>12</u> 13 15 <u>17</u> 19 20 9 10 <u>13</u> 14 29 31 32 <u>12</u> 16	Suspect 1	Suspect2 15 <u>17</u> 18 <u>19</u> 12 <u>12</u> 17 18 13 <u>13</u> 30 30 12 20	Victim Victim 14 16 17 19 11 15 17 24 10 14 29 31 16 16	Distinct Alleles	
Select	Name Epithelial D3S1358 VWA D16S539 D2S1338 D8S1179 D21S11 D18S51 D19S433	Replicate 14 16 17 16 17 18 19 11 12 13 15 17 19 20 9 10 13 14 29 31 32 12 16 12 14 15.2 16	Suspect1 16 17 16 18 12 13 19 20 9 13 28 32 12 15 12 16	Suspect2 15 <u>17</u> 18 <u>19</u> 12 <u>12</u> 17 18 13 <u>13</u> 30 30 12 20 12 15	Victim	Distinct Alleles	
Select	Name Epithelial D3S1358 VWA D16S539 D2S1338 D8S1179 D21S11 D18S51 D19S433 TH01	Replicate 14 16 17 16 17 18 19 11 12 13 15 17 19 20 9 10 13 14 14 14 14 14 14 14 17 19 20 9 10 13 14 29 31 32 12 16 12 14 15.2 16 6 9.3 3	Suspect1 16 17 16 18 12 13 19 20 9 13 28 32 12 15 12 16 6 9.3	Suspect2 15 <u>17</u> 18 <u>19</u> 12 <u>12</u> 17 18 13 <u>13</u> 30 30 12 20 12 15 6 <u>9.3</u>	Victim	Distinct Alleles	

Step 3: Establish the minimum number of contributors for the 'preliminary' propositions

- a) The swab is from a victim (V). There are two suspects (S_1, S_2) under Hp,
- b) In this example, some loci have 5 unique alleles across sets hence there is a minimum of three individuals present under *Hp*.
- c) A similar calculation can be made under Hd where the sets of genotypes formed by S_1, S_2 are not used, but in our rationale, it is convenient to anchor the minimum number of contributors on Hp and to assume equivalence (this is revisited later in the procedure).
- d) Consequently, the preliminary propositions are formulated as $Hp=V, S_1, S_2$ and Hd=V, U, U

Set Propositions in Analysis Tab

LRmixStudio - Case1_	data							_0
۱p								
mple Files Reference File	s Profile Summary	Analysis Sensitivity Analysis	Performance Test R	leports About				
Prosecution Hypothesis			Defe	nse Hypothesis				
Contributor	ID	Dropout Probal	pility	Contributor	I	D	Dropout Probability	
	Suspect1		0.1		Suspect1			0.1
	Suspect2		0.1		Suspect2			0.1
	Victim		0.1		Victim			0.1
, Unknown Contributors		Г	0 🗄 Unk	nown Contributors				2 ≑
Dropout Probability for unknowns				pout Probability for u	nknowns			D.1÷
esults	ineta co					Linic the ridi		
Locu	S		LR			Stop	🕞 Run	
				Overall Li				
				,				
Sensitivity analysis

ERmixStudio - Case1_da	ta	_	Ľ
Sample Files Reference Files	Profile Summary	Analysis Sensitivity Analysis Performance Test Reports About	
	Vary Dropout	Profile	_
	V	Suspect1	_
	V	Suspect2	
	v	Victim	
	N	Defense Unknown Contributors	
Sensitivity Analysis Settings	Dropout Estimat	tion Settings	
Drop-Out variation	0 🖶 to	1 in 100 stop Stop Run Dropout Estimation for 32 alleles	
Drop In 0.0	05 🛨 It	terations 1,000	-
Valying dopod of 3us 10 5 5 5 10 5 5 10 5 5 10 10 5 5 5 10 10 5 5 10 10 10 10 10 10 10 10 10 10		2.2, Victual and General and Norms Dobin Code (1997) pour Estimation 0.16 ~ 0.46 P(E)P(b) P(E)P(b) P(E)P(b) P(E)P(b)	
0.0 0.1	0.2 0.3	0.4 0.5 0.6 0.7 0.8 0.9 1.0 Dropout Probability	
	- = - LF	Delete Range R	

Analysis

			a. ()		
👮 LRmixStudio - Case1_d	ata				<u>_ [] ×</u>
Help					
Sample Files Reference Files	Profile Summary Analysis	Sensitivity Analysis Performance	Test Reports About		
Prosecution Hypothesis			Defense Hypothesis		
Contributor	ID	Dropout Probability	Contributor	ID	Dropout Probability
	Suspect1	0.16		Suspect1	0.16
V	Suspect2	0.16		Suspect2	0.16
V	Victim	0.16		Victim	0.16
		_			_
, Unknown Contributors			, Unknown Contributors		2
Drangeut Drahability fan unler		0.1	Dressut Drehability for us	laneuron	0.16
	owns	0.1	Dropout Probability for un	kriowns	0.10
Parameters					
Allele Economica Dubr	enhoulMadrid 2014/Dates/Da	· 2 Dractical/Data Dmis/Major mine	leenheuru eu		
Allele Prequencies (D:)pr	opbox/mauriu 2014/Peter/pa	y 2 Practical (Data LRmix (Major_mino)	rysgminorway.csv		
Drop-in probability	0.05 🗧 Theta correction	0.01			Limit the number of threads to 4
Results					
				_	
Locus		LR			Stop 🕑 Run
D8S1179	42.56	136	Overall Like	elihood Ratio	
D21511	0.400	77	(
D3S1358	1.14/	J2	36923.3	15032	
D100520	5.613	49			
D165539	4.511	24			
D251338	4.419	45 DF			
NWV	9.028	22			
D18551	1,0/1	72			
ECA	1.290	12			
I GA	0.000				

Step 4: LRmix Studio analysis

 $Hp=V,S_1,S_2$ and Hd=V,U,U

- Note 2 Suspects in numerator
- The log₁₀(LR_{min}) = 4.56 is derived for a drop-out probability *Pr*(*D*)=0.16.

Pr(D) value is in fact the 5 percentile calculated from an empirical distribution of the drop-out probability conditioned on the expected number of alleles observed relative to the genotype of the hypothesised contributors, the procedure is described by Haned et al (FISG 2012)

Performance plot (evaluate one suspect at a time)

Run the same number of non-contributors As the LR=c.50,000 in this case. Is the Max value <LR?

Rule for any complex analysis software

- Never evaluate two or more 'known' individuals in the numerator, unless mirrored in the denominator
- Eg. Hp= V,S1,S2 vs V,U,U is not OK
- However Hp=V,S1,U vs V,U,U is OK

Forensic Science International: Genetics 7 (2013) 251-263

Forensic Science International: Genetics

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/fsig

A new methodological framework to interpret complex DNA profiles using likelihood ratios

P. Gill a,b,*, H. Haned c

^a Norwegian Institute of Public Health, Oslo, Norway

^bUniversity of Oslo, Oslo, Norway

^cNetherlands Forensic Institute, Department of Human Biological Traces, The Hague, The Netherlands

Limitations of Complex software

Never combine conditions in the numerator (unless duplicated in the denominator) as the LR is not meaningful

Always simplify the propositions

Suspect 1 calculation Hp=S1,V,U and Hd=V,U,U

LRmixStudio - Case1	_data										_ 🗆
łp											
ample Files Reference Fil	es Profile Summary	Analysis Sensitivi	ity Analysis Performance	Test Reports A	About						
Prosecution Hypothesi	's			Defense Hyp	pothesis						
Contributor	ID	Dr	ropout Probability	Con	tributor		ID		Dropout Pr	obability	
	Suspect1		0.15			Suspect1				0.	15÷
	Victim		0.15		v	Victim				0.	15÷
) Unknown Contributors			1	J Unknown Cor	ntributors						2
				Dropout Prob	ability for u	nknowns				0.	15 🕀
Dropout Probability for ur Parameters Allele Frequencies D:1 Drop-in probability	Propbox Madrid 2014 P	Peter\Day 2 Praction	cal\Data LRmix\Wajor_mino	r\sgmNorway.csv	,		Lir	nit the nur	nber of three	eads to	
Dropout Probability for ur Parameters Allele Frequencies D: Drop-in probability Results	Propbox Wadrid 2014 P	eter\Day 2 Practic rrection 0.0	cal\Data LRmix \Major_mino	r\sgmNorway.csv	,		Lir	nit the nur	nber of thre	eads to	
Dropout Probability for ur Parameters Allele Frequencies D: Drop-in probability Results	Propbox \Madrid 2014\P 0.05 ☆ Theta co	Veter\Day 2 Praction	cal\Data LRmix\Major_mino	r\sgmNorway.csv	Ĩ		Lir	nit the nun	nber of thre	eads to	4
Dropout Probability for ur arameters Allele Frequencies D: Drop-in probability esults D8S1179	Iknowns Propbox\Madrid 2014\P 0.05	Veter\Day 2 Praction	LR	r\sgmNorway.csv	I		Lir S	nit the num	nber of thre	eads to	4
Dropout Probability for un arameters Allele Frequencies D: Drop-in probability esults D8S1179 D21S11	Iknowns Dropbox\Madrid 2014\P 0.05	Peter \Day 2 Practic rrection 0.0 24.38172 3.23158	LR	r\sgmNorway.csv	Overall Lik	elihood Ratio	Lir S	nit the num	nber of thre	eads to	4
Dropout Probability for un arameters Allele Frequencies Drop-in probability Cesults Loc D8S1179 D21S11 D3S1358	Iknowns Dropbox Wadrid 2014 0.05 	Veter \Day 2 Practic rrection 0.0 24.38172 3.23158 3.06903	LR	r\sgmNorway.csv	Overall Lik	elihood Ratio	Lir S	nit the nun	nber of thre	eads to	4
Dropout Probability for ur Parameters Allele Frequencies D: Drop-in probability Results Loc D8S1179 D21S11 D3S1358 TH01	Propbox/Madrid 2014/P 0.05 Theta co	Peter \Day 2 Practic rrection 0.0 24.38172 3.23158 3.06903 2.45260	LR	r\sgmNorway.csv	Overall Lik 297314	elihood Ratio		nit the num	nber of thre	eads to	4
Dropout Probability for ur Parameters Allele Frequencies D: Drop-in probability Results Loc D8S1179 D21S11 D3S1358 TH01 D16S539	Nropbox/Madrid 2014/P 0.05 - Theta co	Peter \Day 2 Practic rrection 0.0 24.38172 3.23158 3.06903 2.45260 3.25845	LR	r\sgmNorway.csv	Overall Lik 297314	celihood Ratio 41.65184	Lir	nit the num	hber of thre	eads to	4
Dropout Probability for un Parameters Allele Frequencies D: Drop-in probability Results D8S1179 D21S11 D3S1358 TH01 D16S539 D2S1338	Iknowns IPropbox Wadrid 2014 0.05 Theta co us	Peter \Day 2 Practic rrection 0.0 24.38172 3.23158 3.06903 2.45260 3.25845 8.84580	LR	r\sgmNorway.csv	Overall Lik 297314	xelihood Ratio 41.65184	Lir	nit the num	hber of thre	eads to	4
Dropout Probability for un Parameters Allele Frequencies D: Drop-in probability desults Loc D8S1179 D21S11 D3S1358 TH01 D16S539 D16S539 D16S539 D2S1338 D19S433	Nropbox Madrid 2014 0.05 Theta co	Peter \Day 2 Praction rrection 0.0 24.38172 3.23158 3.06903 2.45260 3.25845 8.84580 24.04794	LR	r\sgmNorway.csv	Overall Lik	celihood Ratio		nit the num	hber of thre	eads to	4
Dropout Probability for un Parameters Allele Frequencies D: Drop-in probability Results D8S1179 D2IS11 D3S1358 TH01 D16S539 D2S539 D2S1338 D19S433 VWA	Nropbox (Madrid 2014) 0.05 - Theta co	Peter \Day 2 Praction rrection 0.0 24.38172 3.23158 3.06903 2.45260 3.25845 8.84580 24.04794 3.30628	Cal\Data LRmix\Major_mino	r\sgmNorway.csv	Overall Lik 297314	xelihood Ratio 41.65184 0(LR _{min}	Lir 5)= 6.47	nit the num	nber of thre	eads to	4
Dropout Probability for un Parameters Allele Frequencies D: Drop-in probability Results DSS1179 D21S11 D3S1358 TH01 D16S539 D2S1338 D19S433 VWA D18S51	Propbox\Madrid 2014\P 0.05 + Theta co	Veter \Day 2 Praction rrection 0.0 24.38172 3.23158 3.06903 2.45260 3.25845 8.84580 24.04794 3.30628 1.20962	LR	r\sgmNorway.csv	Overall Lik 297314 log10	elihood Ratio 11.65184 0(LR _{min})= 6.47	nit the num	nber of thre	eads to	4

LRmix Studio S1 effect (1 million iterations)

Now determine the S2 effect

•*Hp*=*S*₂,*V*,*U*; *Hd*=*V*,*U*,*U*.

• $Pr(D_{min})=0.1$, $log_{10}(LR_{min})=-3.8$ which is clearly 'exclusionary'

Step 6: Non-contributor performance (Np) tests

•Np tests can be used to support the conclusion that evidence supporting S_1 is 'inclusionary' whereas evidence supporting S_2 is 'exclusionary'

	Three pe	erson mixture	Non-contributor performance		
Нр	Hd	Random man substituted	log ₁₀ (LR)	percentiles	
S_1, S_2, V	<i>V,U,U</i>	S_{I}	4.5	(-23,-17,-9)	
$\mathbf{S}_1, \mathbf{S}_2, \mathbf{V}$	<i>V,U,U</i>	S_2	4.5	(-3,+2.9,+7)	
S ₁ , <i>V</i> , <i>U</i>	<i>V,U,U</i>	S_I	6.4	(-11,-6,-1)	
S ₂ , <i>V</i> , <i>U</i>	<i>V,U,U</i>	S_2	-3.8	(-12,-6,-1)	

Conclusion

- It is not sufficient to provide a LR without the assurance of non-contributor analysis, especially for complex propositions
- There is a temptation to use software as black box, but this is dangerous
- Danger that there is insufficient defence challenge
- The software is meant to be used as a dialogue between prosecution and defence to decide propositions, models etc

Now we can start to think of explaining evidence in a different way

I have evaluated the proposition that Mr X is a contributor to the crime stain Y compared to the alternative proposition that Mr X is not a contributor to crime stain Y using the conditions defined in the LRmix model. These conditions are as follows:

a) Mr X and the victim are both contributors to the sampleb) An unknown person and the victim are both contributors to the sample

The evidence is 1 million times more likely if the first proposition (a) is true, compared to the alternative described by (b).

Qualification: This figure can be qualified with a test of robustness. To do this we replace Mr X with a random unrelated individual and we repeat the measurement of the likelihood ratio. We do this a total of 1 million times, with a different random individual each time.

When this was carried out the greatest likelihood ratio observed was of the order of 10,000

Extract from a statement based on a court report

In this case I calculated a likelihood ratio of 1 million (page X, supplement Y); if the answer is robust, then we would expect to observe that random individuals (non-contributors) would be expected to give a very low (exclusionary) likelihood ratio. I have simulated 1 million individuals in a computer and measured the likelihood ratio of each calculation. From page X (supplement Y), I observed that non-contributors gave very low LRs. The maximum LR observed out of 1 million random individuals was equal to 10,000 and 99 percent of results were less than LR=0.01. Discriminatory metric can be used to measure the distance of the observed LR – 99

percentile

This is not a RMNE but it simplifies the explanation in a similar way.

Provided that the LRmax was less than the LRobserved , we can also convert into natural frequencies which is consistent with Adams/Doheny court ruling:

"In a population of 1 million random people I would expect approximately two individuals, unrelated to the defendant, to give a LR that equals or exceeds the observed LR provided by the defendant this case"

Or in the UK of 30 million men I would expect 30 individuals, unrelated to the defendant, that equal or exceed the LR

DISCUSS

Quantifiler® Trio DNA Quantification Kit & PCR Setup Optimization: Results of Internal Validation

Maria Vouropoulou, PhD Aikaterini Kondili, PhD Penelope Miniati, PhD

Scientific Support Section,

Subdivision of Biological And Biochemical Examinations And Analyses,

Forensic Sciences Division,

Hellenic Police

Quantifiler® Trio is DNA Quantification Kit by Life Technologies It utilizes two autosomal targets and a Y target

Target	Amplicon length	Ploidy	Copy Number	Dye/Quencher
Human Target, small autosomal	80 bases	Diploid	multicopy	VIC [®] dye with MGB quencher
Human Target, large autosomal	214 bases	Diploid	multicopy	ABY [®] dye with QSY [®] quencher
Human Male Target ⁺	75 bases	Haploid	multicopy	FAM [™] dye with MGB quencher
Internal PCR Control	130 bases	NA	Synthetic IPC template is included in the primer mix	JUN [®] dye with QSY® quencher

Degradation Index = [Small Target] / [Large Target]

The Degradation Index is used as a general indicator of whether <u>large DNA fragments</u> <u>may perform more poorly</u> relative to small DNA fragments in STR reactions.

- $DI \leq 1 \rightarrow Good Quality, Robust Sample$
- $DI > 1 \rightarrow Degradation Increases the Further Away from 1.$

Trio was validated according to:

- SWGDAM Revised Validation Guidelines: www.fbi.gov/hq/lab/fsc/backissu/
- Document Type: POLICY, Ref. Code: ENFSI DNA WORKING GROUP, Issue No: 001, Recommended Minimum Criteria for the Validation of Various Aspects of the DNA Profiling Process (2012)

Experiments designed to assess:

- Sensitivity Stochastic Effects
- Repeatability Reproducibility Precision
- Mixture Studies (Male : Female)
- Contamination Studies
- Stability of Standards

**

Sensitivity – Stochastic Effects

- Sample 1: M to F mixture 10 concentrations ranging from 10 ng/μL down to 0,8 pg/μL x3
- Sample 2: a Gednap single source male DNA 8 concentrations ranging from 1,25 ng/µL to 0,8 pg/µL x3

Samples used in Sensitivity Studies were also cross checked with the original single target Quantifiler® kit.

Repeatability – Reproducibility - Precision

- Repeatability
- 2 standard DNA samples: Quantifiler Trio THP Standard DNA plus Promega 2800 PC
- The two samples used for the above sensitivity studies

In total 15 different concentrations were analysed x3.

Concentration Values are Repeatable down to $5pg/\mu L$

Reproducibility

The samples from the sensitivity experiments were also tested at different times and/or different users

Results were consistent throughout the experiments

Precision

Evaluation of Ct results from above experiments demonstrated the System's Precision

Mixture Studies

Sample	Male DNA ng/µL	Female DNA ng/μL	M:F
Mix 1	0,5	2,5	1:05
Mix 2	0,5	5,0	1:10
Mix 3	0,5	12,5	1:25
Mix 4	0,5	25,0	1:50

A Question About The Primary Quantification Target

Assess quantity

Purpose

After viewing the results and assessing the quality of the results, determine whether sufficient DNA is present to proceed with a short tandem repeat (STR) assay.

Note: The primary quantification value is from the small autosomal target. Use this value for determination of STR input amount.

PowerPlex® ESX 17 profile of 2800M Control DNA generated in an ABI 3500*xl* genetic analyzer

A Novel Experiment: Small vs Large for Autosomal PCR Setup?

- ➢ 5 Mock Samples
- ➢ 8 Gednap Samples
- > 34 Non Probative Casework Samples

were set up for PowerPlex® ESX 17 PCR with two values:

- 1. Small Target Concentration
- 2. Large Target Concentration

PowerPlex® ESX 17 profiles Razor Swab - DI:3.3

Small: 0.1 ng/µL, V_{PCR}:4.9 µL

Large: 0.03 ng/µL, V_{PCR}:16.7 µL

PowerPlex® ESX 17 profiles Blood Swab - DI:3.5

Small: 1.9 ng/µL, V_{PCR}:0.26 µL

Large: 0.54 ng/µL, V_{PCR}:0.93 µL

PowerPlex® ESX 17 profiles Tooth Sample - DI:4.8

Small: 1.78 ng/μL, V_{PCR}:0.28 μL

Large: 0.37 ng/µL, V_{PCR}:1.4 µL

PowerPlex® ESX 17 profiles Cigarette Butt - DI:6.4

Small: 0.77 ng/µL, V_{PCR}:0.65 µL

Large: 0.12 ng/µL, V_{PCR}:4.1 µL

PowerPlex® ESX 17 profiles Saliva Stain - DI:14.4

Small: 0.098 ng/µL, V_{PCR}:5.1 µL

Large: 0.0068 ng/µL, V_{PCR}:73.5 µL

PowerPlex® ESX 17 profiles Swab from Mobile Phone - DI: 20

Small: 0.22 ng/µL, V_{PCR}:2.4 µL

Large: 0.011 ng/µL, V_{PCR}:45.0 µL

Loci recovery from single source casework samples with DI > 1

PowerPlex® ESX 17 profiles Gednap Sample - DI: 0.79

Small: 0.083 ng/µL, V_{PCR}:6.1 µL

Large: 0.104 ng/µL, V_{PCR}:4.8 µL

Steps in Forensic DNA Analysis

