EUROPEAN DNA PROFILING GROUP (EDNAP) MEETING

Riga, Latvia

23 October 2019

Host: Izanda Puncule
Chairman: Niels Morling

A list of participants is attached.

Welcome
Izanda Puncule welcomed members to Riga.

Update on exercises

Second exercise on methylated DNA and age David Ballard
David Ballard informed members that a manuscript will be circulated before the end of October 2019.

Exercise no. 2 on mRNA and cSNP typing using Illumina MiSeq Cordula Haas
Cordula Haas informed members that the submitted manuscript got benevolent comments from the reviewers. An updated manuscript that takes the comments of the reviewers into consideration will be circulated as soon as possible (presentation attached).

mtDNA quantification exercise Arnoud Kal
Arnoud Kal informed members that a PowerPoint with the results will be circulated within six months (presentation attached).

Updates from other groups

ENFSI Sander Kneppers
Sander Kneppers reported from the ENFSI DNA Working Group (presentation attached).

EMPOP (DNA.BASES) Walther Parson
Walther Parson gave a short update of the activities of EMPOP (presentation attached).

STRidER (DNA.BASES) Walther Parson
Walther Parson gave a short update on STRidER (presentation attached).

The VISAGE project Walther Parson
Walther Parson gave an update on the VISAGE project (presentation attached).

ISFG Walther Parson
Walther Parson gave an update of the activities of the ISFG (presentation attached).
Other activities

DNAxs - DNAStatistX
Sander Kneppers

Future activities

Collaborative exercise on detection of mtDNA heteroplasmy by MPS
Walther Parson
Walther Parson gave an update on the mitochondrial DNA collaborative exercise on Length (LHP) and Point Heteroplasmy (PHP). Two combined studies are planned: (1) A technical study that includes high-quality reference samples exhibiting LHP/PHP, and (2) a study of somatic mutations in hair shafts. The samples have been prepared in Innsbruck and will be distributed at the end of October 2019. Laboratories should submit the results to Innsbruck before the end of January 2020.

New collaborative exercise on mRNA and cSNP typing using TFS S5
Cordula Haas
Cordula Haas and colleagues will present an updated proposal of a collaborative exercise on identification of donors of body fluids by means of mRNA and cSNPs with an IonTorrent S5 assay in 2020.

New collaborative exercises on transfer of DNA
Bas Kokshoorn
Bas Kokshoorn presented the framework of the project that was circulated to members (attached). The series of collaborative exercises will be organised by Bas Kokshoorn, The Netherlands, and Roland van Oorschot, Australia. The EDNAP members welcomed the proposal, and the great majority of the EDNAP members indicated interest in active participation. Laboratories affiliated with EDNAP and the DNA Working Group of ENFSI will be invited to participate before the end of November 2019 (presentation attached).

Biogeographical Ancestry - Current status and way forward
C. Phillips/L. Roewer
Lutz Roewer reported on the results of two exercises on estimation of ancestry and discussed the current status (presentation attached).
Chris Phillips discussed the current status of estimation of biographical ancestry (presentation attached).

Next meetings
Niels Morling
The next EDNAP meeting will take place on 5 May 2020 in Lisbon in association with the meetings of CODIS (5 May 2020) and the ENFSI DNA Working Group (6-8 May 2020).

Any other business
Niels Morling
There was no other business.

Closing of the meeting
Niels Morling
The meeting closed with sincere thanks to Izanda Puncule and all colleagues, who helped organising the meeting.

The minutes and attachments are found at the EDNAP website:
http://www.isfg.org/EDNAP/Meetings, including:
- Agenda
- List of participants
- Presentations
- Cordula Haas: Update on the second collaborative exercise on mRNA NGS
- Arnoud Kal: Update on the mtDNA quantification exercise
- Sander Kneppers: Report from the ENFSI DNA Working Group
- Sander Kneppers: DNAxs – DNASTatististX - Invitation to collaborate
- Walther Parson: EMPOP report (DNA.BASES)
- Walther Parson: STRidER report (DNA.BASES)
- Walther Parson: The VISAGE project
- Walther Parson: ISFG report
- Kokshoorn/van Oorschot: Series of exercises relating to DNA transfer
- Bas Kokshoorn: Proposal for exercises on DNA transfer
- Lutz Roewer: Biogeographical Ancestry
- Chris Phillips: Biogeographical Ancestry
AGENDA FOR THE EDNAP MEETING
RIGA – 23 OCTOBER 2019

Expected duration: 09.00 - 17.00

Host: Izanda Puncule
Chairman: Niels Morling

Welcome
Izunda Puncule

Update on activities
Methylated DNA and age exercise
Exercise no. 2 on mRNA typing with MPS
mtDNA quantification exercise?

David Ballard
Cordula Haas
Arnoud Kal

Updates from other groups
ENFSI
EMPOP (DNA.BASES)
STRidER (DNA.BASES)
The VISAGE project
ISFG

Sander Kneppers
Walther Parson
Walther Parson
Walther Parson
Walther Parson

Future activities
Collaborative exercise on detection of mtDNA heteroplasmy by MPS
Proposition for a new series of exercises relating to DNA transfer
Proposition for an exercise on identification of donors of body fluids by means of cSNPs
Biogeographical Ancestry: Current status and way forward

Walther Parson
Baas Kokshoorn
Cordula Haas
Chris Phillips/Lutz Roewer

Next EDNAP meeting 5 May 2020 in Lisbon (ENFSI 6-8 May 2020)

Niels Morling

Any other business

Niels Morling
Dr. Ricky Ansell
National Forensic Centre
S-58194 Linköping
Sweden
Tel: +46 1056 28119
Fax: +46 13 14 57 15
E-mail: ricky.ansell@polisen.se

Dr. David Ballard
King’s Forensics
King’s College London
Franklin Wilkins Building
Waterloo
SE1 9NH London
UK
Tel: +44 207 848 4161
Fax:
E-mail: david.ballard@kcl.ac.uk

Dr. Regine Banemann
KT31
Bundeskriminalamt
Thaerstrasse 11
D-65193 Wiesbaden
Germany
Tel: +49 61155 16053
Fax: +49 611 5545 089
E-mail: regine.banemann@bka.bund.de

Dr. Ingo Bastisch
KT31
Bundeskriminalamt
Thaerstrasse 11
D-65193 Wiesbaden
Germany
Tel: +49 61155 16030
Fax: +49 611 5545 089
E-mail: ingo.bastisch@bka.bund.de

Dr. Francesca Brisighelli
Laboratoria Genetica Forense
Instituto di Sanita Publica
Università Cattolica

Dr. Edgars Celmins
DNA Analysis Unit
State Police of Latvia Forensic Service Department
Bruņinieku iela 72b
LV-1009 Riga
Latvia
Tel: +371 6720 8450
Fax:
E-mail: edgars.celmins@ekspertize.vp.gov.lv

Professor Denise Syndercombe Court
King’s Forensics
King’s College London
Franklin Wilkins Building
Waterloo
SE1 9NH London
UK
Tel: +44 20 7848 4155
Fax: +44 20 7848 4129
E-mail: denise.syndercombe-court@kcl.ac.uk

Dr. Aleksejs Fjodorovs
DNA Analysis Unit
State Police of Latvia Forensic Service Department
Bruņinieku iela 72b
LV-1009 Riga
Latvia
Tel: +371 6720 8570
Fax:
E-mail: aleksejs.fjodorovs@ekspertize.vp.gov.lv

Dr. Ane Elida Fonneløp
Department of Forensic Biology
Oslo University Hospital
Participants - EDNAP Meeting - 23 October 2019 – Riga, Latvia

P.O.Box 4950
Nydalen
N-0424 Oslo
Norway
Tel: +47 99 55 95 11
Fax:
E-mail: rmanfo@ous-hj.no

Dr. Olga Gobrusjonoka
DNA Analysis Unit
State Police of Latvia Forensic Service
Department
Bruņinieku iela 72b
LV-1009 Riga
Latvia
Tel: +371 6720 8566
Fax:
E-mail: olga.gobrusjonoka@ekspertize.vp.gov.lv

Dr. Drina Grante
DNA Analysis Unit
State Police of Latvia Forensic Service
Department
Bruņinieku iela 72b
LV-1009 Riga
Latvia
Tel: +371 6720 8451
Fax:
E-mail: alina.grante@ekspertize.vp.gov.lv

Dr. Theresa Gross
Institute of Legal Medicine
University of Cologne
Melatenguertel 60-62
D-50823 Cologne
Germany
Tel: +49 221 478 89447
Fax:
E-mail: theresa.gross@uk-koeln.de

Ms. June Guiness
Home Office
Forensic Science Regulator Unit

Dr. Cordula Haas
Institut für Rechtsmedizin Zurich
Winterthurerstr. 190
CH-8057 Zurich
Switzerland
Tel: +41 44 635 5656
Fax:
E-mail: cordula.haas@irm.uzh.ch

Dr. Karina Isahanova
DNA Analysis Unit
State Police of Latvia Forensic Service
Department
Bruņinieku iela 72b
LV-1009 Riga
Latvia
Tel: +371 6720 8448
Fax:
E-mail: karina.isahanova@ekspertize.vp.gov.lv

Dr. Viktorija Jemeljanova
DNA Analysis Unit
State Police of Latvia Forensic Service
Department
Bruņinieku iela 72b
LV-1009 Riga
Latvia
Tel: +371 6720 8452
Fax:
E-mail: viktorija.jemeljanova@ekspertize.vp.gov.lv

Dr. Arnoud Kal
Department of Human Biological Traces
Netherlands Forensic Institute
Laan van Ypenburg 6
24 97 GB The Hague
The Netherlands
Tel: +31 6 4813 1812
Fax: -
E-mail: a.kal@nfi.nl

Dr. Alexander Kneppers
Department of Human Biological Traces
Netherlands Forensic Institute
Laan van Ypenburg 6
24 97 GB The Hague
The Netherlands
Tel: +31629623036
Fax: -
E-mail: s.kneppers@nfi.nl

Dr. Bas Kokshoorn
Department of Human Biological Traces
Netherlands Forensic Institute
Laan van Ypenburg 6
24 97 GB The Hague
The Netherlands
Tel: +31708886750
Fax: -
E-mail: b.kokshoorn@nfi.minvenj.nl

Dr. Eriks Kusners
DNA Analysis Unit
State Police of Latvia Forensic Service
Department
Bruņinieku iela 72b
LV-1009 Riga
Latvia
Tel: +371 6720 8449
Fax: -
E-mail: eriks.kusners@ekspertize.vp.gov.lv

Dr. Irina Laha
DNA Analysis Unit
State Police of Latvia Forensic Service
Department
Bruņinieku iela 72b
LV-1009 Riga
Latvia
Tel: +371 6720 8447
Fax: -
E-mail: irina.laha@ekspertize.vp.gov.lv

Professor Maviky Lareu
Forensic Genetic Unit
Department of Legal Medicine
University of Santiago de Compostela
San Francisco, s/n
E-15782 Santiago de Compostela
Spain
Tel: +34 98158 2327
Fax: +34 98158 0336
E-mail: mvictoria.lareu@usc.es

Professor, dr.med. Niels Morling
Section of Forensic Genetics
Department of Forensic Medicine
Faculty of Health Sciences
University of Copenhagen
Frederik V´s Vej 11
DK-2100 Copenhagen
Denmark
Tel: +45 3532 6194
Fax: +45 3532 6270
E-mail: niels.morling@sund.ku.dk

Dr. Helle Smidt Mogensen
Section of Forensic Genetics
Department of Forensic Medicine
Faculty of Health Sciences
University of Copenhagen
Frederik V´s Vej 11
DK-2100 Copenhagen
Denmark
Tel: +45 3532 6212
Fax: +45 3532 6270
E-mail: helle.smidt@sund.ku.dk

Dr. Fabrice Noël
National Institute of Forensic Science
98-100 Chaussée de Vilvorde
Dr. Alona Orupe
DNA Analysis Unit
State Police of Latvia Forensic Service
Department
Bruņinieku iela 72b
LV-1009 Riga
Latvia
Tel: +371 6720 8451
Fax:
E-mail: alona.orupe@ekspertize.vp.gov.lv

Prof. Dr. Walther Parson
Institute of Legal Medicine
Medical University of Innsbruck
Müllerstrasse 44
A-6020 Innsbruck
Austria
Tel: +43 512 9003 70640
Fax: +43 512 9003 73640
E-mail: walther.parson@i-med.ac.at

Dr. Vania Pereira
Section of Forensic Genetics
Department of Forensic Medicine
Faculty of Health Sciences
University of Copenhagen
Frederik V´s Vej 11
DK-2100 Copenhagen
Denmark
Tel: +45 35 32 60 22
Fax:
E-mail: vania.pereira@sund.ku.dk

Dr. Chris Phillips
Forensic Genetic Unit
Department of Legal Medicine
University of Santiago de Compostela

Dr. Izanda Puncule
DNA Analysis Unit
State Police of Latvia Forensic Service
Department
Bruņinieku iela 72b
LV-1009 Riga
Latvia
Tel: +371 6720 8569
Fax:
E-mail: izanda.puncule@ekspertize.vp.gov.lv

Prof. Lutz Roewer
Department of Forensic Genetics
Institute of Legal Medicine and Forensic Sciences
Charité – Universitätsmedizin
Berlin
Germany
Tel: +49 30 450 525032
Fax:
E-mail: lutz.roewer@charite.de

Dr. Lisa Andrade Sampaio
Department of Forensic Genetic
National Institute of Legal Medicine and Forensic Sciences
University of Coimbra
Largo da Sé Nova
P-3000-213 Coimbra
Portugal
Tel: +351 918 2014 235
Fax:
E-mail: lisa.a.sampaio@inmlcf.pt

Prof. Dr. Peter M. Schneider
Institute of Legal Medicine
University of Cologne
Melatenguertel 60-62
D-50823 Cologne
Germany
Tel: +49 221 4788 8345
Fax: +49 221 4788 8370
E-mail: peter.schneider@uk-koeln.de

Dr. Livia Zatkalikova
Institute of Forensic Science
Slovenská Lupca
Priboj 560
976 13
Slovak Republic
Tel: +421 961 60 6333
Fax: +421 961 60 6309
E-mail: livia.zatkalikova@minv.sk
EDNAP mRNA NGS exercises
Assays for body fluid/tissue identification and assignment to donor(s)

Cordula Haas / Guro Dørum
Erin Hanson / Jack Ballantyne

23. October 2019, Riga
1. Collaborative exercise mRNA NGS part 2

- 2 separate MiSeq assays:
 1) targeted mRNA NGS approach for the identification of blood, saliva, semen, vaginal secretion, menstrual blood, skin
 2) cSNPs assay to associate specific mRNA transcripts to an individual

- 9 Laboratories analyzed 16 samples provided by UZH

C SNP discussion:
- Analysis of RNA/cSNP in stains is challenging
- Combining evidence – DNA, RNA and cSNPs
- Need more suitable markers → Simultaneous identification of individual and body fluid
1. Collaborative exercise mRNA NGS part 2

1) cSNP proof of concept paper
 - 12 single source samples, 51 mixtures
 - STRs, mRNA, cSNPs
 - Statistics

 → rejected by FSI Genetics
 → submitted to IJLM

2) Collaborative exercise mRNA NGS part 2

 Body fluid identification and assignment to donors using a targeted mRNA massively parallel sequencing approach – results of a second EUROFORGEN / EDNAP collaborative exercise

 S. Ingold¹, G. Dörum², E. Hanson³, D. Ballard³, A. Berti⁴, K.B. Gettings⁴, F. Giangasparo⁴, T. M.-L. Kampmann⁵, F.-X. Laurent⁶, N. Morling⁷, W. Parson⁸, C.R. Steffen⁹, A. Ulus⁹, M. van den Berge⁹, K.J. van der Gaag⁹, V. Verdoliva⁹, C. Xavier⁹, J. Ballantyne⁸, C. Haas⁸

 → submitted to FSI Genetics,
 benevolent reply from reviewers
2. Thermofisher cSNP assay

- all primer pairs are designed to be mRNA-specific
- some marker overlap between the MiSeq cSNP assay and TF assay
- cSNP amplicons are useful for body fluid identification
- blood, semen, saliva, (vaginal, menstrual and skin)

21 cSNPs in body fluid specific mRNA transcripts:
 • 7 blood (3 genes)
 • 8 semen (4 genes)
 • 6 saliva (4 genes)

In addition mRNA markers for vaginal secretion (2), menstrual blood (2), skin (3)

→ identification of all forensically relevant body fluids and skin, as well as cSNP sequencing for blood, semen and saliva samples
2. Thermofisher cSNP assay

Assigning forensic body fluids to DNA donors in mixed samples by targeted RNA/DNA deep seqeuncing of coding region SNPs using ion torrent technology

Erin Hanson, Sabrina Ingold, Guro Dorum, Cordula Haas, Rob Lagace, Jack Ballantyne

→ Ongoing work: include cSNP marker for vaginal secretion, menstrual blood and skin

→ Considering all the collaborative exercises going on at the moment, we suggest to postpone the TF cSNP assay exercise to 2020/2021, including additional cSNP markers
3. FoRNAP - Forensic RNA Profiling Grüppli

• Exchange on RNA profiling applied to casework
• Methods, Validation, Interpretation, Cases, Recommendations, etc.
• Online Platform to exchange / collect information
• 1. Meeting: 22./23. March 2018, Zurich
• 12 laboratories: Kiel, Ulm, Munich, Ljubljana, Zurich, Cologne, NFI, BKA, LKA Rheinland-Pfalz, ESR, OUS, UCF
• 2019: Collaborative exercise: 16 stains, use own RNA only or RNA/DNA co-analysis methods, CE/MPS
• 2019/2020: Questionnaire on own experience / success of RNA profiling in casework
EDNAP Exercise mtDNA quantification

Kris van der Gaag
Natalie Weiler
Titia Sijen
Arnoud Kal
EDNAP exercise mtDNA quantification

- Home made assay (cheap!)
- Quantification of autosomal, Y and mtDNA
- Long and short mt probes

<table>
<thead>
<tr>
<th>DNA</th>
<th>Probe</th>
<th>Bp</th>
<th>Dye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total DNA</td>
<td>Alu Ya5</td>
<td>127 bp</td>
<td>VIC</td>
</tr>
<tr>
<td>Y DNA</td>
<td>DYZ5</td>
<td>137 bp</td>
<td>FAM</td>
</tr>
<tr>
<td>mtDNA</td>
<td>16533-180</td>
<td>217 bp</td>
<td>JUN</td>
</tr>
<tr>
<td>mtDNA</td>
<td>2502-2571</td>
<td>70 bp</td>
<td>ABY</td>
</tr>
</tbody>
</table>
21 Labs

• 16 x Europe
• 1 x Asia
• 4 x USA

NFI provides:
• Primers and probes
• Challenging samples
• Protocols

Labs provide:
• Their own favourite sample
• Their own total/Y/mtDNA quantification method
Challenging Samples

- Control DNA
- Sperm
- Unbalanced mixture male:female
- Fragmented DNA
- Oligo short mt amplicon
- Humic acid inhibited sample
Analysis of the results

- Analysis started but delayed
- Variable results: effect of transit time?
- Unexplained results – outliers
- Data from 2 labs excluded

- Some examples in the next slides
Sample #6

Sample = 10 ng 2800M control DNA (male)

Expected results:

Quant value >0 for ALU, Y, mt short and mt long
Sample #6, 10 ng control DNA 2800M

Outliers

Similar results for Y, mt long and mt short
Sample #7

Sample = 50 pg control DNA 9947A (female)

Expected results

Quant value >0 for ALU, mt short and mt long

Quant value = 0 for Y
Sample #7 Control DNA 9947A – female

Similar results for mt short and mt long
Sample #7 Control DNA 9947A – female

Unexpected results for Y quant
Sample #5

Sample = oligo for the short mtDNA amplicon

Expected results:

Quant value >0 for mt short
Quant value = 0 for ALU, Y and mt long
Sample #5 oligo for the short mtDNA amplicon

Effect of transit time?
Sample #5 oligo for the short mtDNA amplicon

Unexpected results
Sample #3

Sample = male DNA + inhibitor humic acid

Expected results:

Quant value >0 for ALU, Y, mt short and mt long

Quant value higher for diluted sample vs undiluted sample
Sample #3 Male DNA + humic acid
Next steps

• Further analysis of the data
• Preparation of a Powerpoint presentation of results for labs to review
• Decide on publication, journal

• Update at the next EDNAP meeting
Update ENFSI DNA Expert Working Group activities

Alexander Kneppers
Chair ENFSI DNA Expert Working Group

NFI Division Biological Traces

ENFSI update EDNAP Riga October 2019
New member institutes

- State Criminal Office of Rhineland-Palatinate (LKA Mainz), Forensic Science Institute, Permanent Representative Rainer Wenzel
- Malta Police Forensic Science Service Laboratory (MPFSL), Permanent Representative Charlot Casha (already a member since 2018)
SYNERGY IN NETWORKING

> 1000 Forensic Experts

17 WORKING GROUPS
Welcome to ENFSI!

The European Network of Forensic Science Institutes (ENFSI) was founded in 1995 with the purpose of improving the mutual exchange of information in the field of forensic science. This, as well as improving the quality of forensic science delivery in Europe have become the main issues of the network. Besides the general work in the fields of quality and competence management, research and development and education and training, different forensic expertizes are dealt with by 17 different Expert Working Groups. ENFSI therefore has been recognized as the monopoly organization in the field of forensic science by the European Commission.

EXTERNAL: WWW.ENFSI.EU
Strategic plan 2018 - 2019

1. Contribute to the establishment of a European Forensic Science Area 2020 through the implementation of the Action Plan.
 1. Facilitate the establishment and sharing of BPMs
 2. Facilitate the establishment and sharing of Forensic Databases.
 3. Facilitate the establishment of new Proficiency Tests and Collaborative Exercises
 4. Guide the coordinators of several actions of the EFSA2020 Action Plan
Strategic plan 2020 - 2023

Three workshops during annual meeting in Rome with directors of institutes

In which direction do you want the Board to emphasize the next Strategic Plan?

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Percentage</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing ENFSI by strengthening the voluntary network</td>
<td>54.55%</td>
<td>30</td>
</tr>
<tr>
<td>Developing ENFSI by increasing the permanent man-power</td>
<td>36.36%</td>
<td>20</td>
</tr>
<tr>
<td>Abstention</td>
<td>9.09%</td>
<td>5</td>
</tr>
<tr>
<td>Sum</td>
<td>100%</td>
<td>55</td>
</tr>
</tbody>
</table>
Monopoly 2016 STEFA

Work Package 1	Benchmarking forensic laboratories for strategic planning purposes
Work Package 2	A fitted work tool for analytical data interpretation in forensic chemistry by multivariate analysis (chemometrics)
Work Package 3	Collaborative exercise covering the forensic disciplines of DND, document examination, fingerprint examination and handwriting examination
Work Package 4	Development of specialist fingermark visualisation training courses (FV Training)
Work Package 5	Development of a training and education concept for forensic hair and fibre experts
Work Package 6	IT forensic tools test and validation database (ValiD)
Work Package 7	Empowering forensic genetic DNA databases for the interpretation of next generation sequencing profiles (DNA.bases)
Work Package 8	Best Practice Manual – Forensic examination of digitally captured signatures and handwritten entries
Work Package 9	Best Practice Manual – Forensic comparison of soils
Work Package 10	Best Practice Manual – Fingermark visualisation at the scene of crime
Work Package 11	Management and Coordination of the Action
STEFA Project
Work Package 3

Collaborative exercise covering the forensic disciplines of DNA, document examination, fingerprint examination and handwriting examination
Introduction

Historically Proficiency Tests (PT) and Collaborative Exercises (CE) have

• Been carried out within a single discipline
• Tended to only cover the examination and interpretation aspects of the individual forensic processes.

However the “real” world is normally more complex than single examination types, and in many instances forensic material must be examined for a number of different evidence types.
Team members

Two representatives from each of

- European Network of Forensic Handwriting Experts (ENFHEX),
- European Document Experts Working Group (EDEWG),
- European Fingerprint Working Group (EFP-WG) and
- ENFSI DNA working group (DNA-WG)
Proposal

Within the four forensic discipline involved the project will:
• determine current availability and process for development of CEs
• determine the practicality of developing a multi-discipline CE
• prepare guidelines for the development of a multi-discipline CE
• develop, run and evaluate a multi-discipline CE covering the four areas of forensic science and the laboratory management processes
34 labs have enlisted to participate for all 4 disciplines
Exhibits and questionnaires sent out in May
Results back by end of August
Results obtained from 27 laboratories
Data analyses coming months
Project extended to 31st May 2020 (6 of 10 STEFA projects extended)
Horizon 2018 funding opportunities

- “Accreditation of Forensic Laboratories in Europe” (AFORE)
- Kick off meeting AFORE planned in Oslo on the 16th and 17th January 2020

<table>
<thead>
<tr>
<th>Work Package 1</th>
<th>Management and Coordination of the Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Package 2</td>
<td>Accreditation Model for Crime Scene Investigation</td>
</tr>
<tr>
<td>Work Package 3</td>
<td>Training Forensic Personnel in Accreditation Matters</td>
</tr>
<tr>
<td>Work Package 4</td>
<td>Training of Technical Experts</td>
</tr>
<tr>
<td>Work Package 5</td>
<td>Production of New and Updated BPMs</td>
</tr>
</tbody>
</table>

- BPM on Digital Image Authentication
- BPM on Forensic Examination on Fibres
- BPM on Forensic Examination of Gunshot Residues
- BPM on Forensic Handwriting Examination
- BPM on Forensic Voice Comparison
- BPM on Human DNA Analysis (Application for funding (40K EUR))
- BPM on Glass or BPM on Paint
Future grant possibilities

- ISF-P funding program 2021 – 2025 Direct Grants options for ENFSI
- “Horizon Europe” which will be operational 2021-2027

Board will not write recommendation letters of grant applications
 > Board doesn’t see itself in the position to judge over the value of different projects
 > ENFSI may provide a platform of communication by forwarding project information to relevant parties within ENFSI.
GDPR

DDI (Deutsches Datenschutz Institut) 24 months contract

professional implementation of GDPR requirements comprising the aim to give guidance to all ENFSI Expert Working Groups on how to act in line with GDPR legal requirements
Training

CEPOL:
Brought forward by ENFSI member institutes, the following two training courses on forensics are planned for 2020:
- Forensic investigation in CBRN contaminated environment
 - Chip-off and ISP to recover data from damaged or protected devices

EJTN
- The European Judicial Training Network
- draft of Memorandum of Understanding (MoU) in September

DNA Expert Working group
- Ideas to facilitate training for working group member labs
- Complex mixture interpretation
Connection to European bodies

Ideas how and which forensic issues to bring to the LEWP and the European Council.

> Acknowledgement by Law Enforcement Working Party (LEWP) for ENFSI as being an important advisory body in the field of forensic science and to be directly addressed and involved in relevant discussions

White papers
The Board’s current communication with our stakeholders like the EU commission, CEPOL, EJTN, LEWP reveals the need to have these trends – where is forensic science going to and what has to be done to fill the gaps to meet the needs of our customers
OSAC

Overseas Security Advisory Council > US department of State

ENFSI BPMs and Guidelines acknowledged by OSAC

proper, balanced and agreed content of these documents for the target groups (forensic community), a transparent and documented, public reviewing process is needed > practicable procedure for public review of ENFSI documents

OSAC requirement that only documents which went through an SDO assessment (standardizing body like ASTM or ISO) will be listed in the OSAC registry
Forensic databases

- ENFSI has created and already runs a series of databases (libraries, reference databases).
- MP2014 Direct Grant project (TDPEDFS) planned that ENFSI databases find a common external platform which enables controlled access, maintenance etc.
- All past negotiations with potential external providers (like Europol, JRC, LISA, etc.) failed.
- Inventory of existing databases (based on reporting cycle working groups)
- Identify the number and character of databases which need an external sustaining provider and maintenance.
Meetings

Joint Meeting (board/EWG)
 Krakow, Poland on 27th to 29th November 2019
EDNAP meeting
 Lisbon 5 May 2020
DNA working group annual meeting
 Lisbon 6-8 May 2020
EAFS meeting
 30 August to 3 September 2021 Stockholm
ENFSI DNA Working group Steering Committee

Chair: Sander Kneppers, NFI, the Netherlands
Vice chair: Livia Zatkalikova, Ministry of Interior, Slovakia
Secretary: Astrid Quak, NFI, the Netherlands
Treasurer: Ingo Bastisch, BKA, Germany
QCLG: June Guiness, FSR Home Office UK
R&D: Shazia Khan, MP UK
E&T: Paula di Simone, Italian National Police
Webmaster: Fabrice Noel, NICC Belgium
EDNAP: Niels Morling, Univ. Copenhagen, Denmark
Peter Schneider, ILM, Univ. Cologne, Germany

5 subgroups with subgroup chairs
DNA working group subgroups

Group A: Quality Assurance
 Tom Heylen/Annick Delaire

Group B: DNA Analysis Methods & Interpretation
 Antonio Alonso/Walther Parson

Group C: DNA Database and Legislation
 Izanda Puncule/Emilia Lindberg

Group D: Automation & Expert Systems
 Christina Forsberg/Shazia Khan

Group E: Forensic Biology and casework
 Ricky Ansell/Arnoud Kal
(Associate) Members DNA working group

• Currently 75 labs are participating in the DNA working group
 • 46 member laboratories
 • 29 associate member laboratories
4 task forces

<table>
<thead>
<tr>
<th>Task force</th>
<th>Project title</th>
<th>Project description</th>
<th>Task Force member</th>
<th>Task Force leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BPM DNA pattern recognition and comparison</td>
<td>Revising of the existing BPM</td>
<td>Ricky Ansell, Peter Gill, Walther Parson</td>
<td>Ela Zaimi</td>
</tr>
<tr>
<td>2</td>
<td>BPM Human DNA Analysis</td>
<td>Writing of BPM to cover the general accepted procedures and workflows for the processing of human DNA; from the collection of evidence to the reporting of findings</td>
<td>Ricky Ansell, June Guiness (editorial), Ate Kloosterman, Astrid Quak, Tacha Hicks, Paula di Simone, Ela Zaimi, Tom Heylen, Aikaterini Kondili, Paula di Simone, June Guiness, Tom Heylen</td>
<td>Stavroulla Xenophontos</td>
</tr>
<tr>
<td>3A</td>
<td>Guideline: Training of DNA staff</td>
<td>A: Update the Guideline for the training of staff working in the forensic DNA laboratory</td>
<td>Heli Autere, Paola Di Simone, June Guiness</td>
<td>Tom Heylen</td>
</tr>
<tr>
<td>3B</td>
<td>Guideline: ENFSI Quality Assurance Program for DNA Laboratories</td>
<td>B: Update the Guideline regarding the ENFSI Quality Assurance Program for DNA Laboratories</td>
<td>June Guiness, Elisabetta Mei, Maria Vouropoulou, Task Group 3a or 3B up to task force leader: Kua Guo Wei, Coro Fernández Oliva</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Guideline: 'Minimum Criteria for the Validation of Various Aspects of the DNA Profiling Process’</td>
<td>Update the Guideline regarding the minimum criteria for the validation of various aspects of the DNA profiling process</td>
<td>Christina Forsberg, Annick Delaire, Ron Gafny, Aikaterini Kondili, Wong Hang Yee</td>
<td></td>
</tr>
</tbody>
</table>
Contact ENFSI DNA Working group

Chair
Sander Kneppers
NFI, the Netherlands s.kneppers@nfi.nl

Vice chair
Livia Zatkalikova
Ministry of Interior, Slovakia, livia.zatkalikova@minv.sk

Secretary
Astrid Quak
NFI, the Netherlands, a.quak@nfi.nl
EMPOP Update

Dr. Walther Parson

a. Prof. Institute of Legal Medicine, Medical University of Innsbruck, Austria

adj. Prof. Forensic Science Program, Penn State University, PA, USA

walther.parson@i-med.ac.at
EMPOP v4 is fully phylogenetic
rCRS-coded: C16188T T16189C A263G -315+C

ATGGCTCGGATCTCGATACACATCCGGGCTTCGATT

QUERY

before 2010

<table>
<thead>
<tr>
<th>16188T 16189C</th>
<th>16188-16193+C</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 matches</td>
<td>0 matches</td>
</tr>
</tbody>
</table>

ALIGNMENT

HAPLOGROUPING

before 2010

before 2018

<table>
<thead>
<tr>
<th>16188T 16189C</th>
<th>16188-16193+C</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 matches</td>
<td>28 matches</td>
</tr>
</tbody>
</table>

EMPOP v3 (2010)

SAM

EMPOP v4 (2018)

SAM2

EMPOP v4 (2018)

EMMA/SAM2

Alignment-Free Query

Röck et al 2011 **FSIG**
Huber et al 2018 **FSIG**

Phylogenetic Alignment

Parson et al 2014 **FSIG**
Dür et al in prep

Haplogrouping

Röck et al 2013 **FSIG**
Dür et al in prep

EMPOP v3 R11; N = 34,617

Phylogtree

before 2018 performed manually / software (alignment)
EMPOP 4 workflow

Query

Result of database search

Phylogenetic alignment

Haplogrouping result

EMPOP workshops
EMPOP trainings
May 2018 - April 2019

EMPOP meeting at SWGDAM, Woodbridge, VG, USA, Jul 07 2018
EMPOP workshop at ISFG Summer School, Catanzaro, ITA, Sep 03 2018
EMPOP workshop at GHEP, Araraquara, BRA, Sep 13 2018
EMPOP workshop at ISFG ESWG Meeting, St. Petersburg, RUS, Sep 13 2018
NGS workshop at ISHI, Phoenix, AZ, USA, Sep 24 2018
Targeting Mitochondria, Berlin, GER, Oct 24 2018
EMPOP Meeting at SAGF, Buenos Aires, ARG, Nov 21 2018
EMPOP workshop at GEDNAP, Jena, GER, Feb 21 2019

mtDNA/EMPOP publications
May 2018 - April 2019

Scientific Working Group on DNA Analysis Methods

Interpretation Guidelines for Mitochondrial DNA Analysis by Forensic DNA Testing Laboratories

approved April 23 2019
alignment and nomenclature based on phylogenetic considerations in EMPOP

https://www.swgdam.org/publications
Metapopulation Distribution

EMPOP Release 12

<table>
<thead>
<tr>
<th>Continent</th>
<th>ORIGIN</th>
<th># samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>Guinea-Bissau</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Angola</td>
<td>5</td>
</tr>
<tr>
<td>America</td>
<td>Argentina</td>
<td>899</td>
</tr>
<tr>
<td></td>
<td>United States of America</td>
<td>871</td>
</tr>
<tr>
<td></td>
<td>Bolivia</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
<td>511</td>
</tr>
<tr>
<td></td>
<td>Paraguay</td>
<td>123</td>
</tr>
<tr>
<td>Asia</td>
<td>Pakistan</td>
<td>636</td>
</tr>
<tr>
<td></td>
<td>South Korea</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>Timor-Leste</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>United Arab Emirates</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Indonesia</td>
<td>1</td>
</tr>
<tr>
<td>Europe</td>
<td>Netherlands</td>
<td>664</td>
</tr>
<tr>
<td></td>
<td>Spain</td>
<td>656</td>
</tr>
<tr>
<td></td>
<td>Romania</td>
<td>563</td>
</tr>
<tr>
<td></td>
<td>Bulgaria</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>Slovakia</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>Portugal</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>Hungary</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Greece</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Serbia</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Ukraine</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Norway</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Kosovo</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Montenegro</td>
<td>1</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td>8227</td>
</tr>
</tbody>
</table>
Empowering forensic genetic DNA databases for the interpretation of next generation sequencing profiles (*dna.bases*)

Project aims

- **Improved database query engine**
 - SAM2 (Huber et al 2018)

- **Additional markers and populations**
 - Extension to mitogenomes and R12 (R13)

- **Tools for QC**
 - New data submission tool, extended QC capabilities

- **User friendly access and mobile devices**
 - Improved layout, new pdf reports, basic mobile version

Final consortium meeting Nov 11-13 2019, Innsbruck
Acknowledgements

Development, code programming, testing
Nicole Huber, Arne Dür (Innsbruck)

IT (Innsbruck)
Stefan Troger, Martin Pircher, vxweb

EMPOP 4 testers (international)

EMPOP analysts (Innsbruck)
Christiane Bauer, Cordula Berger, Martin Bodner, Mayra Eduardoff, Liane Fendt, Theresa Harm, Antonia Heidegger, Gabriela Huber, Anita Kloss-Brandstätter, Anna König, Simone Nagl, Harald Niederstätter, Daniela Niederwieser, Jannika Oeke, Alexander Röck, Lisa Schnaller, Filipa Simao, Christina Strobl, Catarina Xavier, Bettina Zimmermann

Richard Scheithauer (Director)
Big THANK YOU to all EMPOP contributors worldwide

EU 779485 — STEFA — ISFP-2016-AG-IBA-ENFSI
Empowering forensic genetic DNA databases for the interpretation of next generation sequencing profiles (dna.bases)

STRidER & EmPOP

Jan 2018 - Dec 2019

Sequence alignments
Increase sample size
Increase markers/regions
Further develop QC tools
User-friendly access
Save the Date

Jan 17 2020 abstract deadline; Mar 06 2020 publication of program

http://www.hm2020.hu/
STRider

Martin Bodner1, Walther Parson1,2

1 Institute of Legal Medicine, Medical University of Innsbruck, Austria
2 Forensic Science Program, Penn State University, PA, USA
Empowering forensic genetic DNA databases for the interpretation of next generation sequencing profiles (dna.bases)

Project aims
- **Improved database query engine**
 - STRAND developments
- **Additional markers and populations**
 - Extension to all marker panels currently available, more pop-data
- **Tools for QC**
 - New data submission tool, extended QC capabilities
- **User friendly access and mobile devices**
 - Improved layout, new pdf reports, basic mobile version

Final consortium meeting Nov 11-13 2019, Innsbruck
Empowering forensic genetic DNA databases for the interpretation of next generation sequencing profiles (dna.bases)

STRidER & EmPOP

Jan 2018 - Dec 2019

Sequence alignments
Increase sample size
Increase markers/regions
Further develop QC tools
User-friendly access
Update VISAGE

Catarina Xavier1, Walther Parson1,2

1 Institute of Legal Medicine, Medical University of Innsbruck, Austria
2 Forensic Science Program, Penn State University, PA, USA
WP2 MARKER DISCOVERY

D2.1 Markers for **Basic** Prototype Tool (M3)
- Appearance - 41 SNPs (EMC)
- Ancestry - 116 SNPs (USC)
- Age (blood/saliva) - 5 genes / 32 CpG sites (JU)

D2.2 Markers for **Enhanced** Prototype Tool (M18)
- Appearance - 211 SNPs (EMC)
- Ancestry - 206 SNPs + 22MHTs (USC)
- Age (blood/saliva) - 8 genes / 42 CpG sites (JU)
- Age (semen) - 13 genes / 13 CpG sites (JU)
WP3 PROTOTYPE TOOL DEVELOPMENT

Started in M1 (May 2017) - MUI

D3.1 (M12) Report on new MPS prototype tool(s) for constructing basic composite sketches from DNA

D3.2 (M24) Report on forensic developmental validation of new MPS prototype tool(s) for constructing basic composite sketches from DNA
WP3 PROTOTYPE TOOL DEVELOPMENT

Started in M1 (May 2017) - MUI

D3.1 (M12) Report on new MPS prototype tool(s) for constructing **basic** composite sketches from DNA
D3.2 (M24) Report on forensic developmental validation of new MPS prototype tool(s) for constructing **basic** composite sketches from DNA
D3.3 (M24) Report on new MPS prototype tool(s) for constructing **enhanced** composite sketches from DNA
WP4 STATISTICAL MODELLING

Started in M1 (May 2017) - UoK

D4.1 (M24) Report on new integrative statistical framework for combined appearance, age, and ancestry prediction from DNA

D4.2 Develop prototype software for constructing composite sketches from DNA (M36)
WP5 ETHICS

Started in M1 (May 2017) - KCL

D5.1 (M12) Report on current and expected legal and regulatory landscape at
(a) EU level and
(b) specific for each participant country

D5.2 (M24) Report on challenges to the implementation of FDP in an ethical and societal responsibility manner, with special emphasis on privacy and data protection
WP6 IMPLEMENTATION

Starting in M25 (May 2019) - BKA

D6.1 Implementation of MPS prototype tools for constructing basic composite sketches from DNA (M36)
WP7 EDUCATION AND TRAINING

Started in M19 (Nov 2018) - UKK

D7.1 (M24) Report on European-wide inquiry on training needs among stakeholders and end users

D7.2 Develop training curricula tailor-made for the different target groups on technical, societal, regulatory challenges of constructing composite sketches from DNA in forensic practice (M36)
Acknowledgements

Catarina Xavier
Antonia Heidegger
Harald Niederstätter
Maria de la Puente
Walther Parson
iSFG

50 Years
International Society for Forensic Genetics
1968 - 2018
28th ISFG Congress Prague

1,017 registered participants
from 64 countries

753 submitted abstracts
 66 oral presentations (incl. 6 lectures)
 637 posters up

14 workshops - 473 participants

Thank you to all workshop coordinators and presenters
Recommendations of the DNA Commission

DNA Commission of the International Society for Forensic Genetics: Assessing the value of forensic biological evidence - guidelines highlighting the importance of propositions. Part II: Evaluation of biological traces considering activity level propositions

Peter Gill et al
ISFG DNA Commissions in preparation

DNA Commission of the International Society for Forensic Genetics:
“Interpretation of Y-STR analysis”

Lutz Roewer et al in preparation
Conference Volumes of the International Society for Forensic Genetics

- Progress in Forensic Genetics 17
 27th Congress of the International Society for Forensic Genetics, Seoul, Republic of Korea 2017
 Forensic Science International Genetics Supplement Series, Vol. 6, No. 1, 2017

- Progress in Forensic Genetics 16
 26th Congress of the International Society for Forensic Genetics, Kraków, Poland, 2015
 Edited by: W. Branicki, T. Kupiec and M. Prinz

- Progress in Forensic Genetics 15
 25th Congress of the International Society for Forensic Genetics, Melbourne, Australia, 2013
 Edited by: A. Linacre and N. Morling
FSIG and FSIR

IF (2018) = 4.884
Member statistics

Total number (September 2019): 1393
Countries of origin: 84

Membership has increased by 68 persons since August 2017

Changes 2017-2019:
New members accepted: 330
Members removed: 246
1393 ISFG members from 84 countries

- United States
- Germany
- Spain
- United Kingdom
- Australia
- Italy
- Argentina
- Poland
- Denmark
- Switzerland
- Brazil
- China
- Korea, Republic of
- Netherlands
- United Arab Emirates
- Austria
- Belgium
Congress Travel Bursaries

Support young scientists presenting at an ISFG congress
Status of ISFG Working Groups

https://www.isfg.org/Working%20Groups

<table>
<thead>
<tr>
<th>Working Group</th>
<th>Working Group Chair (Location)</th>
<th>Recent Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Uta-Dorothee Immel (Mainz)</td>
<td>Met June 2018 (Freiburg), June 2019 (Cologne), Sept 2019 (Prague)</td>
</tr>
<tr>
<td>English (ESWG-ISFG)</td>
<td>Andreas Tillmar (Linköping)</td>
<td>Met Sept 2018 (St. Petersbourg), Sept 2019 (Prague); conducted 2018 and 2019 Relationship Testing Workshops</td>
</tr>
<tr>
<td>French</td>
<td>Diane Séguin (Montréal)</td>
<td>Met June 2018 (Crete), June 2019 (Brussels), Sept 2019 (Prague)</td>
</tr>
<tr>
<td>Italian (Ge.F.I.)</td>
<td>Loredana Buscemi (Ancona)</td>
<td>Met Sept 2018 (Catanzaro), Sept 2019 (Prague); hosted ISFG Summer School in Sept 2018; prepared recommendations for ID</td>
</tr>
<tr>
<td>Spanish & Portuguese (GHEP-ISFG)</td>
<td>Ulises Toscanini (Buenos Aires)</td>
<td>Met Sept 2018 (Araraquara), Sept 2019 (Prague); published 3 articles since 2017; active proficiency test program</td>
</tr>
<tr>
<td>Chinese</td>
<td>Yiping Hou (Sichuan)</td>
<td>Met Aug 2017 (Seoul) with Asian DNA WG, Sept 2019 (Prague)</td>
</tr>
<tr>
<td>Polish</td>
<td>Wojciech Branicki (Krakow)</td>
<td>Met Nov 2017 (Krakow), Sept 2019 (Prague)</td>
</tr>
<tr>
<td>DNA Commission</td>
<td>Peter Gill (Oslo)</td>
<td>Published 2 articles since 2017</td>
</tr>
<tr>
<td>EDNAP</td>
<td>Niels Morling (Copenhagen)</td>
<td>Actively meet twice a year; published 2 articles since 2017</td>
</tr>
<tr>
<td>CaDNAP</td>
<td>Cordula Berger (Innsbruck)</td>
<td>Met Sept 2019 (Prague); organizing bi-annual proficiency tests</td>
</tr>
</tbody>
</table>
Proposal for an Arabian Speaking Working Group

• There are 73 Arabian speaking members of ISFG (as of March 2019)
• Members come from 11 countries: United Arab Emirates, Oman, Qatar, Kuwait, Iraq, Bahrain, Algeria, Jordan, Lebanon, and Kingdom of Saudi Arabia
• Proposal provided by Dr. Rashed Alghafri, Head of Biology and DNA Section, Dubai Police, United Arab Emirates
• >50 Arabian speaking members have expressed support for the idea of initiating this working group
• Goal is to exchange experience, quality control and stimulate cooperation between members
Welcome
In this edition of our ISFG newsletter, we provide information about the upcoming ISFG Congress in Prague, on new short-term fellowships for collaborative research & travel, about new publications as well as about the ISFG Congresses in 2021 and 2023.

annex to this newsletter. Please bring a copy of this agenda to the meeting to identify yourself as a member of our society.

At the meeting, elections will be held for the positions of President, Treasurer and Representative of the Working Parties. To save time, we will introduce a new "streamlined" election procedure where all three roles will be on the same ballot sheet.
Thank you Mecki

2003 ISFG Meeting Arcachon, France
Elected as Representative of Working Parties

2011 ISFG Meeting Vienna, Austria
Elected as President

Vice-president since 2015

Mecki Prinz, New York
We decided to keep the membership fee at Euro 60 / year
Best Poster Presentation @ISFG Prague

Piyamas Kanokwongnuwut (Detection of cellular material within handprints)
Best Oral Presentation @ISFG Prague

Sofie Claerhout (MPS panel with 12,523 Y-SNP markers)
ISFG Scientific Award

Christopher Phillips (AIMs, SNP+STR software)

Thore Egeland (paternity statistics software)
New Honorary Members

Hermann Schmitter & Ate Kloosterman
EDNAP Members in Bramshill 1990
Honorary ISFG members in 2019
Election of Board members

President
John Butler

WG Representative
Leonor Gusmao

Treasurer
Marielle Vennemann
iSFG 2021

More information coming soon.
A new software suite for data management and probabilistic interpretation of DNA profiles

Alexander Kneppers
NFI Division Biological Traces

ISFP-2017-AG-FORENSIC - DNAxs2.0

EDNAP October 2019
History

- NFI experience with development of:
 - Automation solution for the laboratory process
 - Automation solution for the storage of samples
 - Software tools used in DNA case work
 - Bonaparte/Napoleon
 - LOCIM tool
 - LRmix/LRmix Studio
 - SmartRank
 - MixCal
Key projects within NFI strategy

Projects to

- Allow more capacity for more casework and more traces per casework
- Allow a faster workflow and fast answers in the Police investigation process > investigative leads
- Allow a reduction in costs in DNA profiling
- Enhance evidential value by gathering more information from traces by development and implementation of
 - Molecular tools
 - Analytical and Statistical tools
Workflow: Following a case

Reference samples

Client → Frontdesk → Planning → Trace recovery → DNA lab → Report by primary RO → Review by second RO → Report to client → Client

R&D

Rework

Dutch DNA database
Support tools in casework interpretation

- Growing number of markers in profiling systems
 - Global STR marker systems available
 - Standard kit the PPF6C kit (27 loci)
- DNA-profile comparison therefor increasingly
 - complex
 - time-consuming
 - error-prone
- Statistical support integrated in casework workflow
What is DNAxs

- NFI developed DNA eXpert System
 - Automatic comparison of sets of DNA-profiles
 - Summary statistics on allele numbers and genotype reproducibility
 - Mixture interpretation
 - Statistical Analysis (March 2019 release)

- In house built (Java)
- Web application (browser)
- Server based
- Validated according to ISO 17025 and NFI standards
- In use since December 2017
- Three releases per year
Functionality of DNAxs

- View profiles
 - Overview of runs and peak heights
 - Bar graphs visualizing alleles/peaks heights/read counts
 - Electropherograms, link to pdf of EPG
- Match profiles
 - Trace vs person
 - Trace vs trace
 - Match matrix
- Derive profiles
 - LoCIM inference of major profile, consensus and composite profile
- Statistics
 - DNAStatistX module
 - Summary statistics (TAC/MAC/type I/II/III loci)
- Supports several NFI profiling workflows (from HVC to complex/severe cases)
- Connectivity to other software LIMS/CODIS/SmartRank/DNAStatistX
- Audit trail
Quality control

- Internal validation according to ISO 17025 standard and internal procedures
 - Validation plans
 - Validation reports
- Q-procedure and software manual
- Internal audit
- External audit
- Integration testing
DNAStatistX

- Based on EuroForMix R code
- As a separate module within DNAxs
- MLE method
- Degradation module included
- Stutter module not included
- Dye Specific detection thresholds
- Tool for number of contributors
DNAStatistX features

- MLE method
- Up to four contributors
- Can handle multiple replicates
- Degradation model
- Model validation

\[
LR = \frac{P(E|Hp)}{P(E|Hd)} = \frac{\sum w(E, Gp|\beta_p)P(Gp|Hp)}{\sum w(E, Gd|\beta_d)P(Gd|Hd)}
\]

- Aim for a maximum run time of 24h for a four-person mixture with three replicates and four unknowns under Hd
From EuroForMix to DNAStatistX: What’s the same?

LR calculation using maximum likelihood estimate (MLE)

User:
- Define hypotheses

Likelihood computation (under Hp and Hd):
1. Estimate parameters (using optimizer, trial and error)
 - Mixture proportions
 - Peak height expectation
 - Peak height variance
 - Degradation slope
2. Determine possible genotype combinations
3. Calculate genotype probabilities (incl. drop-in)
4. Calculate peak height probabilities (incl. drop-in/-out) for each genotype combination
5. Compute profile likelihood

LR calculation:
- Likelihood Hp / likelihood Hd
From EuroForMix to DNAStatistX: What’s different?

- Parts of the EuroForMix code implemented in DNAStatistX
 - Maximum Likelihood Estimate (MLE)

<table>
<thead>
<tr>
<th></th>
<th>EuroForMix</th>
<th>DNAStatistX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>R and C++</td>
<td>Java</td>
</tr>
<tr>
<td>Optimizer</td>
<td>nlm</td>
<td>CMA-ES</td>
</tr>
<tr>
<td>Model validation</td>
<td>AdaptIntegrate</td>
<td>TrapezoidIntegrator</td>
</tr>
<tr>
<td>Rare allele frequency</td>
<td>Lowest frequency at particular locus</td>
<td>1/(2*size of population)</td>
</tr>
<tr>
<td>Detection threshold</td>
<td>Overall</td>
<td>Dye (locus) specific</td>
</tr>
</tbody>
</table>
Which EuroForMix features in DNAStatistX?

- **Degradation model**
 - NGM profiles sometimes showed degradation for research samples and often for casework samples
 - All PowerPlex Fusion 6C (PPF6C) profiles showed degradation to some extent

 Configurable in DNAStatistX, ON by default

- **Stutter model**
 - Types of stutter:
 - GeneMapper/GeneMarker etc: -2, -1, -0.5, +0.5, +1 repeat unit
 - EuroForMix: -1 repeat unit
 - Less specific than profile analysis software, very time consuming

 NOT (YET) in DNAStatistX
Which EuroForMix features in DNAStatistX?

- Model validation
 - Important quality check: Do observed PHs follow model’s expected PHs

Implementation in DNAStatistX, for every analysis
Developmental validation of DNAStatistX

- **Accuracy:**
 - Comparison to analyses using ground truth parameters
 - Comparison to EuroForMix

- **Precision:**
 - Repeated analyses
 - Optimizer iterations

- **Robustness:**
 - Analyses that should fail

- **Sensitivity:**
 - True positives/ false negatives (Type I errors)

- **Specificity:**
 - True negatives/ false positives (Type II errors)

Using a range of case type samples
Collaboration with international partners

- Additional funding for research and development
- Enhance quality of software by incorporating integration testing
- Develop DNAxs in a multi-lab tool for profile comparison/evaluation/interpretation
- Across laboratory validation
- Possibility to disseminate software to other forensic institutes

ISFP-2017-AG-FORENSIC - DNAxs2.0
Create guidelines by

- Examining:
 - True positives/negatives - False negatives/positives
 - Effect replicates
 - Effect number of contributors
 - Effect number of drop-outs
 - Etc.

- Defining:
 - Sample types/hypotheses for which LR calculations can be informative
 - LR threshold
 - What to consider when examining results
 - What to do if model validation fails
 - Etc.
Define guidelines for use in forensic DNA casework to:

- Ensure chance of obtaining ‘false-positive’ results is close to zero
- Minimise the number of false-negative results
- Perform LR calculations when regarded useful
- Aim for uniformity among reporting officers
Calculate & validate LR

Log10LR > 10?

Log10LR > 6?

Log10LR > 4?

Is rework advantageous & possible?

Rework & calculate & validate LR

Report LR

Report no LR

Is rework advantageous & possible?

Rework (replicates)

1p, 2p ≤ 15, 3p ≤ 10, 4p ≤ 5 mismatches?
Future functionalities

• MPS data; first module for mtDNA
 • only accessible with mtDNA data
 • Sequential matching
 • Release planned for mid 2019
• EMPOP searches
• mtDNA matchbox
• CODIS export
• Followed with STR MPS data
• Under research investigation
 - Stutter model inclusion vs use of laboratory stutter filtered data only
 - Implementation method to estimate number of contributors
 - Deconvolution of all mixed profiles followed by LR computation
Fast identification workflow

• Fast profile and matching results.
• Speed up of tracing process in the early stages of investigation by having investigative leads.

• Automation of analyses of trace profiles
• Automated SmartRank search
• Automated determination of major donor
• Possibility to switch route to manual process for non-processable data
• Automated feedback of match search results to customer IT systems (National Police/Public Prosecution)
Fast identification workflow

DNAxs 2.0 EDNAP Riga

Extraction → Quantification → PCR → Analyses → Profile validation

LIMS

DNAxs

DNAStatistics

SmartRank

Case and trace information
DNA concentration

Profiles per case
SmartRank search
Elimination and CODIS
for profiles individually

Search result
Cross contamination check

Information on approved/rejected profile

Output results to Police/Public Prosecution

WorkflowXS management and control center

Approved profiles

Automated Profile Analyses

SoftGenetics/HIDauto

PLATE DOC

PLATE DOC

VAL

HID

Approved profiles

All profiles per plate

Cross Contamination checker

Search result

Cross contamination check

Profile validation

CODIS

Elimination

WorkflowXS management and control center

SoftGenetics/HIDauto
Time lines

• Kick off meeting February 2019
• Pre validation meeting October 2019
• Validation period October 2019 – Q1-2020
• Dissemination workshops February/April 2020
 • Netherlands
 • Slovenia
27th & 28th FEBRUARY 2020
The Hague, The Netherlands
21st & 22nd APRIL 2020
Ljubljana, Slovenia

Workshop details

The workshops will include a series of scientific presentations regarding the functionalities, development, validation, testing and implementation of the DNAxs software. A demonstration will be given after which various hands-on exercises will be performed. The DNAxs software will be provided to the participants for use after the workshop and can be used thereafter within their own laboratories.

Learning outcomes

- Get familiarized with the DNAxs software.
- Gain hands-on experience using the DNAxs software.
- Be able to use the software on own cases.
- Know what actions are required for validation and implementation into own laboratory.

Intended audience

The workshop is intended for laboratories and scientists active in forensic DNA analysis in Europe who are interested in using DNAxs to aid in profile comparisons and evaluation of mixed DNA profiles. The presentations will be aimed towards an audience with experience in DNA profile interpretation, statistical calculations and population genetics with basic computer skills.

Registration deadline: 6th December 2019

Applicants can register their interest for one of the two locations (The Hague or Ljubljana) and will be contacted on 13th December 2019 to confirm whether they can participate or not.

Costs: no workshop fee nor software costs required. An amount of 100 euro p.p. is required to cover lunch, dinner and software distribution costs. Travel and accommodation at own expense.

The DNAxs 2.0 project is funded by the European Union’s International Security Fund – Police (Proposal Number: 820338, Proposal Acronym: DNAxs 2.0)

For further information and registration please visit

https://www.forensicinstitute.nl/research-and-innovation/european-projects/dnaxs
Short video with highlights functionalities DNAxs
For more information on DNAxs and to pre register for the workshop see:

www.forensicinstitute.nl/research-and-innovation/european-projects/dnaxs
Acknowledgements

Software development
• Christophe Creeeten
• Mignonne Fakkel
• Jerry Hoogenboom
• Pauline Hovers
• Jeroen de Jong
• Dennis Kruize
• Larissa van Ommen
• Raymond Parag
• Martin Slagter
• Jennifer van der Linden
• Jennifer Verdier

Reporting officers
• Patrick Dieltjes
• Jord Nagel
• Heidi van Paassen
• Klaas Slooten
• Kristy Steensma

Information technology/network
• Arie Koppelaar

Oslo University Hospital
• Peter Gill
• Øyvind Bleka

Research
• Corina Benschop
• Titia Sijen
mtDNA heteroplasmy exercise

Dr. Walther Parson
assoc. Prof. Institute of Legal Medicine, Medical University of Innsbruck, Austria
adj. Prof. Forensic Science Program, Penn State University, PA, USA
walther.parson@i-med.ac.at

EDNAP Meeting, Riga, Latvia, Oct 23 2019
Suggestion for an EDNAP Heteroplasmy exercise

Compare PHP/LHP between CE and MPS on reference samples

25 labs agreed to participate (+GMI)

would be a waste of time and money for a technical study only

add a somatic mutation rate study using hair shafts

 learn about progression of PHP/LHP along the hair shaft

estimate size of bottleneck

provide scientific basis for forensic interpretation of evidence

(current guidelines are old)
EDNAP study 55 hair shafts by 10 laboratories

Results
Different segregation of 16234Y at varying ratios
Also at 16093 and HV2 stretch
16129 transition in one hair
16195 PHP in one hair segment
16304 PHP in one hair segment

Donor’s haplotype (blood)
16093C 16129A 16162G 16172C 16234Y 16304C
73G 249DEL 263G 309.1C 315.1C (hg F1a1)

results confirmed later by independent studies (e.g. Desmyter et al 2016)
Somatic mutation rate study

Ask 3 volunteers with long hair
 no heteroplasmy in buccal cells
 moderate heteroplasmy in buccal cells
 severe heteroplasmy in buccal cells

Protocol for hair sample preparation
 excise root
 clean hair shafts (manually)
 cut 2 cm segments
 perform mild lysis (w/o DDT; digest any remaining DNA)
 perform DNA extraction
Sampling scheme

1 root portion (GMI)
> 12 segments a 2 cm
<table>
<thead>
<tr>
<th>Method</th>
<th>n</th>
<th>CR / HVS-I/II</th>
<th>Mitogenome</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM</td>
<td>1</td>
<td>31</td>
<td>16</td>
</tr>
<tr>
<td>S5</td>
<td>12(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MiSeq</td>
<td>10(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE/Sanger</td>
<td>8(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>31(^b)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) according to the survey (Aug 20 2019)
\(^b\) double specifications
Hair samples

Hair samples prepared @GMI

A total of > 650 hair segments

420 DNA extractions
 360 segments for MPS (Illumina/Ion)
 60 segments for Sanger (CE)

225 purified hair segments
 (to be extracted by labs)
 180 segments for MPS (Illumina/Ion)
 45 segments for Sanger (CE)

Gabriela Huber
Experimental setup

Illumina/Ion

Extracted DNA from hair shafts

Prepared hair segments
Experimental setup
Sanger

Extracted DNA from hair shafts

<table>
<thead>
<tr>
<th>Segment</th>
<th>PA016</th>
<th>PB016</th>
<th>PC016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>GMI</td>
<td>GMI</td>
<td>GMI</td>
</tr>
<tr>
<td>S1</td>
<td>L21</td>
<td>L23</td>
<td>L25</td>
</tr>
<tr>
<td>S2</td>
<td>L22</td>
<td>L24</td>
<td>Reserve</td>
</tr>
<tr>
<td>S3</td>
<td>L23</td>
<td>L25</td>
<td>Reserve</td>
</tr>
<tr>
<td>S4</td>
<td>L24</td>
<td>L21</td>
<td>Reserve</td>
</tr>
<tr>
<td>S5</td>
<td>L25</td>
<td>L22</td>
<td>Reserve</td>
</tr>
<tr>
<td>S6</td>
<td>L21</td>
<td>L23</td>
<td>Reserve</td>
</tr>
<tr>
<td>S7</td>
<td>L22</td>
<td>L24</td>
<td>Reserve</td>
</tr>
<tr>
<td>S8</td>
<td>L23</td>
<td>L25</td>
<td>Reserve</td>
</tr>
<tr>
<td>S9</td>
<td>L24</td>
<td>L21</td>
<td>Reserve</td>
</tr>
<tr>
<td>S10</td>
<td>L25</td>
<td>L22</td>
<td>Reserve</td>
</tr>
<tr>
<td>S11</td>
<td>L21</td>
<td>L23</td>
<td>Reserve</td>
</tr>
<tr>
<td>S12</td>
<td>L22</td>
<td>L24</td>
<td>Reserve</td>
</tr>
</tbody>
</table>

Prepared hair segments

<table>
<thead>
<tr>
<th>Segment</th>
<th>PA018</th>
<th>PB018</th>
<th>PC018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>GMI</td>
<td>GMI</td>
<td>GMI</td>
</tr>
<tr>
<td>S1</td>
<td>L21</td>
<td>L23</td>
<td>L25</td>
</tr>
<tr>
<td>S2</td>
<td>L22</td>
<td>L24</td>
<td>Reserve</td>
</tr>
<tr>
<td>S3</td>
<td>L23</td>
<td>L25</td>
<td>Reserve</td>
</tr>
<tr>
<td>S4</td>
<td>L24</td>
<td>L21</td>
<td>Reserve</td>
</tr>
<tr>
<td>S5</td>
<td>L25</td>
<td>L22</td>
<td>Reserve</td>
</tr>
<tr>
<td>S6</td>
<td>L21</td>
<td>L23</td>
<td>Reserve</td>
</tr>
<tr>
<td>S7</td>
<td>L22</td>
<td>L24</td>
<td>Reserve</td>
</tr>
<tr>
<td>S8</td>
<td>L23</td>
<td>L25</td>
<td>Reserve</td>
</tr>
<tr>
<td>S9</td>
<td>L24</td>
<td>L21</td>
<td>Reserve</td>
</tr>
<tr>
<td>S10</td>
<td>L25</td>
<td>L22</td>
<td>Reserve</td>
</tr>
<tr>
<td>S11</td>
<td>L21</td>
<td>L23</td>
<td>Reserve</td>
</tr>
<tr>
<td>S12</td>
<td>L22</td>
<td>L24</td>
<td>Reserve</td>
</tr>
</tbody>
</table>
MitoMetrics is an adhoc-forming group of scientists and practitioners working with mtDNA in the field of forensic genetics.

We plan to conduct a world-wide study to evaluate heteroplasmy in hair and provide a phylogenetically broad data basis to aid interpretation of mtDNA evidence in forensic genetics.

Vania Pereira (GHEP countries) Vania.Pereira@sund.ku.dk
Walther Parson (other worldwide partners) Walther.Parson@i-med.ac.at
Experiments / lab

<table>
<thead>
<tr>
<th>SANGER CR</th>
<th>DNA</th>
<th>Hair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical study</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Somatic study</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MPS (CR/mtG)</th>
<th>DNA</th>
<th>Hair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical study</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Somatic study</td>
<td>18</td>
<td>9</td>
</tr>
</tbody>
</table>

Shipment of samples - End of October (on a Monday)

Results send back - End of Jan 2020?

Could present at EDNAP Meeting Spring 2020
Series of exercises relating to DNA transfer
Proposal for new collaborative EDNAP exercises

By: Bas Kokshoorn (Netherlands Forensic Institute) - b.kokshoorn@nfi.nl.
Roland van Oorschot (Victoria Police, Australia) - roland.vanoorschot@police.vic.gov.au.

Date: September 2019.

Why?

There is an increasing need for forensic scientists to provide guidance on the likelihoods of DNA from a person of interest being present on a specific collection site/location given alternative scenarios. Our capacity to provide such guidance is limited due to scarce availability of relevant data to determine probabilities of contribution of a person-of-interest within a profile of a sample taken from a particular type of item/surface, given a specific event. Further, we know that methodologies, procedures and threshold criteria applied from sampling area determination through to profile generation and interpretation, impact the profile outcomes used in these likelihood calculations. Our knowledge of the extent of these impacts is however limited, which impacts the application of the available DNA transfer related data.

In addition, there appears to be variation among scientists who should provide guidance on transfer of DNA in activity level assessments, more specifically with respect to: (1) understanding of factors affecting the transfer, persistence, prevalence and recovery (TPPR) of DNA; (2) sourcing of relevant data; means of addressing the questions and providing the guidance; and (3) levels/standards of training and proficiency testing on the interpretation and reporting aspects of activity level assessments.

We would like to conduct a series of exercises with the support from, and under the auspices of, EDNAP as they are uniquely established in part to promote and conduct such trials, have an excellent track record, link into a large diverse group of independent laboratories, and are enthusiastic participants.

Aims

The proposed series of exercise aims to:

- Generate, and make accessible, relevant data to assist activity level assessment.
- Acquire a better understanding of the impact of different sets of methodologies, procedures and thresholds on DNA yields and profile types.
- Build awareness and knowledge associated with DNA transfer and activity level assessment.
- Become aware of the abilities and means of individuals to identify factors within scenarios relevant to the transfer of DNA, and address activity level questions associated with the transfer of DNA.
- Set a benchmark on the current status of ‘activity level reporting’ in forensic genetics. Depending on the outcome, this series of exercises may illustrate the need for development in certain areas, and will allow for targeted training and research.
How

- A series of four separate exercises themed around a common/relevant set of items and scenarios.
- Participation in exercises to be offered to EDNAP laboratories plus other laboratories around the world.
- Participation can be for one or more exercises in the series.
- No dedicated funding will be available for this series of exercises. Resources will have to be made available by laboratories upon participation. Each exercise will be designed such that the work load and resources required by a participating lab are deemed acceptable for most interested participants.
- A reasonable period of time will be provided to complete each exercise.

Type of exercises

Exercise B: Experimental data generation. Lab participation. Laboratory & paper/electronically based.

See attached for general details of draft plan for each of the four exercises A to D.

When

- The intent is to commence the first exercise (Exercise A) in the first half of 2020.
- Exercise A will be followed by Exercises B, C and D.
- The exercises will run after each other (no overlap in respect to participant workloads), with the aim of running no more than 2 per year.

Governance and reporting

- Program of exercises to be led by Bas Kokshoorn and Roland van Oorschot.
- Each exercise will also include one or more associated investigators who will co-lead an exercise.
- Potential participating labs will be invited to participate prior to each exercise with general details about the exercise including: aims, what is expected of the participants, anticipated workload, start and completion dates, and deadline to reply.
- The exercise leads will distribute the relevant materials to participants, be available to address questions, analyse the collated returns from participants, prepare a report, and disseminate findings.
- The findings will be reported back to participating laboratories.
- One or more of the exercise leads will attend at least one of the EDNAP meetings each year the program is running to provide status reports.
- Findings of exercises will also be prepared as manuscripts for submission to peer reviewed journals.
- Relevant data collected through exercises A and B will be made available / accessible to participants and the wider community through publications as supplementary materials of associated manuscripts in peer reviewed journals and/or other suitable platform.
- Participating laboratories (and individuals depending on the circumstances) will be identified as one of the participating laboratories in an exercise, but laboratories and individuals will be de-identified within the results and not associated with any specific results (key only known to exercise leads).
Draft plan of exercises

(Note, this is a brief outline of the exercises. Details will be discussed and communicated before exercises are finalized and started. Elements may change during further program development)

Exercise A: Case file data collection

A lot of useful data is stored in case files. Collation, comparison and sharing of case work data will: a) provide a bulk of data, which will be made available, that can be mined for data most suitable to the user’s need; b) allow assessment and transparency of the impact of different sets of methodologies and procedures on profile types. This will benefit those conducting activity level assessments as well as those interested in comparing success rates to help drive potential improvement opportunities in respect to the methodologies and procedures they utilise as part of their service delivery. Additionally, questions will be asked to gain insight on how readily the requested information was able to be sourced within each laboratory.

Participants will be asked to collate as much available information as possible relating to 2 to 4 specific relevant item types. The requested information will relate to: item details; methodologies applied from sample identification and collection through to DNA extraction, DNA quantities and profiling; types profile generated. No case identifying information will be requested. The number of items per item type for which data is requested will be capped. A user friendly spreadsheet template, including drop-down options, will be supplied to participants to facilitate recording of requested data.

Cost: Time (approx. 36h per participating laboratory).

Associate exercise lead: Dr Bianca Szkuta (Deakin University, Australia).

Exercise B: Experimental data generation

Data where the ground truth regarding the activity of interest is known is most valuable. However, it is costly and time consuming to generate and cannot be practically done for all situations arising. Further, data generated with one set of methodologies and procedures may have limitation when used where the casework data was generated using different methodologies.

Depending on the further development of the exercise, each lab will be sent a set of a), b) or c):
 a) A prepared set of samples of known ground truth.
 b) A specific set of items, with clear instruction on what activities are to carry out with them.
 c) A clear description of the items to acquire and the activities to conduct with them; and/or samples to be collected from known ground truth situations.

The participating lab will collect samples and process them to generate profiles as per their in-house methods and procedures. The total number of samples to be processed will not exceed 30 and may include reference samples. A user friendly spreadsheet template will be supplied for participating labs to enter their generated data.

Cost: Time (approx. 36h) + consumable and equipment use for up to 30 samples (per participating laboratory).

Associate exercise leads: To be decided.
Exercise C: Case assessment

Those performing (and those who may be asked to perform) activity level assessments will identify potential forensic examinations that may differentiate between relevant scenarios in a case. To this end, they need to be aware of the factors impacting DNA transfer, persistence, prevalence and recovery (DNA-TPPR), as well as be able to provide guidance to the requesting authority on the best courses of action. This exercise will test the proficiency of individuals to identify relevant examinations and DNA-TPPR factors of relevance.

This exercise is to be completed by individuals. Participating labs will be able to request multiple tests to be completed by individual staff members. To assist reflection of outcomes, questions will also be asked relating to participants’ level of training, casework experience and court experience. Individual participants will remain anonymous. This will be a paper and/or electronic exercise.

Outcomes will inform us of the general level and variation of abilities of those providing (and those who may be asked to provide) activity level guidance, and if there is a need to enhance training efforts.

Cost: Time (approx. 12h per participant).

Associate exercise leads: To be decided.

Exercise D: Evaluation of findings

Those performing activity level assessments need not only be aware of the factors impacting DNA-TPPR and be able to recognise relevant factors within various scenarios, but also be able to provide the requested guidance on the matter at hand. This requires consideration of scenarios, sourcing of relevant data, conduct of analyses / assessment, and reporting the guidance. This exercise will test the proficiency by which relevant data is sourced and utilised. It will also collate and compare the current means employed to conduct assessments and provide the requested guidance.

This exercise is to be completed by individuals. Participating labs will be able to request multiple tests to be completed by individual staff members. To assist reflection of outcomes, questions will also be asked relating to the participants’ level of training, casework experience and court experience. Individual participants will remain anonymous. This will be a paper and/or electronic exercise.

Outcomes will inform us of the general level and variation in abilities of those providing (and those who may be asked to provide) activity level guidance and the current state of means employed within and among laboratories in respect to reporting on activity level questions. It may also point to needs and directions of future training efforts.

Cost: Time (approx. 20h per participant).

Associate exercise leads: To be decided.
EDNAP collaborative exercise on DNA transfer

Proposal

- Roland A.H. van Oorschot
 (Victoria Police, Australia)

- Bas Kokshoorn
 (NFI, the Netherlands)

van Oorschot et al. 2018.
DNA transfer in forensic science: a review.
Forensic Science International: Genetics 38:140-166.
Proposal for series of exercises on DNA transfer

- Introduction to the topic of the series of exercises
- Briefly outline the series of exercises A to D
- Detailing of exercises A and B
- Discussion of all exercises (focus on A and B)
What is at issue?

- **Increased sensitivity and specificity of genetic testing**
 excellent opportunities for intelligence and investigative purposes

- **Relevance of biological traces (and trace DNA in particular)**
 in connection to disputed activities increasingly debated
 Experts are expected to testify in court on DNA transfer issues

- **Push from courts and experts alike to move from expertise only to evidence based opinions**
 Data on DNA transfer, persistence, prevalence and recovery (DNA-TPPR) needed.
Sources of data

1) Perform experiments that mimic case circumstances to assign probabilities.

2) Use literature values from studies that represent similar properties to the case circumstances and outline the differences or limitations in the report.

3) Consider a range of reasonable values for the probability of interest and examine the sensitivity of the LR to it.

4) Assign a value based on the expert's experience or knowledge, preferably supported by structured analysis of similar case files, which can be justified by an argument, and be disclosed for review, (as required, for example, by the ENFSI guideline), even though the invoked expert knowledge cannot be directly ascribed to a particular study, experiment or validation.

Availability of data

- Case specific experiments limited by constraints on time and resources

- Published data increasingly relevant and available

- However difficult to mine and assign appropriate probabilities
Replication versus iteration...

- **Mechanisms behind DNA transfer**
 - *strictly controlled*
 - *pre-cleaned items*
 - *replicate experiments*

- **Probabilities of DNA transfer close to case circumstances**
 - *semi-controlled*
 - *items with known history*
 - *number of iterations of activities*
Relevance of published data to case?

- ISFG DNA commission (2019):

 Compilations of experiments are encouraged as a basic validation of use of data from other laboratories, with details of methods used in order to derive the probabilities that can be utilised. An ENFSI supported inter-laboratory example is outlined by Steensma et al. (2017).
ENFSI monopoly 2013 – ‘DNAactivity’

- Steensma et al. (2018) *DNA transfer and persistence on cable ties*
- Szkuta et al. (2019) *Prevalence of DNA on upper garments*
- Szkuta et al. (2019 - submitted) *Transfer DNA to upper garments*
- Goray et al. (2019 - submitted) *Trace DNA dynamics in office spaces*
- Szkuta et al. (in prep.) *Transfer DNA to lower garments*
- Sjoukema et al. (in prep.) *Structured comparison of lab success rates*

- Kokshoorn et al. (2018) *On sharing DNA TPPR data*
Cable tie study sample collection

- Cable ties regularly encountered in criminal offences, easy to transport and takes friction and pressure to apply
- 20 participants (10 men and 10 women) each tied 5 cable ties around five pairs of pencils
- 3 hours in between repeat activity
- No instructions
- Questionnaire activity history

Cable tie study sample set distribution

- 4 ISO accredited laboratories from 4 countries
- Cable ties separately packaged
- 21 cable ties sent to every laboratory
- Reference profiles of participants
- Sampled and analysed by laboratory specific protocols

Examined variables

- Transfer
 - Individual variability
- Persistence
 - Time, packaging and transport
- Recovery
 - Inter laboratory variation

Further inter laboratory studies

Outline of series of exercises

Exercise A: *Case file data collection.*
Lab participation. Paper/electronically based.

Exercise B: *Experimental data generation.*
Lab participation. Laboratory & paper/electronically based.

Exercise C: *Case assessment.*

Exercise D: *Evaluation of findings.*
Exercise A – Case file data collection

- **Some data published**
 Non-structured approach, comparison complex/impossible

- **Relevance for case assessment**
 Trace analysis success rates for triage

- **Relevance for evaluation given activity propositions**
 Can provide information to assign probabilities on DNA-TPPR

- **Limitations to casefile data**
 Ground truth generally unknown (but known or irrelevant for some factors) but data readily available
Exercise A – Case file data collection

Purpose

First collaborative exercise on lab success rates to help drive potential improvement opportunities in respect to the methodologies and procedures they utilise as part of their service delivery.

Collate information on frequency of specific types of profiles given contextual information (item type, substrate etc.) and methodologies

Additionally, the exercise will gain insight on how readily the requested information was able to be sourced within each laboratory.
Exercise A – Case file data collection

Selection of items to target
- Items commonly analyzed in participating labs
- Limited variation in substrate
- Limited variation in use/item histories
- Limited variation in type of sample targeted (no body fluids)
Exercise A – Case file data collection

Suggested items to target; two broad categories

Burglary related tools
Gloves
Exercise A – Case file data collection

- Items commonly analyzed in participating labs
- Limited variation in substrate (categorize)
- Limited variation in use/item histories (exclude exceptions)
- Limited variation in type of sample targeted (exclude body fluids)
Exercise A – Case file data collection

Information to collect
- Item type and known history
- Sampling method
- Sampling area and substrate
- Sample analysis methods
- Analysis and interpretation methods
- Resulting DNA profile composition
- Resulting inclusion/exclusion of Persons-of-Interest

Use of tested, user-friendly spreadsheet
Exercise B: *Experimental data generation*

Keep it simple! Suggest to go for option (a) in document.

- Focus on sampling through to profiling methodologies
 Have collaborators sample items and profile samples

- Exclude impact of experimental execution
 Items Prepared at one location

- Exclude impact of data analysis
 DNA profile data analysed and interpreted at one location

- Burden for ethics and privacy (mostly) on organizing laboratory
Exercise B: *Experimental data generation*

Suggested item to target
- Standardized item
- Standardized activity/handling
- Standardized sampling (e.g. reduce impact of strategy)
- Allows for comparison to case file data (Exercise A; but...)

Exercise B: *Experimental data generation*

- Yes; individual variation volunteers!
Exercise B: *Experimental data generation*

- Yes; individual variation volunteers!
- But; not limiting to assess inter-lab variation!

Fig. 3. Boxplot of the median quantity of total DNA (ng) extracted by the four participating laboratories from the twenty cable ties.
Exercise B: *Experimental data generation*

Data collection

The participating lab will collect samples and process items to generate profiles as per their in-house methods and procedures.

The total number of samples to be processed will not exceed 30.

A user friendly spreadsheet template will be supplied for participating labs to enter their generated data.
Exercise C – Case assessment

Benchmark on case assessment and triage

- Provide (mock) case
 - Case issue
 - Case information

- Purpose to compare;
 - What info would expert use?
 - Which scenario’s would be considered relevant?
 - What factors impacting on DNA-TPPR are being considered?
 - What examination strategies would be considered?
 - What would be the expected outcomes for examinations?
 -> based on which information/expertise?
 - What would the recommended strategy be?
Exercise D: Evaluation of findings

Benchmark on reporting given activity propositions

- Provide (mock) case
 - Case context
 - Case examination and profiling data

- Purpose to compare;
 - Formulating propositions
 - Management of case information
 - Structure of argument
 - Data sources used
 - Reporting structure
What can participants expect?

- Consistency of exercises; guarded by exercise leads
- Well prepared exercises, convenient item and data transfer
- Minimization of efforts needed
- Access to (anonymized) collated data to be mined for casework
- Communication of progress and findings
 -> at EDNAP meetings
 -> through scientific publication
Practicalities

- Maximum of 1-2 exercises/year, no overlap
 Reduce strain on participating labs and leads alike

- If accepted, proposed start of exercise A in Q2 2020

- Additional exercise leads on each exercise
 Bianca Szkuta (Deakin University) on exercise A

- Participants will be invited for each exercise separately
 opt-in for each exercise, no commitment for full series!

- Invite goes out to EDNAP liased labs, ENFSI and AUS/NZ
 Depending on number of committed labs, possibly extend
Feedback on exercises A and B and C and D

Some issues to consider

- Are suggested items relevant? Other suggestions?
- Is experimental outline feasible?
- What number of iterations would be acceptable? (n=?)
- What number of participant laboratories should we expect/facilitate?
Results of two ancestry exercises (2017, 2018) with participation of 11 European forensic labs

Roewer L1*, Ballard D2, Syndercome-Court D2, Ansell R3, Bogus M4, Eduardoff M5, Freire-Aradas A6, Geppert M1, Groß T4, Haas C7, Lessig R8, Kayser M9, de Knijff P10, Lutz-Bonengel S11, Morling N12, Nagy M1, Parson W5, Phillips C6, Ralf A3, Rothe J1, Schmidt U11, Schneider PM4, Smidt-Mogensen H12, Tillmar AO13, Xavier C5, Immel U8

1 Institut für Rechtsmedizin und Forensische Wissenschaften, Charité – Universitätsmedizin Berlin, Germany
2 Department of Analytical, Environmental and Forensic Sciences, King’s College London, UK
3 Swedish National Laboratory of Forensic Science, Linköping, Sweden
4 Institut für Rechtsmedizin, Universität Köln, Germany
5 Institut für Gerichtliche Medizin, Medizinische Universität Innsbruck, Austria
6 Institute of Forensic Sciences, University of Santiago de Compostela, Spain
7 Forensische Genetik, Institut für Rechtsmedizin, Universität Zürich, Switzerland
8 Institut für Rechtsmedizin, Universitätsklinikum Halle, Germany
9 Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
10 Department of Human Genetics, Leiden University Medical Center, The Netherlands
11 Institut für Rechtsmedizin, Universitätsklinikum Freiburg, Germany
12 Section Forensic Genetics, Dept. Forensic Medicine, University of Copenhagen, Denmark
13 National Board of Forensic Medicine, Linköping, Sweden
Design of exercises 2017 and 2018

- **Invited European** forensic labs who have prepared at least one “ancestry report” for the national police
- **Eleven** institutes participated in the two trials (10 university, 1 police)
- **Eight** countries
- **Deadline** 8 weeks
- Full reports in **customary** form and wording
- All reports are **circulated** between participants
- Validation and publication (e.g. at HM2018)
Exercise 2017 (8 participants)

- **Unknown male extracted DNA (blind sample)**
- Person born in Nigeria,
- Belongs to Igbo ethnic group (ca. 20 Mio.)
- Language: Igbo (a Bantu language)
- Father/Mother: Igbo
Results Exercise 2017
(stated in the „Summary“ of the reports)

Male persons
maternal/paternal ancestry is

Subsaharan Africa 5/8
Africa 2/8
Without statement on ancestry 1/8
Exercise 2018 (11 participants)

Swab „I“
- Male person, born in Germany
- Mother: born in Germany
- Father: born in Nepal

Swab „D“
- Male person, born in the Philippines (language: Tagalog)
- Language: Tagalog, Language Group: Malay
- Mother: born in the Philippines
- Father: born in the Philippines
The unknown male person „I“ is of **admixed ancestry**, and paternal ancestry is

<table>
<thead>
<tr>
<th>Region</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian subcontinent (with mentioning „Nepal“)</td>
<td>1/11</td>
</tr>
<tr>
<td>India, Iran</td>
<td>1/11</td>
</tr>
<tr>
<td>South Asia</td>
<td>1/11</td>
</tr>
<tr>
<td>Asia (with mentioning „Nepal“)</td>
<td>1/11</td>
</tr>
<tr>
<td>East Asia</td>
<td>1/11</td>
</tr>
<tr>
<td>Eurasia</td>
<td>1/11</td>
</tr>
<tr>
<td>South-, Central-, Southwest Asia or Caucasus</td>
<td>1/11</td>
</tr>
<tr>
<td>Southern Europe/Middle East</td>
<td>1/11</td>
</tr>
<tr>
<td>Middle East</td>
<td>1/11</td>
</tr>
<tr>
<td>Without statement on ancestry</td>
<td>2/11</td>
</tr>
</tbody>
</table>

and maternally

<table>
<thead>
<tr>
<th>Region</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Eurasia</td>
<td>2/11</td>
</tr>
<tr>
<td>Eurasia</td>
<td>2/11</td>
</tr>
<tr>
<td>Central South Asia or Europe</td>
<td>1/11</td>
</tr>
<tr>
<td>Middle East</td>
<td>1/11</td>
</tr>
<tr>
<td>Without statement on ancestry</td>
<td>5/11</td>
</tr>
</tbody>
</table>
Results Exercise 2018 (2)
(taken from „Conclusion“)

The unknown male person’s „D“
paternal ancestry is

<table>
<thead>
<tr>
<th>Region Description</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malay Archipelago, Southeast Asian mainland, East Asia (with mentioning „Philippines“)</td>
<td>1/11</td>
</tr>
<tr>
<td>Southeast Asia (with mentioning „Philippines“)</td>
<td>1/11</td>
</tr>
<tr>
<td>Southeast Asia, East Asia (with mentioning „Philippines“)</td>
<td>1/11</td>
</tr>
<tr>
<td>East Asia (2x with mentioning „Philippines“)</td>
<td>4/11</td>
</tr>
<tr>
<td>East Asia, Northeast-, South Asia (with mentioning „Philippines“)</td>
<td>1/11</td>
</tr>
<tr>
<td>Asia (1 x with mentioning „Philippines“)</td>
<td>3/11</td>
</tr>
<tr>
<td>Without statement on ancestry</td>
<td>0/11</td>
</tr>
</tbody>
</table>

and maternally

<table>
<thead>
<tr>
<th>Region</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malay Archipelago</td>
<td>1/11</td>
</tr>
<tr>
<td>Insular Southeast Asia</td>
<td>2/11</td>
</tr>
<tr>
<td>Maritime Southeast Asia</td>
<td>1/11</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>4/11</td>
</tr>
<tr>
<td>East Asia</td>
<td>3/11</td>
</tr>
<tr>
<td>Without statement on ancestry</td>
<td>0/11</td>
</tr>
</tbody>
</table>
Number of employed methods per lab

<table>
<thead>
<tr>
<th>Institute</th>
<th>Exercise 2017</th>
<th>Exercise 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlin</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cologne</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Freiburg</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Innsbruck</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Leiden</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Linköping</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Santiago</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>London</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Zurich</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2019
Most frequently employed methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Exercise 2017</th>
<th>Exercise 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>mtDNA</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Y-STRs</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Y-SNPs</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>AIMs</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Autosomal STRs</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Participants</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>
Conclusions
(Verbal statements in the reports)

- Test sample is from a donor who is ...
- Test sample is more than a billion times more likely ... than, so results in summary indicate a ... ancestry
- Test sample most likely is from a donor who is ...
- Most probable ancestry is..., also possible is..., but less probable..., ... ancestry is not excluded, but highly unlikely
- A ...descent of the ancestors of the sample donor is most plausible
- Results point towards a ... origin of the direct biological ancestors
- Give some support for the statement that the donors biogeographical ancestry is from a ... population, compared with other possible origins
- The detected DNA belongs to ... which is mainly observed in...
Questionnaire

- How much time does it take in practice?
 - 1-3 weeks

- Costs?
 - 200-250 € / sample

- How often ancestry is ordered by law enforcement?
 - 1-10 x per year (for identification)
Exercise 2017, sample 1 (Method Y-SNP, Ref. YHRD)

Y-SNP Branch Information on B2a

The Y-SNP branch B2a is defined by M150. Additionally, all downstream markers G1, M109, M152, M218, P32, Page60, V197, V227, V62, V75, V78 are defining this branch as well. For further information on a marker, please see marker details at PhyloTree Y or consult the Y-SNP tree there.

Please note, that colours on the map only reflect a haplogroup distribution from the SNP-typed samples which were submitted to the YHRD.

https://yhrd.org

©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2019
Exercise 2017, sample 1 (Method Y-SNP, Ref. literature)

Exercise 2017, sample 1 (Method AIMs, ref. Verogen)

ForenSeq DNA Signature Prep Kit (Verogen) - 56 AIMs-DNA marker
Exercise 2018, sample D (Method mtDNA, ref. literature)
Exercise 2, sample D (method mtDNA, ref. EMPOP)
Summary

• Ancestry (not residency) can be narrowed down using a combination of DNA methods “(Ancestry package”)
• In Germany for the identification of unknowns (StPO §88)
• For Identification of unknown suspects, mostly in “cold cases“ - Legislative process is pending in several countries, including Germany
• Approved and regulated e.g. in the Netherlands
• **Blind tests, exercises and exchange** – this is currently the way to build expertise
Biogeographical Ancestry: Current Status and Way Forward
Bratislava, 2013

Forensic ancestry analysis with two capillary electrophoresis ancestry informative marker (AIM) panels: Results of a collaborative EDNAP exercise

C. Santos¹,¹, M. Fondevila²,¹, D. Ballard³,¹, R. Banemann⁴, A.M. Bento⁵, C. Børsting²,¹, W. Branicki⁶,², F. Brisighelli⁷, M. Burrington⁸, T. Capan⁹, L. Chaitanya¹⁰, R. Daniel¹¹, V. Decroyer¹², R. England¹³, K.B. Gettings¹⁴, T.E. Gross¹⁵,¹, C. Haas¹⁶, J. Harteveld¹⁷, P. Hoff-Olsen¹⁷, A. Hoffmann¹⁷, M. Kayser¹⁷, P. Kohler¹⁷,², A. Linacre¹⁷, M. Mayr-Eduardoff¹⁷,¹, C. McGovern¹⁷,¹⁷, N. Morling¹⁷,¹⁷, G. O’Donnell¹⁶, W. Parson⁰,¹, V.L. Pascali¹⁸, M.J. Porto¹⁷, A. Roseth¹⁷, P.M. Schneider³,¹, T. Sijen¹⁰, V. Stenzl¹⁷, D. Syndercombe Court¹⁷,¹, J.E. Templeton¹⁷, M. Turanska¹⁷, P.M. Vallone¹⁷, R.A.H. van Oorschot¹⁷, L. Zatkalikova¹⁷, The EUROFORGEN-NoE Consortium, Á. Carracedo³,¹, C. Phillips²,¹,⁸
The 2014 EDNAP ancestry exercise

Bratislava, 2013

Forensic ancestry analysis with two capillary electrophoresis ancestry informative marker (AIM) panels: Results of a collaborative EDNAP exercise

Focused on reliability and ease-of-use of CE-based tests for 34 SNPs and 46 Indels (for mixed DNA); use of Snipper for PCA and Bayes LR

In the MPS era, CE plays an important role in starting labs off into ancestry analysis, or where resources don’t allow MPS (e.g. Ethiopia-Italy)

The ForenSeq MPS test has 55 AIMs ≡ 80 CE SNPs/Indels in power
MPS allows much larger SNP numbers

Global AIMS:
127 SNPs
(6 tri-allelic)

MAPlex:
144 SNPs
(28 tri-allelic)
(2 tetra-allelic)
20 microhaplotypes

Basic tool:
113 ancestry SNPs
(15 tri-allelic)
38 EVC SNPs
MPS allows much larger SNP numbers

Global AIMs:
127 SNPs
(6 tri-allelic)

MAPlex:
144 SNPs
(28 tri-allelic)
(2 tetra-allelic)
20 microhaplotypes

Basic tool:
113 ancestry SNPs
(15 tri-allelic)
38 EVC SNPs

TFS Precision ID
Ancestry Panel
165 SNPs

154 SNPs

11

133 SNPs

20 MH
(76)

MAPlex Panel
144 SNPs

2 MPS multiplexes: 318 ancestry markers
MPS allows much larger SNP numbers

Global AIMs: 127 SNPs (6 tri-allelic)

MAPlex: 144 SNPs (28 tri-allelic) (2 tetra-allelic) 20 microhaplotypes

Basic tool: 113 ancestry SNPs (15 tri-allelic) 38 EVC SNPs

Enhanced tool: 205 ancestry SNPs (26 tri-allelic) 194 EVC SNPs 21 microhaplotypes

TFS Precision ID
Ancestry Panel
165 SNPs

MAPlex Panel 144 SNPs

20 MH (76)

154 SNPs
11
133 SNPs

2 MPS multiplexes: 318 ancestry markers
Eventually adding enough SNPs provides equivalent power to much larger marker densities.
But there are several major issues that are not necessarily fixed by adding more SNPs
But there are several major issues that are not necessarily fixed by adding more SNPs

Most labs tend to 'think locally' and want forensic tests to provide fine scale differentiation of very closely related populations
But there are several major issues that are not necessarily fixed by adding more SNPs.

Most labs tend to 'think locally' and want forensic tests to provide fine scale differentiation of very closely related populations.

A nested approach can focus on local needs.
But there are several major issues that are not necessarily fixed by adding more SNPs

Most labs tend to 'think locally' and want forensic tests to provide fine scale differentiation of very closely related populations

A nested approach can focus on local needs
Pacifiplex: devised for Australian local needs

- Do CEPH panel Papuans make a good proxy for Native Australians?
Pacifiplex: population genetics can inform patterns

- Multiple migrations at different times
- Multiple Denisovan introgression with early Sahul-region migrants

- Do CEPH panel Papuans make a good proxy for Native Australians?
- What about the rest of the Pacific?
But there are several major issues that are not necessarily fixed by adding more SNPs

Most labs tend to 'think locally’ and want forensic tests to provide fine scale differentiation of very closely related populations

Populations with admixture are indistinguishable from populations located at continental margins
But there are several major issues that are not necessarily fixed by adding more SNPs

Most labs tend to 'think locally' and want forensic tests to provide fine scale differentiation of very closely related populations

Populations with admixture are indistinguishable from populations located at continental margins
But there are several major issues that are not necessarily fixed by adding more SNPs.

Most labs tend to 'think locally' and want forensic tests to provide fine scale differentiation of very closely related populations.

Populations with admixture are indistinguishable from populations located at continental margins.

Here the SNPs lack power to differentiate American variation effectively so the geographic imprecision becomes worse.
But there are several major issues that are not necessarily fixed by adding more SNPs

Most labs tend to 'think locally' and want forensic tests to provide fine scale differentiation of very closely related populations

Populations with admixture are indistinguishable from populations located at continental margins

Without geographic barriers, many of the world’s populations form frequency clines - so apart from the ends, differentiation is limited
Frequency clines ‘blur the edges’ between populations

Eurasiaplex
Frequency clines ‘blur the edges’ between populations
But there are several major issues that are not necessarily fixed by adding more SNPs

Most labs tend to 'think locally' and want forensic tests to provide fine scale differentiation of very closely related populations

Populations with admixture are indistinguishable from populations located at continental margins

Without geographic barriers, many of the world’s populations form frequency clines - so apart from the ends, differentiation is limited

It is increasingly difficult to obtain population samples that can fill gaps in geography
But there are several major issues that are not necessarily fixed by adding more SNPs

Most labs tend to 'think locally' and want forensic tests to provide fine scale differentiation of very closely related populations.

Populations with admixture are indistinguishable from populations located at continental margins.

Without geographic barriers, many of the world’s populations form frequency clines - so apart from the ends, differentiation is limited.

It is increasingly difficult to obtain population samples that can fill gaps in geography.

North Native American
East African East European
Far Oceania Roma/Jewish
Pacifiplex: sampling problem for NZ and Hawaii

- Multiple migrations at different times
- Multiple Denisovan introgression with early Sahul-region migrants
- Do CEPH panel Papuans make a good proxy for Native Australians?
- What about the rest of the Pacific?
Admixture: towards combining marker types in one test

- **Global AIMs:**
 - 127 SNPs
 - (6 tri-allelic)

- **MAPlex:**
 - 144 SNPs
 - (28 tri-allelic)
 - (2 tetra-allelic)
 - 20 microhaplotypes

- **Basic tool:**
 - 113 ancestry SNPs
 - (15 tri-allelic)
 - 38 EVC SNPs

- **Enhanced tool:**
 - 205 ancestry SNPs
 - (26 tri-allelic)
 - 194 EVC SNPs
 - 21 microhaplotypes

- **Multiplex size tripled**
- Mix of autosomal markers
- SNP² : SNP³ : MHs
- AXY combinations
Admixture: combining X-SNPs and an X-haplotype
The X-haplotype alone efficiently defines X ancestry.
Statistical approaches to admixture

- **GenoGeographer** assesses z-scores

- Genetic Distance Analysis can be as efficient as **STRUCTURE** and runs in real time - so it can flag data that needs more detailed testing

<table>
<thead>
<tr>
<th>Generation</th>
<th>% Admixture Ratio</th>
<th>STRUCTURE</th>
<th>GDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>1x1</td>
<td>50:50</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.7</td>
</tr>
<tr>
<td>3rd</td>
<td>1:1x:1:1</td>
<td>50:50</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.4</td>
</tr>
<tr>
<td>3rd</td>
<td>1x1</td>
<td>75:25</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.0</td>
</tr>
<tr>
<td>3rd</td>
<td>1x1:1</td>
<td>50:25:25</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.0</td>
</tr>
<tr>
<td>3rd</td>
<td>1:1x1:1</td>
<td>50:25:25</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.5</td>
</tr>
<tr>
<td>3rd</td>
<td>1:1x1:1</td>
<td>25:25:25:25</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.5</td>
</tr>
</tbody>
</table>

- **HID SNP Genotyper ancestry module** is also robust for many test samples analysed so far - the 10,000-step simulated admixture test creates a realistic range of likelihoods
1. Simulate 10,000 random samples that have the same predicted admixture proportions as the test sample.
2. Calculate the likelihood value for each simulated sample and the test sample.
3. Generate a distribution of log-likelihood values from the simulated samples, then compare the log-likelihood of the test sample to the distribution.
Error: particularly important when closely related populations are compared
Error: particularly important when closely related populations are compared

Daubert's considerations for a new scientific technique

(1) Can the theory or technique in question be tested and has it been tested?
(2) Has the technique been subject to peer review and publication?
(3) What is the known or potential rate of error?
(4) Do standards exist for the control of the technique's operation?
(5) Has the technique been generally accepted within the relevant scientific community?
Error: Reference data likelihood distribution plots

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lowest LR</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>9947A</td>
<td>4.11E+33</td>
<td>European</td>
</tr>
<tr>
<td>A</td>
<td>1.25E+07</td>
<td>East Asian</td>
</tr>
<tr>
<td>B</td>
<td>9.22E+27</td>
<td>European</td>
</tr>
<tr>
<td>C</td>
<td>1.54E+14</td>
<td>Oceanian</td>
</tr>
<tr>
<td>D</td>
<td>8.07E+13</td>
<td>American</td>
</tr>
<tr>
<td>E</td>
<td>1.78E+41</td>
<td>African</td>
</tr>
<tr>
<td>F</td>
<td>6.487</td>
<td>European</td>
</tr>
<tr>
<td>M1</td>
<td>1.82E+30</td>
<td>European</td>
</tr>
<tr>
<td>M3</td>
<td>9.18E+12</td>
<td>East Asian</td>
</tr>
</tbody>
</table>
Error: Reference data likelihood distribution plots

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lowest LR</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>9947A</td>
<td>4.11E+33</td>
<td>European</td>
</tr>
<tr>
<td>A</td>
<td>1.25E+07</td>
<td>East Asian</td>
</tr>
<tr>
<td>B</td>
<td>9.22E+27</td>
<td>European</td>
</tr>
<tr>
<td>C</td>
<td>1.54E+14</td>
<td>Oceanian</td>
</tr>
<tr>
<td>D</td>
<td>8.07E+13</td>
<td>American</td>
</tr>
<tr>
<td>E</td>
<td>1.78E+41</td>
<td>African</td>
</tr>
<tr>
<td>F</td>
<td>6.487</td>
<td>European</td>
</tr>
<tr>
<td>M1</td>
<td>1.82E+30</td>
<td>European</td>
</tr>
<tr>
<td>M3</td>
<td>9.18E+12</td>
<td>East Asian</td>
</tr>
</tbody>
</table>

Likelihoods of your profile

Likelihoods EUROPE as EUROPE
Assignment EAS OCE

Error: Reference data likelihood distribution plots

Africans Europeans East Asians Oceanians Americans

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lowest LR</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>9947A</td>
<td>4.11E+33</td>
<td>European</td>
</tr>
<tr>
<td>A</td>
<td>1.25E+07</td>
<td>East Asian</td>
</tr>
<tr>
<td>B</td>
<td>9.22E+27</td>
<td>European</td>
</tr>
<tr>
<td>C</td>
<td>1.54E+14</td>
<td>Oceanian</td>
</tr>
<tr>
<td>D</td>
<td>8.07E+13</td>
<td>American</td>
</tr>
<tr>
<td>E</td>
<td>1.78E+41</td>
<td>African</td>
</tr>
<tr>
<td>F</td>
<td>6.487</td>
<td>European</td>
</tr>
<tr>
<td>M1</td>
<td>1.82E+30</td>
<td>European</td>
</tr>
<tr>
<td>M3</td>
<td>9.18E+12</td>
<td>East Asian</td>
</tr>
</tbody>
</table>

99 Esan in Nigeria 113 Gambian in West Gambia 99 Luhy in Kenya 85 Mende in Sierra Leone 108 Yoruba in Nigeria

Test sample LR: 1.26E+39
Viewpoints for consideration, moving forensic ancestry analysis forward and reaching consensus
Viewpoints for consideration, moving forensic ancestry analysis forward and reaching consensus

We need to manage expectations about what population differentiations are realistic
Viewpoints for consideration, moving forensic ancestry analysis forward and reaching consensus

We need to manage expectations about what population differentiations are realistic

“Ancestry particularly interests the police. We can tell where the mother or father comes from.”

- Laurence Rubin, chief executive of forensic phenotyping company Identitas
Viewpoints for consideration, moving forensic ancestry analysis forward and reaching consensus

We need to manage expectations about what population differentiations are realistic

- More detailed analyses made of physical characteristics suggested by the SNP data

 Likely to have male pattern baldness (but age was estimated to be ~70 years) Blue eyes

- Ancestry analysis was much more detailed than is possible with current forensic tests

 Closely related or directly descended from Italian emigres to the US
Combining markers with different demographic histories will require some flexibility in the statistical tools we use.

We need to manage expectations about what population differentiations are realistic.

Viewpoints for consideration, moving forensic ancestry analysis forward and reaching consensus.
Viewpoints for consideration, moving forensic ancestry analysis forward and reaching consensus

We need to manage expectations about what population differentiations are realistic

Combining markers with different demographic histories will require some flexibility in the statistical tools we use

Admixture is an individual not a population-wide characteristic. Given its complexity, a simple conclusion that a DNA donor is ‘admixed’ may be prudent
Viewpoints for consideration, moving forensic ancestry analysis forward and reaching consensus

We need to manage expectations about what population differentiations are realistic

Combining markers with different demographic histories will require some flexibility in the statistical tools we use

Admixture is an individual not a population-wide characteristic. Given its complexity, a simple conclusion that a DNA donor is ‘admixed’ may be prudent
Combining markers with different demographic histories will require some flexibility in the statistical tools we use.

We need to manage expectations about what population differentiations are realistic.

Combining markers with different demographic histories will require some flexibility in the statistical tools we use.

Admixture is an individual not a population-wide characteristic. Given its complexity, a simple conclusion that a DNA donor is ‘admixed’ may be prudent.

A system to gauge ancestry assignment error is important - and can be developed around agreement on thresholds.
Viewpoints for consideration, moving forensic ancestry analysis forward and reaching consensus

We need to manage expectations about what population differentiations are realistic

Combining markers with different demographic histories will require some flexibility in the statistical tools we use

Admixture is an individual not a population-wide characteristic. Given its complexity, a simple conclusion that a DNA donor is ‘admixed’ may be prudent

A system to gauge ancestry assignment error is important - and can be developed around agreement on thresholds

Establishing agreed frameworks for statistical tools: interpretation: reporting to investigators
Aspects of ancestry analysis that will need to evolve:

Statistical tools - Daubert (1) and (3)

Population data interpretation

The report to investigators
Aspects of ancestry analysis that will need to evolve:

Statistical tools - Daubert (1) and (3)

PCA, Bayes LR analysis
STRUCTURE

GenoGeographer
FrogKB
Stand-alone Snipper

YHRD
EMPOP

Population data interpretation

The report to investigators

PCA plots
Heat Maps
Stating likelihoods

Are there signals of admixture?
Is the reference data representative?
What is the error rate for the population comparison?

What lessons can we learn from Australian trials?
Aspects of ancestry analysis that will need to evolve:

- LD / allele frequencies
- PCA, Bayes LR analysis
- STRUCTURE
- GenoGeographer
- FrogKB
- Stand-alone Snipper
- YHRD
- EMPOP

Statistical tools - Daubert (1) and (3)

Population data interpretation

Are there signals of admixture?
Is the reference data representative?
What is the error rate for the population comparison?

The report to investigators

What lessons can we learn from Australian trials?

PCA plots
Heat Maps
Stating likelihoods
Next steps in the short-to-medium term

Discussion paper - USC : EMPOP : YHRD

Round table discussions at a suitable forum

Consensus on and development of a toolbox

Training and response to user needs

build interpretation skills / rule sets
Population-specific alleles:

- Skewed frequencies:
 - Common in AFR, rare in EUR
 - Common in EUR, rare in AFR
Research paper

Performance of ancestry-informative SNP and microhaplotype markers

Elaine Y.Y. Cheunga,e, Christopher Phillipsb, Mayra Eduardoffc, Maria Victoria Lareub, Dennis McNevind