### AGENDA FOR THE EDNAP MEETING

### LISBON 27 SEPTEMBER 2022

Expected duration: 09.00 - 17.00

Coffee: 10.30-11.00 - Lunch: 12.30-13.30 - Coffee: 15.30-16.00

Host: Chairman: Niels Morling

| Welcome                                                                                  | Carlos Farinha        |
|------------------------------------------------------------------------------------------|-----------------------|
| To Commemorate the Dead                                                                  | Niels Morling         |
| Update on activities                                                                     |                       |
| Methylated DNA and age exercise                                                          | Denise Synderc. Court |
| Exercise no. Three on mRNA typing with MPS                                               | Cordula Haas          |
| Proposition for exercise no. 4 on cSNPs for vaginal secretion, menstrual blood, and skin | Cordula Haas          |
| mtDNA quantification exercise                                                            | Arnoud Kal            |
| The series of exercises relating to DNA transfer                                         | Baas Kokshoorn        |
| Collaborative exercise on detection of mtDNA heteroplasmy by MPS                         | Walther Parson        |
| Updates from other groups                                                                |                       |
| The VISAGE project                                                                       | Walther Parson        |
| ISFG                                                                                     | Walther Parson        |
| EMPOP                                                                                    | Walther Parson        |
| ENFSI                                                                                    | Sander Kneppers       |
| Presentations                                                                            |                       |
| MPSproto: Analysis of mixtures using a novel open-source probabilistic                   | Peter Gill            |
| genotyping model                                                                         |                       |
| Bayesian network for combined analysis of mRNA vaginal mucosa and                        | Peter Gill            |
| STR markers                                                                              |                       |
| An improved method for estimating the amount of DNA                                      | Peter Gill            |
| Future activities                                                                        |                       |
| Please see above about mRNA exercise no. 4                                               |                       |
| Next EDNAP meeting                                                                       | Niels Morling         |
| The date and place of the next EDNAP meeting is to be decided                            |                       |
|                                                                                          | Niels Morling         |
| Any other business                                                                       | C                     |

Dr. Ricky Ansell National Forensic Centre S-58194 Linköping Sweden Tel: +46 1056 28119 Fax: +46 13 14 57 15 E-mail: ricky.ansell@polisen.se

Dr. Romain Appourchaux Institut National Police Scientifique Lyon 31, avenue Franklin Roosevelt 69134 Ecully France Tel: +33 4 72 86 84 72 Fax: E-mail: snps-lps69-dip-recherchedeveloppement@interieur.gouv.fr

Dr. Regine Banemann KT31 Bundeskriminalamt Thaerstrasse 11 D-65193 Wiesbaden Germany Tel: +49 61155 16053 Fax: +49 611 5545 089 E-mail: regine.banemann@bka.bund.de

Dr. Ingo Bastisch KT31 Bundeskriminalamt Thaerstrasse 11 D-65193 Wiesbaden Germany Tel: +49 61155 16030 Fax: +49 611 5545 089 E-mail: ingo.bastisch@bka.bund.de

Dr. Zeljka Bogovac National Forensic Laboratory Police, Ministry of Interior Stefanova 2 Ljubljana Slovenia Tel: +386 31 484 183 Fax: E-mail: zeljka.bogovac@policija.si

Dr. Anna Bragoszewska

Biology Department Central Forensic Laboratory Aleje Ujazowskie 7 00-583 Warsaw Poland Tel: +48226217916 Fax: E-mail: anna.bragoszewska@policja.gov.pl

Dr. Lydia Camps Bel Unitat Central de Laboratori Biologie Policia de la Generalitat Mossos d'Escuadra Av de la Pau 120 E-8206 Sabadell Spain Tel: Fax: E-mail: itpg7603@gencat.cat

Professor Denise Syndercombe Court King's Forensics King's College London Franklin Wilkins Building Waterloo SE1 9NH London UK Tel: +44 20 7848 4155 Fax: +44 20 7848 4129 E-mail: denise.syndercombe-court@kcl.ac.uk

Dr. Monica Encinas Forensic Science Unit Autonomous Police of the Basque Country Laurrauri Mendotxe 18 489950 Erandio (Bizkaia) Spain Tel: +34 94 607 9533 Fax: +34 94 607 9500 E-mail: 25063@ertzaintza.eus

Dr. Chiara Fantinato Department of Forensic Biology Oslo University Hospital PO Box 4404 Nydalen N-0403 Oslo Norway Tel:

Doc: Participants-Lisbon-2022-09.docx

Fax: E-mail: chifan@ous-hf.no

Dr. Ane Elida Fonneløp Department of Forensic Biology Oslo University Hopspital P.O.Box 4950 Nydalen N-0424 Oslo Norway Tel: +47 99 55 95 11 Fax: E-mail: rrmanfo@ous-hf.no

Dr. Christina Forsberg National Swedish Forensic Science S-58194 Linköping Sweden Tel: +46 105628131 Fax: E-mail: christina-u.forsberg@polisen.se

Professor Peter Gill Department of Forensic Biology Oslo University Hospital PO Box 4404 Nydalen N-0403 Oslo Norway Tel: Fax: E-mail: peterd.gill@gmail.com

Ms. June Guiness Home Office Forensic Science Regulator Unit 5 St. Philips Place, Colmore Row B3 2PW Birmingham UK Tel: +44 121 200 3830 Fax: E-mail: june.guiness@homeoffice.gov.uk

Dr. Tom Heylen Institut National de Criminalistique 98-100 Chaussée de Vilvorde B-1120 Bruxelles Belgium Tel: +32 2243 4614 Fax: +32 2240 0501 E-mail: tom.heylen@just.fgov.be

Dr. Cordula Haas Institut für Rechtsmedizin Zurich Winterthurerstr. 190 CH-8057 Zurich Switzerland Tel: +41 44 635 5656 Fax: E-mail: cordula.haas@irm.uzh.ch

Dr. Alexander Kneppers Department of Human Biological Traces Netherlands Forensic Institute Laan van Ypenburg 6 24 97 GB The Haque The Netherlands Tel: +31629623036 Fax: E-mail: s.kneppers@nfi.nl

Dr. Bas Kokshoorn Department of Human Biological Traces Netherlands Forensic Institute Laan van Ypenburg 6 24 97 GB The Haque The Netherlands Tel: +31708886750 Fax: E-mail: b.kokshoorn@nfi.nl

Dr. Aikaterini Kondili DNA Subdivision Forensic Sciences Division Hellenic Police Antigonis 2-6 & L.Anthinon GR-104 42 Athens Greece Tel: Fax: E-mail: k.kondili@astynomia.gr

Dr. Helle Smidt Mogensen Section of Forensic Genetics Department of Forensic Medicine Faculty of Health Sciences University of Copenhagen Frederik V's Vej 11

Doc: Participants-Lisbon-2022-09.docx

DK-2100 Copenhagen Denmark Tel: +45 3532 6212 Fax: +45 3532 6270 E-mail: helle.smidt@sund.ku.dk

Professor, dr.med. Niels Morling Section of Forensic Genetics Department of Forensic Medicine Faculty of Health Sciences University of Copenhagen Frederik V's Vej 11 DK-2100 Copenhagen Denmark Tel: +45 3532 6194 Fax: +45 3532 6270 E-mail: niels.morling@sund.ku.dk

Dr. Geraldine O'Donnell DNA Section Forensic Science Ireland Garda Headquarters Phoenix Park Dublin 8 Ireland Tel: +353 16662957 Fax: +353 16662929 E-mail: gaodonnell@fsl.gov.ie

Prof. Dr. Walther Parson Institute of Legal Medicine Medical University of Innsbruck Müllerstrasse 44 A-6020 Innsbruck Austria Tel: +43 512 9003 70640 Fax: +43 512 9003 73640 E-mail: walther.parson@i-med.ac.at

Dr. Vince Pascali Instituto di Sanita Publica Universita Cattolica Largo Francesco Vito 1 I-00168 Roma Italy Tel: +39 6 3550 7031 Fax: +39 6 3550 7033 E-mail: vincenzolorenzo.pascali@unicatt.it Dr. Vania Pereira Section of Forensic Genetics Department of Forensic Medicine Faculty of Health Sciences University of Copenhagen Frederik V´s Vej 11 DK-2100 Copenhagen Denmark Tel: +45 35 32 60 22 Fax: E-mail: vania.pereira@sund.ku.dk

Mr Markus Pirttimaa Department of Biology Forensic Laboratory National Bureau of Investigation Jokiniemenkuja 4, PO BOX 285 FIN-01310 Vantaa Finland Tel: Fax: E-mail: markus.pirttimaa@poliisi.fi

Dr. Bo Simonsen Section of Forensic Genetics Department of Forensic Medicine Faculty of Health Sciences University of Copenhagen Frederik V's Vej 11 DK-2100 Copenhagen Denmark Tel: +45 3532 6136 Fax: +45 3532 6270 E-mail: bo.simonsen@sund.ku.dk

Dr. Christopher Syn Biology Division & DNA Profiling Laboratory Applied Sciences Group Health Sciences Authority 11 Outram Road 169078 Singapore Singapore Tel: + 65 6213 0779 / 682 Fax: +65 6213 0855 E-mail: christopher\_syn@hsa.gov.sg

Dr. Hang Yee Wong Health Sciences Authority, Singapore 11 Outram Road 169078 Singapore Singapore Singapore Tel: Fax: E-mail: wong\_hang\_yee@hsa.gov.sg

Dr. Livia Zatkalikova Institute of Forensic Science Slovenská Lupca Priboj 560 976 13 Slovak Republic Tel: +421 961 60 6333 Fax: +421 961 60 6309 E-mail: livia.zatkalikova@minv.sk



### EUROPEAN DNA PROFILING GROUP (EDNAP) MEETING

### Lisbon, Portugal

### 27 September 2022

Host: Sandra Cristina Costa Chairman: Niels Morling

A list of participants is attached.

#### Welcome

Carlos Farinha welcomed members to Lisbon.

#### **To Commemorate the Dead**

Niels Morling Niels Morling uttered words of remembrance of Peter Schneider (31 May 1955 – 9 September 2022), who passed away after a long illness. Peter Schneider was one of the founding members of EDNAP.

#### **Update on exercises**

Second exercise on methylated DNA and age Denise Syndercombe Court Denise Syndercombe Court informed members that a manuscript will be circulated as soon as possible.

#### Exercise no. 3 on mRNA typing with MPS Cordula Haas Cordula Haas gave a brief overview of the results (presentation attached). Jack Ballantyne, Cordula Haas, and their groups have collaborated with Thermo Fischer Scientific on an extended cSNP assay, BFID-cSNP-6F, with 23 body fluid markers and 46 cSNPs (a manuscript is submitted), which will be tested in exercise no. 4 (cf. below). When the results of exercises 3 and 4 on mRNA typing with MPS are analysed, it will be discussed if there is enough data for publication.

#### *mtDNA quantification exercise*

Arnoud Kal gave a summary of the results. The colleagues in NFI will discuss if they find the results should be published (presentation attached).

#### The series of exercises relating to DNA transfer Baas Kokshoorn Bas Kokshoorn summarised the framework of the series of collaborative exercises that will be organised by Bas Kokshoorn, The Netherlands, Bianca Szkuta, and Roland van Oorschot, Australia. Members who have expressed interest in participation will be approached again (presentation attached).

Collaborative exercise on detection of mtDNA heteroplasmy by MPS Walther Parson Walther Parson provided an update on the heteroplasmy exercise. All results and raw data were sent to Innsbruck, where the team is currently analyzing the data. An update will be provided at the next EDNAP meeting.

Arnoud Kal

#### Updates from other groupsP

The VISAGE project Walther Parson Walther Parson gave an update on work on Forensic DNA Phenotyping within the EU-funded projects VISAGE and INFER (presentation attached).

#### **EMPOP**

Walther Parson gave an update on mtDNA and EMPOP (presentation attached).

### ISFG

Walther Parson Walther Parson gave an update on the activities of the ISFG (presentation attached).

### **ENFSI**

Sander Kneppers Sander Kneppers reported from the ENFSI DNA Working Group (presentation attached).

### **Presentations**

**MPSproto**: Peter Gill Peter Gill presented a new open-source probabilistic genotyping tool for the analysis of mixtures and non-mixtures (presentation attached).

#### mRNA & STRs

Peter Gill presented a bayesian network tool for the combined analysis of mRNA vaginal mucosa and STR markers (presentation attached).

Peter Gill DNA quantification with an improved method Peter Gill presented a new DNA quantification method based on the RFUs of electropherograms (presentation attached).

### **Future activities**

New collaborative exercise on mRNA and cSNP typing using TFS S5 Cordula Haas Cordula Haas presented an updated proposal for a collaborative exercise on identifying donors of body fluids using mRNA and cSNPs with the IonTorrent S5 assay. The exercise will most likely begin in late 2022. EDNAP members, who are interested in participation, should contact Cordula Hass as soon as possible.

### Next meetings

The date and place of the next EDNAP meeting have not yet been decided.

### Any other business

There was no other business.

### **Closing of the meeting**

The meeting closed with sincere thanks to Sandra Cristina Costa and all colleagues who organised the meeting.

Niels Morling

### Peter Gill

Walther Parson

Niels Morling

**Niels Morling** 

#### The minutes and attachments are found at the EDNAP website:

http://www.isfg.org/EDNAP/Meetings, including:

- Agenda
- List of participants
- Group photo
- Minutes
- Presentations
  - o Niels Morling: To commemorate Peter Schneider
  - o Cordula Haas: Update on collaborative exercises on mRNA NGS
  - o Arnoud Kal: Update on the mtDNA quantification exercise
  - Walther Parson: The VISAGE project
  - Walther Parson: EMPOP report
  - o Walther Parson: ISFG report
  - o Bas Kokshoorn: Series of exercises relating to DNA transfer
  - Sander Kneppers: Report from the ENFSI DNA Working Group
  - Peter Gill: MPSproto
  - o Peter Gill: mRNA vaginal mucosa and STR markers
  - Peter Gill: DNA quantification.

# **Peter Matthias Schneider**

31 May 1955 – 9 September 2022







### **EDUCATION, POSITIONS, AND PRIZE**

- 1983: MSc biology University of Bonn
- 1984-1986: Research fellow Harvard Medical School
- 1987: PhD University of Mainz
- 1996: Dr.rer.nat. University of Mainz
- 1996: Assistant professor University of Mainz
- 2004: Full professor and head of the Division of Forensic Molecular Genetics, Institute of Legal Medicine, University of Cologne
- 2006: The prize of the German Konrad Händel Foundation for his outstanding scientific achievements and his merits in the field of the administration of justice

### **BOARD MEMBERSHIPS AND HONORARY APPOINTMENTS**

- 1989: Founding member of the European DNA Profiling (EDNAP) Group
- Since 2000: Executive board member of the International Society for Forensic Genetics (ISFG)
- Since 2000: Member of the German Stain Commission, a joint commission of Institutes of Legal Medicine and Forensic Science, and chairman of the commission since 2010
- 2004–2007: President of the ISFG
- Since 2007: Associate editor of Forensic Science International: Genetics[20]
- 2008–2011: Vice president of the ISFG
- 2009–2018: Member of the German Commission on Genetic Testing at the Robert Koch Institute
- Since 2014: Secretary of the ISFG
- Since 2020: Member of the Committee on Investigative Genetic Genealogy of the Scientific Working Group on DNA Analysis Methods (SWGDAM)

### LARGER COLLABORATIVE PROJECTS

### 2002-2005:

High Throughput Analysis of Single Nucleotide Polymorphisms for the Identification of Persons – SNPforID

### 2012-2016:

European Forensic Genetics Network of Excellence - EUROFORGEN-NoE.

2017 - 2022:

Work package leader in the VISible Attributes Through GEnomics --VISAGE Consortium (Horizon 2020 funded EU project)

# **Peter Matthias Schneider**

31 May 1955 – 9 September 2022





**Zurich Institute of Forensic Medicine** 



# EDNAP mRNA MPS collaborative exercise 3 -IonTorrent S5 (BFID-cSNP-BSS\*)

\*BSS stands for blood, semen, saliva

Cordula Haas, Nadescha Hänggi, Rob Lagace, Erin Hanson, Jack Ballantyne

EDNAP Meeting, 27. September 2022, Lisbon







# **EDNAP mRNA MPS Exercise 3**

### BFID-cSNP-BSS RNA assay

- identification of blood, saliva, semen, vaginal secretion, menstrual blood, skin
- including cSNPs to associate specific mRNA transcripts to an individual (blood, saliva, semen)
- BFID-cSNP-BSS DNA assay for reference persons

 $(\rightarrow cSNP \text{ genotypes})$ 

• Protocols and primer pools were provided by UZH

| Gene    | cSNP             |
|---------|------------------|
| ANK1    | Blood_01_ANK1    |
|         | Blood_02_ANK1    |
| CD3G    | Blood_03_CD3G    |
| SPTB    | Blood_05_SPTB    |
|         | Blood_04.0_SPTB  |
|         | Blood_04.1_SPTB  |
|         | Blood_06_SPTB    |
| PRM1    | Semen_02_PRM1    |
| TGM4    | Semen_04_TGM4    |
|         | Semen_05_TGM4    |
|         | Semen_06.0_TGM4  |
|         | Semen_06.1_TGM4  |
| SEMG2   | Semen_03_SEMG2   |
| KLK3    | Semen_01.0_KLK3  |
|         | Semen_01.1_KLK3  |
| HTN3    | Saliva_01.0_HTN3 |
|         | Saliva_01.1_HTN3 |
|         | Saliva_01.2_HTN3 |
| PRB4    | Saliva_03_PRB4   |
| PRH2    | Saliva_04_PRH2   |
| MUC7    | Saliva_02_MUC7   |
| STATH   | Saliva_05_STATH  |
| CYP2B7P | CYP2B7P1         |
| CYP2A6  | CYP2A6           |
| MMP10   | MMP10            |
| LEFTY2  | LEFTY2           |
| LCE1C   | LCE1C            |
| COL17A1 | COL17A1          |
| IL37    | IL37             |

Targets in primer pool BSS



**Zurich Institute of Forensic Medicine** 

# **EDNAP mRNA MPS Exercise 3**

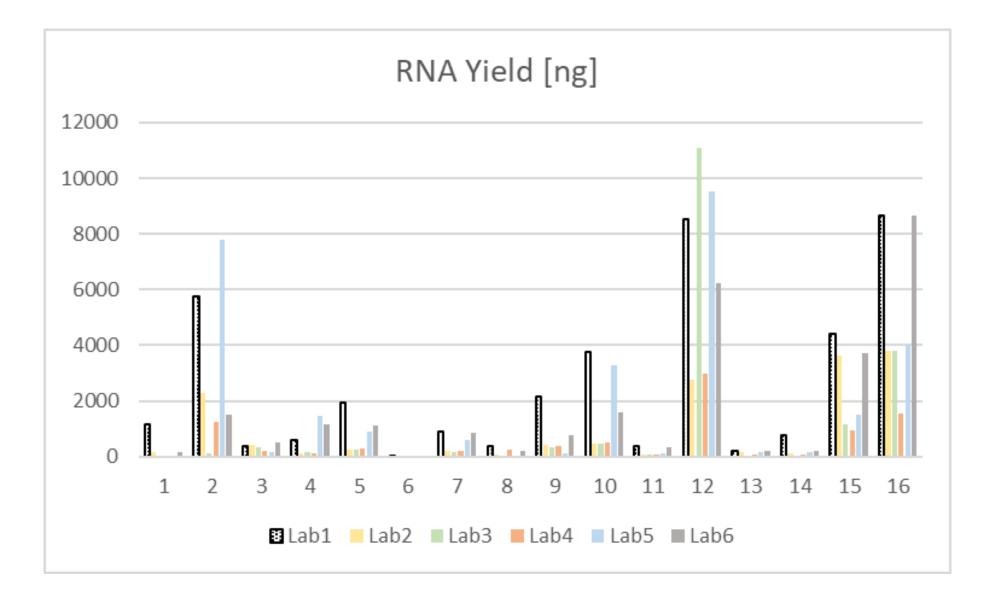
- 16 stains provided by UZH
- 8 own single source and/or mixed body fluid stains
   up to 8 own reference DNA samples (for assignment with donor)
- RNA extraction (manual or kit), DNase treatment, RNA quant, RT, manual or automated library prep, sequencing
- DNA extraction of reference samples, DNA quant, manual or automated library prep, sequencing
- Participating Laboratories:
  - Institute of Forensic Medicine, University Medical Center Cologne, University of Cologne, Germany
  - National Center for Forensic Science, University of Central Florida (UCF), USA
  - Institute of Forensic Sciences, DNA department, Bavarian State Criminal Police Office, Germany
  - Departement of Forensic Sciences, Oslo University Hospital, Norway
  - Institute of Legal Medicine, Innsbruck Medical University, Austria
  - Institute of Forensic Medicine, University of Zurich, Switzerland
  - LKA Wiesbaden did not hand in results



# **Composition of Stains n° 1-16**

| Nr | BF     | Details stain            |
|----|--------|--------------------------|
| 1  | SE     | 10 μl Boxer              |
| 2  | BL-MB  | 1/2 Swab + 25 μl         |
| 3  | SE     | 50 μl Zellette           |
| 4  | SA-SE  | T-shirt (50 μl + 25 μl)  |
| 5  | BL     | 50 μl swab               |
| 6  | SK     | swab                     |
| 7  | BL-BL  | 25 μl + 25 μl on T-shirt |
| 8  | SA     | Licked plastic spoon     |
| 9  | SA-SA  | 25 μl + 25 μl on Swab    |
| 10 | BL-SA  | 25 μl +25 μl             |
| 11 | SA     | 50 μl T-shirt            |
| 12 | VAG    | 1/2 swab                 |
| 13 | BL     | Nose bleed on tissue     |
| 14 | SA-SE  | Boxer (25 μl + 25 μl)    |
| 15 | MB     | 1/2 swab                 |
| 16 | SE-VAG | ½ Swab (25 μl SE)        |
|    |        |                          |

Light blue: single donor, low input Dark blue: single donor, high input Orange: mixtures




**Zurich Institute of Forensic Medicine** 

# Methods & Quantification Results

# **Laboratory Methods**

- DNA extraction of reference samples: any Kit
- DNA quantification: e.g. Quantifiler® Trio DNA Quantification Kit
- RNA or DNA/RNA co extraction of stains
- DNAse treatment: TURBO DNA-free Kit
- RNA quantification (recommended)
- Reverse Transcription (RNA): SuperScript<sup>™</sup> IV VILO<sup>™</sup> Master Mix
- **Manual** library preparation (RNA and DNA): Ion AmpliSeq<sup>™</sup> library Kit 2.0 or Precision ID Library Kit
- Automated library preparation on IonChef (RNA and DNA): Precision ID DL8 kit or Ion AmpliSeq<sup>™</sup> Kit for Chef DL8
- Ion Chef template preparation and Ion S5 sequencing
  - Ion S5<sup>™</sup> Precision ID Chef & Sequencing Kit or Ion 510<sup>™</sup> & Ion 520<sup>™</sup> & Ion 530<sup>™</sup> Kit Chef
  - 2x 510 or 1x 520 chips



# **Data Analysis Methods**

- Ion Torrent's TMAP alignment program > aligned BAM/BAI Files
- multiple sequence alignment algorithm:
  - all SNPs positions of the targeted microhaplotype need to be present
  - removes contaminating genomic DNA (alignment gap parameters)
  - the sequences are phased and the microhaplotype genotypes identified
  - $\rightarrow$  sequence coverage and cSNP genotypes
- Body fluid identification:

- Threshold (0.5% of total reads) to identify sporradic reads (put back to zero in mh counts corrected)

- Assignment of body fluids with donors:
  - Comparison of cSNP genotypes based on RNA-Seq with DNA references (DNA genotypes)



**Zurich Institute of Forensic Medicine** 

# **Results of Body Fluid Identification for stains n° 1-16**

# BFID - Stains n° 1-4

| Actual Body Fluids: SE | MB-BL | SE | SA-SE |
|------------------------|-------|----|-------|
|------------------------|-------|----|-------|

| mh counts corrected                                                                 | Lab1_1 | Lab2_1 | Lab3_1 | Lab4_1 | Lab5_1 | Lab6_1 | Lab1_2 | Lab2_2 | Lab3_2 | Lab4_2 | Lab5_2 | Lab6_2  | Lab1_3 | Lab1_3.2 | Lab2_3 | Lab3_3 | Lab4_3 | Lab5_3 | Lab6_3 | Lab1_4 | Lab1_4.2 | Lab2_4 | Lab3_4 | Lab4_4 | Lab5_4 | Lab6_4 |
|-------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|----------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|
| Blood_01_ANK1                                                                       | 75     | 0      | 0      | 0      | 0      | 0      | 458    | 7802   | 5344   | 3596   | 2111   | 40731   | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 80     | 0        | 0      | 0      | 0      | 0      | 0      |
| Blood_02_ANK1                                                                       | 72     | 0      | 0      | 0      | 0      | 0      | 0      | 5925   | 0      | 7317   | 1947   | 42511   | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 90     | 0        | 0      | 0      | 0      | 0      | 0      |
| Blood_03_CD3G                                                                       | 72     | 0      | 0      | 0      | 0      | 0      | 0      | 6936   | 10204  | 12845  | 3220   | 45910   | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 75     | 0        | 0      | 0      | 0      | 0      | 0      |
| Blood_04_SPTB                                                                       | 59     | 0      | 0      | 0      | 0      | 0      | 0      | 5073   | 0      | 0      | 0      | 21990   | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 68     | 0        | 0      | 0      | 0      | 0      | 0      |
| Blood_05_SPTB                                                                       | 90     | 0      | 0      | 0      | 0      | 0      | 0      | 7613   | 5687   | 6102   | 3764   | 41938   | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 132    | 73       | 0      | 0      | 0      | 0      | 0      |
| Blood_06_SPTB                                                                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 2956   | 0      | 0      | 0      | 9651    | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Menstrual_01_LEFTY2                                                                 | 0      | 0      | 0      | 0      | 0      | 0      | 815    | 11077  | 2170   | 5215   | 3841   | 28924   | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Menstrual_02_MMP10                                                                  | 121    | 0      | 0      | 0      | 0      | 0      | 69912  | 429769 | 252563 | 517502 | 167715 | 1000255 | 0      | 0        | 0      | 0      | 0      | 0      | 574    | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Saliva 01 HTN3                                                                      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Saliva 02 MUC7<br>Saliva 03 PRB4<br>Saliva 04 PRH2<br>Saliva 05 STATH               | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Saliva_03_PRB4                                                                      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Saliva_04_PRH2                                                                      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Saliva_05_STATH                                                                     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Semen_01_KLK3<br>Semen_02_PRIM1<br>Semen_03_SEMG2<br>Semen_04_TGM4<br>Semen_05_TGM4 | 0      | 0      | 0      | 0      | 0      | 5594   | 0      | 0      | 0      | 0      | 0      | 0       | 1360   | 2874     | 2816   | 23870  | 14661  | 0      | 19619  | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Semen_02_PRM1                                                                       | 5212   | 467415 | 542649 | 175175 | 252016 | 626626 | 0      | 0      | 0      | 0      | 0      | 0       | 11900  | 64382    | 165359 | 554802 | 192577 | 8426   | 75454  | 9392   | 11312    | 4548   | 204133 | 175825 | 308273 | 619222 |
| Semen_03_SEMG2                                                                      | 0      | 0      | 0      | 909    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 598      | 1441   | 0      | 0      | 0      | 4137   | 127    | 84       | 0      | 0      | 0      | 0      | 0      |
| Semen_04_TGM4                                                                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 368    | 1504     | 0      | 13089  | 11730  | 0      | 3906   | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Semen_05_TGM4                                                                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 346    | 1699     | 920    | 0      | 2611   | 0      | 5716   | 81     | 0        | 0      | 0      | 0      | 0      | 0      |
| Semen_06_TGM4<br>Semen-gDNA_01_TGM4                                                 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Semen-gDNA_01_TGM4                                                                  | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Semen-gDNA_01_TGM4                                                                  | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Skin_01_COL17A1                                                                     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 9101    | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Skin_02_IL37                                                                        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Skin_03_LCE1C                                                                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Vaginal_01_CYP2A6                                                                   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Vaginal_02_CYP2B7P1                                                                 | 67     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Total Number of Reads                                                               | 5768   | 467415 | 542649 | 176084 | 252016 | 632220 | 71185  | 477151 | 275968 | 552577 | 182598 | 1241011 | 13974  | 71057    | 170536 | 591761 | 221579 | 8426   | 109406 | 10045  | 11469    | 4548   | 204133 | 175825 | 308273 | 619222 |

SE

# **BFID - Stains n° 5-8**

Actual Body Fluids:

BL

SK

BL

SA

| mh counts corrected                                                                     | Lab1_5 | Lab2_5 | Lab3_5  | Lab4_5 | Lab5_5 | Lab6_5 | Lab1_6 | Lab2_6 | Lab3_6 | Lab4_6 | Lab5_6 | Lab6_6 | Lab1_7 | Lab2_7  | Lab3_7 | Lab4_7 | Lab5_7 | Lab6_7 | Lab1_8 | Lab1_8.2 | Lab2_8 | Lab3_8 | Lab4_8 | Lab5_8 | Lab6_8 |
|-----------------------------------------------------------------------------------------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|
| Blood_01_ANK1                                                                           | 18944  | 30362  | 264808  | 42106  | 43353  | 104847 | 0      | 397    | 37     | 14     | 0      | 0      | 15264  | 193668  | 276953 | 42371  | 26905  | 103086 | 38     | 0        | 0      | 6      | 0      | 0      | 0      |
| Blood_02_ANK1                                                                           | 21879  | 21256  | 91691   | 67002  | 67053  | 4625   | 0      | 303    | 11     | 34     | 11     | 0      | 13953  | 146075  | 45023  | 99602  | 48995  | 4428   | 58     | 5        | 0      | 0      | 0      | 0      | 0 7    |
| Blood_03_CD3G                                                                           | 17574  | 47864  | 193875  | 183817 | 40114  | 19213  | 5      | 721    | 13     | 188    | 9      | 0      | 14585  | 327537  | 91427  | 176501 | 40668  | 23212  | 64     | 6        | 0      | 0      | 83     | 0      | 0 7    |
| Blood_04_SPTB                                                                           | 11832  | 20721  | 80767   | 29810  | 26828  | 6145   | 0      | 217    | 9      | 26     | 0      | 0      | 4846   | 96702   | 38788  | 26781  | 14053  | 4154   | 47     | 0        | 0      | 0      | 0      | 0      | 0 /    |
| Blood_05_SPTB                                                                           | 29806  | 39722  | 399559  | 97440  | 93931  | 83555  | 0      | 470    | 49     | 29     | 10     | 0      | 20405  | 223585  | 331782 | 99302  | 48910  | 53474  | 59     | 6        | 0      | 11     | 0      | 0      | 0 7    |
| Blood_06_SPTB                                                                           | 8734   | 13989  | 0       | 3949   | 7584   | 0      | 0      | 125    | 0      | 0      | 0      | 0      | 2441   | 56378   | 0      | 8165   | 4331   | 0      | 24     | 0        | 0      | 0      | 0      | 0      | 0 7    |
| Menstrual_01_LEFTY2                                                                     | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 8        | 0      | 0      | 0      | 0      | 0 7    |
| Menstrual 02 MMP10                                                                      | 0      | 0      | 0       | 0      | 0      | 0      | 38     | 0      | 0      | 104    | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 6      | 144      | 53     | 0      | 195    | 0      | 0      |
| Saliva_01_HTN3                                                                          | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0        | 37     | 0      | 2941   | 0      | 0      |
| Saliva_02_MUC7                                                                          | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 49     | 38     | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 20     | 0        | 97     | 0      | 10136  | 16     | 4188   |
| Saliva_03_PRB4                                                                          | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 113    | 0      | 0      |
| Saliva_04_PRH2                                                                          | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0        | 69     | 0      | 537    | 0      | 65     |
| Saliva_01_HTN3<br>Saliva_02_MUC7<br>Saliva_03_PRB4<br>Saliva_04_PRH2<br>Saliva_05_STATH | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 269    | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0        | 116    | 0      | 1964   | 0      | 679    |
| Semen_01_KLK3                                                                           | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 5      | 0        | 0      | 0      | 0      | 0      | 807    |
| Semen_02_PRM1                                                                           | 0      | 2556   | 0       | 0      | 0      | 0      | 0      | 37     | 96     | 190    | 38     | 17     | 0      | 10931   | 0      | 0      | 0      | 0      | 50     | 0        | 4708   | 7      | 0      | 29     | 3168   |
| Semen_03_SEMG2                                                                          | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Semen_04_TGM4                                                                           | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 5      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 781    |
| Semen_05_TGM4                                                                           | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 10     | 0      | 0       | 0      | 0      | 0      | 0      | 5      | 0        | 0      | 0      | 0      | 0      | 85     |
| Semen_06_TGM4                                                                           | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0 1    |
| Semen-gDNA_01_TGM4                                                                      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0 7    |
| Semen-gDNA_01_TGM4                                                                      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Skin_01_COL17A1                                                                         | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Skin_02_IL37                                                                            | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 495    | 294    | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Skin_03_LCE1C                                                                           | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 373    | 497    | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Vaginal_01_CYP2A6                                                                       | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      |
| Vaginal_02_CYP2B7P1                                                                     | 0      | 0      | 0       | 0      | 0      | 0      | 7      | 0      | 0      | 105    | 0      | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 133    | 6        | 0      | 0      | 0      | 0      | 616    |
| Total Number of Reads                                                                   | 108769 | 176470 | 1030700 | 424124 | 278863 | 218385 | 50     | 2270   | 1083   | 1799   | 106    | 32     | 71494  | 1054876 | 783973 | 452722 | 183862 | 188354 | 509    | 175      | 5080   | 24     | 15969  | 45     | 10389  |
|                                                                                         |        |        |         |        |        |        |        |        |        |        |        |        |        |         |        |        |        |        |        |          |        |        |        |        | ,      |

Predicted Body Fluids:

BL

Difficult! skin, blood?

ΒL

SA

# **BFID - Stains n° 9-12**

Predicted Body Fluids:

SA

SA

BL-SA

SA

VAG

| mh counts corrected                                                                    | Lab1_9 | Lab2_9 | Lab3_9 | Lab4_9 | Lab5_9 | Lab6_9 | Lab1_10 | Lab2_10 | Lab3_10 | Lab4_10 | Lab5_10 | Lab6_10 | Lab1_11 | Lab1_11.2 | Lab2_11 | Lab3_11 | Lab4_11 | Lab5_11 | Lab5_11 | Lab1_12 | Lab2_12 | Lab3_12 | Lab4_12 | Lab5_12 | Lab6_12 |
|----------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Blood_01_ANK1                                                                          | 0      | 0      | 0      | 0      | 0      | 0      | 693     | 1736    | 39201   | 8181    | 2856    | 35281   | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 41      | 0       | 0       | 0       | 0       |
| Blood_02_ANK1                                                                          | 0      | 0      | 0      | 0      | 0      | 0      | 900     | 1213    | 5465    | 14366   | 3671    | 19766   | 0       | 6         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Blood_03_CD3G                                                                          | 0      | 0      | 0      | 0      | 0      | 0      | 3902    | 12066   | 161555  | 143576  | 14621   | 161872  | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Blood_04_SPTB                                                                          | 0      | 0      | 0      | 0      | 0      | 0      | 345     | 984     | 3412    | 6043    | 843     | 27872   | 0       | 8         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Blood_05_SPTB                                                                          | 0      | 0      | 0      | 0      | 0      | 0      | 710     | 1313    | 16679   | 12496   | 3747    | 35442   | 0       | 5         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Blood_06_SPTB                                                                          | 0      | 0      | 0      | 0      | 0      | 0      | 316     | 744     | 0       | 1854    | 827     | 1688    | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Menstrual_01_LEFTY2                                                                    | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Menstrual_02_MMP10                                                                     | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 216     | 47        | 0       | 0       | 0       | 0       | 0       | 0       | 78      | 0       | 1529    | 0       | 0       |
| Saliva_01_HTN3                                                                         | 6059   | 8955   | 0      | 30897  | 0      | 51496  | 128     | 1070    | 0       | 5184    | 546     | 0       | 149     | 0         | 2664    | 48881   | 2469    | 0       | 6399    | 0       | 0       | 0       | 0       | 0       | 0       |
| Saliva_02_MUC7                                                                         | 9488   | 1436   | 191932 | 28940  | 6075   | 86195  | 445     | 1383    | 23694   | 21296   | 2207    | 13424   | 2784    | 194       | 786     | 340408  | 151776  | 31142   | 208966  | 0       | 0       | 0       | 0       | 0       | 0       |
| Saliva_01_HTN3<br>Saliva_02_MUC7<br>Saliva_03_PRB4<br>Saliva_04_PRH2<br>Saliva_04_PRH2 | 838    | 129    | 0      | 1635   | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 37      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Saliva_04_PRH2                                                                         | 1888   | 551    | 51450  | 7729   | 1486   | 26548  | 0       | 0       | 1420    | 1834    | 0       | 1747    | 62      | 0         | 218     | 29400   | 18780   | 1579    | 15255   | 0       | 0       | 0       | 0       | 0       | 0       |
| Saliva_05_STATH                                                                        | 7884   | 5147   | 267186 | 37830  | 10375  | 148819 | 70      | 539     | 11967   | 7799    | 540     | 3611    | 715     | 134       | 1761    | 201324  | 148252  | 19790   | 101528  | 0       | 0       | 0       | 0       | 0       | 0       |
| Semen_01_KLK3                                                                          | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Semen_02_PRM1                                                                          | 0      | 675    | 0      | 0      | 0      | 0      | 0       | 412     | 0       | 0       | 0       | 0       | 0       | 0         | 841     | 0       | 0       | 0       | 0       | 0       | 51      | 0       | 0       | 0       | 0       |
| Semen_02_PRM1<br>Semen_03_SEMG2                                                        | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Semen_04_TGM4                                                                          | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Semen_05_TGM4                                                                          | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Semen_06_TGM4                                                                          | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Semen-gDNA_01_TGM4                                                                     | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Semen-gDNA_01_TGM4                                                                     | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Skin_01_COL17A1                                                                        | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 177     | 221     | 9344    | 0       | 1349    | 2533    |
| Skin_02_IL37                                                                           | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Skin_03_LCE1C                                                                          | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 149     | 0       | 0       | 0       | 0       |
| Vaginal_01_CYP2A6                                                                      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2305    | 2843    |
| Vaginal_02_CYP2B7P1                                                                    | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 10        | 0       | 0       | 0       | 0       | 0       | 26779   | 5973    | 606456  | 246124  | 238697  | 364797  |
| Total Number of Reads                                                                  | 26157  | 16893  | 510568 | 107031 | 17936  | 313058 | 7509    | 21460   | 263393  | 222629  | 29858   | 300703  | 3926    | 404       | 6307    | 620013  | 321277  | 52511   | 332148  | 26956   | 6513    | 615800  | 247653  | 242351  | 370173  |

SA

# BFID - Stains n° 13-16

Predicted Body Fluids:

BL

SA-SE

MB

SE-VAG

| mh counts corrected                                                  | Lab1_13 | Lab2_13 | Lab3_13 | Lab4_13 | Lab5_13 | Lab6_13 | Lab1_14 | Lab1_14.2 | Lab2_14 | Lab3_14 | Lab4_14 | Lab5_14 | Lab6_14 | Lab1_15 | Lab2_15 | Lab3_15 | Lab4_15 | Lab5_15 | Lab6_15 | Lab1_16 | Lab2_16 | Lab3_16 | Lab4_16 | Lab5_16 | Lab6_16 |
|----------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Blood_01_ANK1                                                        | 1052    | 5250    | 49      | 8015    | 9023    | 7258    | 10      | 48        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 13114   | 0       | 0       | 0       | 0       | 0       | 0       |
| Blood_02_ANK1                                                        | 40      | 3820    | 13      | 189     | 0       | 8240    | 18      | 83        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Blood_03_CD3G                                                        | 963     | 7938    | 298     | 7879    | 2853    | 12671   | 10      | 70        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 8064    | 0       | 0       | 0       | 0       | 0       | 0       |
| Blood_04_SPTB                                                        | 195     | 3009    | 16      | 170     | 144     | 3175    | 9       | 45        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Blood_05_SPTB                                                        | 1479    | 5589    | 540     | 9485    | 5811    | 14542   | 20      | 91        | 0       | 0       | 0       | 0       | 0       | 707     | 0       | 0       | 0       | 0       | 8771    | 0       | 0       | 0       | 0       | 0       | 0       |
| Blood_06_SPTB                                                        | 0       | 698     | 0       | 0       | 0       | 0       | 8       | 19        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Menstrual_01_LEFTY2                                                  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 35        | 0       | 0       | 0       | 0       | 0       | 13854   | 110508  | 10121   | 34218   | 44602   | 103317  | 0       | 0       | 0       | 0       | 0       | 0       |
| Menstrual_02_MMP10                                                   | 0       | 0       | 273     | 1810    | 199     | 0       | 8       | 226       | 729     | 0       | 0       | 0       | 0       | 114133  | 920132  | 886796  | 399233  | 578083  | 776501  | 0       | 0       | 0       | 0       | 0       | 5917    |
| Saliva_01_HTN3<br>Saliva_02_MUC7<br>Saliva_03_PRB4<br>Saliva_04_PRH2 | 0       | 0       | 13      | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Saliva_02_MUC7                                                       | 0       | 0       | 0       | 442     | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Saliva_03_PRB4                                                       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Saliva_04_PRH2                                                       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Saliva_05_STATH                                                      | 142     | 363     | 414     | 4863    | 7122    | 5432    | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Semen_01_KLK3                                                        | 22      | 0       | 17      | 0       | 0       | 0       | 0       | 13        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 9040    | 6569    | 58447   | 35600   | 43038   | 50195   |
| Semen_02_PRM1                                                        | 49      | 3326    | 111     | 254     | 0       | 0       | 16      | 368       | 109640  | 483995  | 176138  | 126620  | 228487  | 0       | 0       | 0       | 0       | 0       | 0       | 32687   | 52123   | 215279  | 75917   | 181028  | 223154  |
| Semen_02_PRM1<br>Semen_03_SEMG2                                      | 0       | 0       | 15      | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 633     | 0       | 0       | 4853    | 6531    | 0       |
| Semen_04_TGM4<br>Semen_05_TGM4                                       | 0       | 0       | 76      | 0       | 0       | 0       | 0       | 15        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2924    | 2268    | 37706   | 16668   | 19788   | 55682   |
| Semen_05_TGM4                                                        | 0       | 0       | 21      | 0       | 0       | 0       | 0       | 6         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 3027    | 2576    | 10050   | 20414   | 26766   | 8396    |
| Semen_06_TGM4                                                        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 385     | 1037    | 0       | 11450   | 9180    | 0       |
| Semen-gDNA_01_TGM4                                                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 385     | 1037    | 0       | 11450   | 9180    | 0       |
| Semen-gDNA_01_TGM4                                                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 385     | 1037    | 0       | 11450   | 9180    | 0       |
| Skin_01_COL17A1                                                      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Skin_02_IL37                                                         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Skin_03_LCE1C                                                        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 706     | 0       | 0       | 0       | 0       |
| Vaginal_01_CYP2A6                                                    | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1046    | 658     | 0       | 2732    | 3595    | 0       |
| Vaginal_02_CYP2B7P1                                                  | 55      | 0       | 92      | 218     | 0       | 0       | 11      | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 20522   | 15756   | 68131   | 47318   | 60324   | 41762   |
| Total Number of Reads                                                | 3997    | 29993   | 1948    | 33325   | 25152   | 51318   | 110     | 1019      | 110369  | 483995  | 176138  | 126620  | 228487  | 128694  | 1030640 | 896917  | 433451  | 622685  | 909767  | 71034   | 83767   | 389613  | 237852  | 368610  | 385106  |
|                                                                      |         |         |         |         |         |         |         |           |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |

Predicted Body Fluids:

BL

SE, SA missing

MB

SE-VAG



### **Zurich Institute of Forensic Medicine**

# Assignment of Body Fluids with Donors - stains n° 1-16

| Stain_1        | Semen_02_PRM1 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06.0_TGM4 | Semen_06.1_TGM4 | Semen_03_SEMG2 | Semen_01.0_KLK3 | Semen_01.1_KLK3 |
|----------------|---------------|---------------|---------------|-----------------|-----------------|----------------|-----------------|-----------------|
| SE             | PRM1          | TGM4          | TGM4          | TGM4            | TGM4            | SEMG2          | KLK3            | KLK3            |
| Donor genotype | TT            | СТ            | AG            | CC              | GG              | AC             | СТ              | AG              |
| Lab1_1         | T=5212        | T=15          | A=6           | -               | -               | -              | C=13            | G=13            |
| Lab2_1         | T=467415      | C=52          | G=66          | -               | -               | C=94           | C=234           | G=234           |
|                |               |               | A=15          |                 |                 | A=50           | T=206           | A=206           |
| Lab3_1         | T=542649      | C=445         | G=787         | C=18            | G=18            | C=533          | T=1571          | A=1571          |
|                |               | T=300         | A=129         |                 |                 | A=276          | C=1026          | G=1026          |
| Lab4_1         | T=175175      | C=76          | G=94          | C=13            | G=13            | C=590          | T=346           | A=346           |
|                |               | T=46          | A=83          |                 |                 | A=319          | C=275           | G=275           |
| Lab5_1         | T=252016      | -             | -             | -               | -               | -              | -               | -               |
| Lab6_1         | T=626626      | C=595         | G=1012        | C=42            | G=42            | C=1359         | T=2910          | A=2910          |
|                |               | T=352         | A=601         |                 |                 | A=490          | C=2684          | G=2864          |

Stain 1 (low input):

- high number of reads in some markers
- RNA cSNP genotype reflects donor genotype

| Stain_3        | Semen_02_PRM1 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06.0_TGM4 | Semen_06.1_TGM4 | Semen_03_SEMG2 | Semen_01.0_KLK3 | Semen_01.1_KLK3 |
|----------------|---------------|---------------|---------------|-----------------|-----------------|----------------|-----------------|-----------------|
| SE             | PRM1          | TGM4          | TGM4          | TGM4            | TGM4            | SEMG2          | KLK3            | KLK3            |
| Donor genotype | TT            | TT            | AA            | TT              | AA              | AC             | СТ              | AG              |
| Lab1_3         | T=11900       | T=368         | A=346         | -               | -               | C=18           | T=694           | A=694           |
|                |               |               |               |                 |                 | A=8            | C=666           | G=666           |
| Lab2_3         | T=165359      | T=584         | A=920         | T=259           | A=259           | C=848          | T=1460          | A=1460          |
|                |               |               |               |                 |                 | A=593          | C=1356          | G=1356          |
| Lab3_3         | T=554802      | T=13089       | A=1730        | -               | -               | C=164          | C=13352         | G=13352         |
|                |               |               |               |                 |                 | A=66           | T=10518         | A=19518         |
| Lab4_3         | T=175175      | C=76          | G=94          | C=13            | G=13            | C=590          | T=346           | A=346           |
|                |               | T=46          | A=83          |                 |                 | A=319          | C=275           | G=275           |
| Lab5_3         | T=8426        | T=9           | -             | -               | -               | -              | -               | -               |
| Lab6_3         | T=75454       | T=3906        | A=5716        | T=242           | A=242           | C=2472         | C=10949         | G=10949         |
|                |               |               |               |                 |                 | A=1665         | T=8670          | A=8670          |

Stain 3 (high input):

- high number of reads in some markers

- RNA cSNP genotype reflects donor

### genotype

(discrepancies due to low number of reads)

| Stain_5        | Blood_01_ANK1 | Blood_02_ANK1 | Blood_03_CD3G | Blood_05_SPTB | Blood_04.0_SPTB | Blood_04.1_SPTB | Blood_06_SPTB |
|----------------|---------------|---------------|---------------|---------------|-----------------|-----------------|---------------|
| BL             | ANK1          | ANK1          | CD3G          | SPTB          | SPTB            | SPTB            | SPTB          |
| Donor genotype | CG            | GG            | TT            | СС            | AA              | CC              | AA            |
| Lab1_5         | C=9528        | G=21879       | T=17574       | C=29806       | A=11832         | C=11832         | A=8734        |
|                | G=9416        |               |               |               |                 |                 |               |
| Lab2_5         | G=15935       | G=21256       | T=47864       | C=39722       | A=20721         | C=20721         | A=13989       |
|                | C=14427       |               |               |               |                 |                 |               |
| Lab3_5         | C=135285      | G=91691       | T193875       | C399559       | A=80767         | C=399559        | A=2730        |
|                | G=129523      |               |               |               |                 |                 |               |
| Lab4_5         | C=21667       | G=67002       | T=183817      | C=97440       | A=29810         | C=29810         | A=3949        |
|                | G=20439       |               |               |               |                 |                 |               |
| Lab5_5         | C=22824       | G=67053       | T=40114       | C=93931       | A=26828         | C=26828         | A=7584        |
|                | G=20529       |               |               |               |                 |                 |               |
| Lab6_5         | C=53051       | G=4625        | T=19213       | C=83555       | A=6145          | C=6145          | A=363         |
|                | G=51796       |               |               |               |                 |                 |               |

| Stain_13       | Blood_01_ANK1 | Blood_02_ANK1 | Blood_03_CD3G | Blood_05_SPTB | Blood_04.0_SPTB | Blood_04.1_SPTB | Blood_06_SPTB |
|----------------|---------------|---------------|---------------|---------------|-----------------|-----------------|---------------|
| BL             | ANK1          | ANK1          | CD3G          | SPTB          | SPTB            | SPTB            | SPTB          |
| Donor genotype | CG            | GG            | TT            | СТ            | AA              | CC              | AG            |
| Lab1_13        | G=649         | G=40          | T=963         | T=954         | A=195           | C=195           | A=13          |
|                | C=403         |               |               | C=525         |                 |                 |               |
| Lab2_13        | G=2874        | G=3820        | T=7938        | C=2860        | A=3009          | C=3009          | A=698         |
|                | C=2376        |               |               | T=2729        |                 |                 |               |
| Lab3_13        | G=28          | G=13          | T=298         | C=540         | A=16            | C=16            | -             |
|                | C=21          |               |               |               |                 |                 |               |
| Lab4_13        | G=5117        | G=189         | T=7879        | T=5589        | A=158           | C=158           | A=9           |
|                | C=2898        |               |               | C=3896        | G=12            | T=12            |               |
| Lab5_13        | G=4522        | G=91          | T=2853        | C=2967        | A=144           | C=144           | -             |
|                | C=4501        |               |               | T=2844        |                 |                 |               |
| Lab6_13        | C=3819        | G=8240        | T=12671       | C=8086        | A=3175          | C=3175          | A=159         |
|                | G=3439        |               |               | T=6456        |                 |                 |               |

Stain 5 (high input):

- high number of reads in all markers
- RNA cSNP genotype reflects donor genotype

Stain 13 (low input):

- relatively high number of reads execpt in SPTB
- RNA cSNP genotype reflects donor genotype

| Stain_8        | Saliva_01.0_HTN3 | Saliva_01.1_HTN3 | Saliva_01.2_HTN3 | Saliva_03_PRB4 | Saliva_04_PRH2 | Saliva_02_MUC7 | Saliva_05_STATH |
|----------------|------------------|------------------|------------------|----------------|----------------|----------------|-----------------|
| SA             | HTN3             | HTN3             | HTN3             | PRB4           | PRH2           | MUC7           | STATH           |
| Donor genotype | TT               | CC               | CC               | CG             | СТ             | СТ             |                 |
| Lab1_8         | -                | -                | -                | -              | -              | C=13           | -               |
|                |                  |                  |                  |                |                | T=7            |                 |
| Lab1_8.2       | -                | -                | -                | -              | -              | -              | -               |
| Lab2_8         | T=37             | -                | -                | -              | C=69           | C=97           | -               |
| Lab3_8         | -                | -                | -                | -              | -              | -              | -               |
| Lab4_8         | T=2941           | C=2941           | C=2941           | C=118          | T=338          | C=6691         | -               |
|                |                  |                  |                  |                | C=199          | T=3445         |                 |
| Lab5_8         | -                | -                | -                | -              | -              | C=16           | -               |
| Lab6_8         | -                | -                | -                | -              | -              | -              | -               |

Stain 8 (low input):

- high number of reads in Lab 4
- RNA cSNP genotype mostly reflects donor genotype

| Stain_11       | Saliva_01.0_HTN3 | Saliva_01.1_HTN3 | Saliva_01.2_HTN3 | Saliva_03_PRB4 | Saliva_04_PRH2 | Saliva_02_MUC7 | Saliva_05_STATH |
|----------------|------------------|------------------|------------------|----------------|----------------|----------------|-----------------|
| SA             | HTN3             | HTN3             | HTN3             | PRB4           | PRH2           | MUC7           | STATH           |
| Donor genotype | СС               | TT               | CC               | GG             | CC             | СТ             |                 |
| Lab1_11        | C=149            | T=149            | C=149            | G=14           | C=62           | T=1504         | -               |
|                |                  |                  |                  |                |                | C=1280         |                 |
| Lab1_11.2      | -                | -                | -                | -              | -              | T=194          | -               |
| Lab2_11        | C=2664           | -                | -                | G=37           | C=218          | C=394          | -               |
|                |                  |                  |                  |                |                | T=392          |                 |
| Lab3_11        | C=48881          | T=48881          | C=48881          | G=1745         | C=29400        | C=187784       | -               |
|                |                  |                  |                  |                |                | T=152624       |                 |
| Lab4_11        | C=2469           | T=2469           | C=2469           | G=16           | C=18780        | C=86479        | -               |
|                |                  |                  |                  |                |                | T=65297        |                 |
| Lab5_11        | C=8              | T=8              | C=8              | -              | C=1579         | C=16947        | -               |
|                |                  |                  |                  |                |                | T=14195        |                 |
| Lab6_11        | C=6399           | T=6399           | C=6933           | G=206          | C=15255        | C=116980       | -               |
|                |                  |                  |                  |                |                | T=91986        |                 |

Stain 11 (high input):

- decent number of reads
- RNA cSNP genotype reflects donor genotype

| Stain_6 | Skin_01_COL17A1 | Skin_02_IL37 | Skin_03_LCE1C |
|---------|-----------------|--------------|---------------|
| SK      | COL17A1         | IL37         | LCE1C         |
| Lab1_6  | -               | -            | -             |
| Lab2_6  | -               | -            | -             |
| Lab3_6  | -               | -            | -             |
| Lab4_6  | -               | -            | -             |
| Lab5_6  | -               | -            | -             |
| Lab6_6  | -               | -            | -             |

| Stain_12 | CYP2A6 | CYP2B7P1 |
|----------|--------|----------|
| VAG      | CYP2A6 | CYP2B7P1 |
| Lab1_12  | -      | -        |
| Lab2_12  | -      | -        |
| Lab3_12  | -      | -        |
| Lab4_12  | -      | -        |
| Lab5_12  | -      | -        |
| Lab6_12  | -      | -        |

Stain 6: - no SKIN cSNPs in panel



| Stain_15       | Blood_01_ANK1 | Blood_02_ANK1 | Blood_03_CD3G | Blood_05_SPTB | Blood_04.0_SPTB | Blood_04.1_SPTB | Blood_06_SPTB | MMP10 | MMP10 | LEFTY2 |
|----------------|---------------|---------------|---------------|---------------|-----------------|-----------------|---------------|-------|-------|--------|
| MB             | ANK1          | ANK1          | CD3G          | SPTB          | SPTB            | SPTB            | SPTB          | MMP10 | MMP10 | LEFTY2 |
| Donor genotype | CG            | GG            | TT            | CC            | AG              | СТ              | AA            |       |       |        |
| Lab1_15        | -             | G=20          | -             | C=36          | -               | -               | -             | -     | -     | -      |
| Lab2_15        | C=361         | G=334         | T=1635        | C=702         | G=135           | C=135           | A=252         | -     | -     | -      |
|                | G=170         |               |               |               | A=106           | T=106           |               |       |       |        |
| Lab3_15        | C=2294        | G=49          | T=3880        | C=3566        | G=33            | T=33            | -             | -     | -     | -      |
|                | G=2120        |               |               |               | A=25            | C=25            |               |       |       |        |
| Lab4_15        | G=245         | G=1211        | T=1999        | C=1132        | G=318           | T=318           | A=299         | -     | -     | -      |
|                | C=235         |               |               |               | A=268           | C=268           |               |       |       |        |
| Lab5_15        | C=820         | G=2202        | T=2400        | C=3078        | A=515           | C=510           | A=586         | -     | -     | -      |
|                | G=809         |               |               |               | G=505           | T=505           |               |       |       |        |
| Lab6_15        | C=6906        | G=459         | T=8064        | C=8771        | A=458           | C=458           | A=45          | -     | -     | -      |
|                | G=6208        |               |               |               | G=452           | T=452           |               |       |       |        |

Stain 15:

- high number of reads for some markers

- no MB cSNPs in panel

### **Mixed Stains**

A mixed stain can contain...

- ...two different body fluids from the same donor
- ...two different body fluids from two different donors
- ...the same type of body fluid from two different donors

| Stain_9 | Saliva_01.0_HTN3 | Saliva_01.1_HTN3 | Saliva_01.2_HTN3 | Saliva_03_PRB4 | Saliva_04_PRH2 | Saliva_02_MUC7 | Saliva_05_STATH |
|---------|------------------|------------------|------------------|----------------|----------------|----------------|-----------------|
| SA-SA   | HTN3             | HTN3             | HTN3             | PRB4           | PRH2           | MUC7           | STATH           |
| donor 1 | СТ               | СТ               | CC               | GG             | СС             | СС             |                 |
| donor 2 | СС               | TT               | CC               | CG             | СТ             | СТ             |                 |
| Lab1_9  | C=4235           | C=4235           | C=4235           | G=747          | C=1663         | C=8761         | -               |
|         | T=1824           | T=1824           |                  | C=91           | T=225          | T=727          |                 |
| Lab2_9  | C=5896           | C=5896           | C=5896           | G=129          | C=506          | C=1267         | -               |
|         | T=3059           | T=3059           |                  |                | T=45           | T=169          |                 |
| Lab3_9  | C=204            | C=204            | C=204            | -              | C=45185        | -              | -               |
|         | T=49             | T=49             |                  |                | T=6265         |                |                 |
| Lab4_9  | C=21889          | C=21889          | C=21889          | G=1549         | C=6913         | C=26044        | -               |
|         | T=9008           | T=9008           |                  | C=86           | T=816          | T=2896         |                 |
| Lab5_9  | -                | -                | -                | -              | C=1380         | C=5630         | -               |
|         |                  |                  |                  |                | T=106          | T=445          |                 |
| Lab6_9  | C=35674          | C=35674          | C=35674          | G=651          | C=24714        | C=78255        | -               |
|         | T=15822          | T=15822          |                  | C=37           | T=1834         | T=7940         |                 |

Stain 9:

- high number of reads in some markers

- RNA cSNP genotype reflects sum of donor genotypes

### **Mixed Stains**

| Stain_2 | Blood_01_ANK1 | Blood_02_ANK1 | Blood_03_CD3G | Blood_05_SPTB | Blood_04.0_SPTB | Blood_04.1_SPTB | Blood_06_SPTB | MMP10 | MMP10 | LEFTY2 | CYP2A6 | CYP2B7P1 |  |
|---------|---------------|---------------|---------------|---------------|-----------------|-----------------|---------------|-------|-------|--------|--------|----------|--|
| MB-BL   | ANK1          | ANK1          | CD3G          | SPTB          | SPTB            | SPTB            | SPTB          | MMP10 | MMP10 | LEFTY2 | CYP2A6 | CYP2B7P1 |  |
| donor 1 | CG            | GG            | TT            | CC            | AG              | СТ              | AA            |       |       |        |        |          |  |
| donor 2 | СС            | GG            | TT            | СТ            | AA              | CC              | AG            |       |       |        |        |          |  |
| Lab1_2  | C= 295        | G=333         | T=355         | C=317         | A=46            | C=46            | A=22          | -     | -     | -      | -      | -        |  |
|         | G= 163        |               |               | T=42          | G=23            | T=23            | G=7           |       |       |        |        |          |  |
| Lab2_2  | C=6953        | G=5925        | T=6936        | C=5227        | A=4673          | C=4673          | A=2054        | -     | -     | -      | -      | -        |  |
|         | G=849         |               |               | T=2386        | G=400           | T=400           | G=902         |       |       |        |        |          |  |
| Lab3_2  | C=4210        | G=36          | T=10204       | C=4167        | A=47            | C=47            |               | -     | -     | -      | -      | -        |  |
|         | G=1134        |               |               | T=1520        | G=22            | T=22            |               |       |       |        |        |          |  |
| Lab4_2  | C=2764        | G=7317        | T=12845       | C=4845        | A=1287          | C=1287          | A=1090        | -     | -     | -      | -      | -        |  |
|         | G=832         |               |               | T=1257        | G=571           | T=571           | T=1257        |       |       |        |        |          |  |
| Lab5_2  | C=1644        | G=1947        | T=3220        | C=2571        | A=772           | C=772           | A=398         | -     | -     | -      | -      | -        |  |
|         | G=467         |               |               | T=1193        | G=130           | T=130           | G=144         |       |       |        |        |          |  |
| Lab6_2  | C=32179       | G=42511       | T=45910       | C=31060       | A=16540         | C=16540         | A=6957        | -     | -     | -      | -      | -        |  |
|         | G=8552        |               |               |               | G=5450          | T=5450          | G=2694        |       |       |        |        |          |  |

| Stain_7 | Blood_01_ANK1 | Blood_02_ANK1 | Blood_03_CD3G | Blood_05_SPTB | Blood_04.0_SPTB | Blood_04.1_SPTB | Blood_06_SPTB |
|---------|---------------|---------------|---------------|---------------|-----------------|-----------------|---------------|
| BL-BL   | ANK1          | ANK1          | CD3G          | SPTB          | SPTB            | SPTB            | SPTB          |
| donor 1 | CG            | GG            | TT            | СС            | AG              | СТ              | AA            |
| donor 2 | CC            | GG            | TT            | СТ            | AA              | CC              | AG            |
| Lab1_7  | C= 11817      | G=13953       | T=14585       | C=16031       | A=3723          | C=3723          | A=1793        |
|         | G= 3447       |               |               | T=4374        | G=1123          | T=1123          | G=648         |
| Lab2_7  | C=153908      | G=146075      | T=327537      | C=171354      | A=70271         | C=70271         | A=41841       |
|         | G=39760       |               |               | T=52231       | G=26431         | T=26431         | G=14537       |
| Lab3_7  | C=221347      | G=45023       | T=91427       | C=254521      | A=28778         | C=28778         | A=689         |
|         | G=55606       |               |               | T=77261       | G=10010         | T=10010         | G=206         |
| Lab4_7  | C=33980       | G=99602       | T=176501      | C=76120       | A=19712         | C=19712         | A=6410        |
|         | G=8391        |               |               | T=23182       | G=7069          | T=7069          | G=1755        |
| Lab5_7  | C=21068       | G=48995       | T=40668       | C=37435       | A=10564         | C=10564         | A=3381        |
|         | G=5837        |               |               | T=11475       | G=3489          | T=3489          | G=950         |
| Lab6_7  | C=81521       | G=4428        | T=23212       | C=41863       | A=3031          | C=3031          | A=280         |
|         | G=21565       |               |               | T=11611       | G=1123          | T=1123          | G=87          |

- high number of reads
- no MB, VAG cSNPs in panel
- BL RNA cSNP genotype reflects sum of donor genotypes

Stain 7:

high number of reads
RNA cSNP genotype reflects sum of donor genotypes

 Saliva 04\_PRH2
 Saliva 02\_MUC7
 Saliva 05\_STATH
 Staina 10:
 Staina 10:

| Stain_10 | Blood_01_ANK1 | Blood_02_ANK1 | Blood_03_CD3G | Blood_05_SPTB | Blood_04.0_SPTB | Blood_04.1_SPTB | Blood_06_SPTB | Saliva_01.0_HTN3 | Saliva_01.1_HTN3 | Saliva_01.2_HTN3 | Saliva_03_PRB4 | Saliva_04_PRH2 | Saliva_02_MUC7 | Saliva_05_STATH |
|----------|---------------|---------------|---------------|---------------|-----------------|-----------------|---------------|------------------|------------------|------------------|----------------|----------------|----------------|-----------------|
| BL-SA    | ANK1          | ANK1          | CD3G          | SPTB          | SPTB            | SPTB            | SPTB          | HTN3             | HTN3             | HTN3             | PRB4           | PRH2           | MUC7           | STATH           |
| donor 1  | CG            | GG            | TT            | CC            | AG              | СТ              | AG            | CC               | СТ               | CC               | GG             | CC             | CC             |                 |
| donor 2  | CG            | GG            | TT            | CC            | AA              | CC              | AA            | TT               | CC               | CC               | CG             | СТ             | СТ             |                 |
| Lab1_10  | C=436         | G=900         | T=3902        | C=710         | A=181           | C=181           | A=165         | T=128            | C=128            | -                | G=11           | C=62           | C=366          | -               |
|          | G=257         |               |               |               | G=164           | T=164           | G=151         |                  |                  |                  |                |                | T=79           |                 |
| Lab2_10  | G=884         | G=1213        | T=12066       | C=1313        | A=562           | T=562           | A=417         | T=1070           | C=1070           | C=1070           | -              | T=52           | C=897          | -               |
|          | C=852         |               |               |               | G=442           | C=442           | G=327         |                  |                  |                  |                | C=33           | 486            |                 |
| Lab3_10  | C=22549       | G=5465        | T=161555      | C=16679       | A=1923          | C=1923          | G=156         | T=562            | C=562            | C=562            | -              | C=868          | C=16995        | -               |
|          | G=16652       |               |               |               | G=1489          | T=1489          | A=128         | C=16             | T=16             |                  |                | T=552          | T=6699         |                 |
| Lab4_10  | C=4509        | G=14366       | T=143576      | C=12496       | A=3066          | T=3066          | G=1054        | T=5184           | C=5184           | C=5184           | C=63           | C=1002         | C=14876        | -               |
|          | G=3672        |               |               |               | G=2977          | C=2977          | A=800         |                  |                  |                  |                | T=832          | T=6420         |                 |
| Lab5_10  | C=1582        | G=3671        | T=14621       | C=3747        | A=471           | C=471           | G=500         | T=546            | -                | -                | C=44           | -              | C=1440         | -               |
|          | G=1274        |               |               |               | G=372           | T=372           | A=327         |                  |                  |                  | G=6            |                | T=767          |                 |
| Lab6_10  | C=19820       | G=19766       | T=161872      | C=35442       | A=14385         | C=14385         | G=1003        | T=303            | C=303            | C=303            | -              | T=1000         | C=9277         | -               |
|          | G=15461       |               |               |               | G=13487         | T=13487         | A=685         |                  |                  |                  |                | C=747          | T=4147         |                 |

#### **Mixed Stains**

| Stain_4          | Semen_02_PRM1 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06.0_TGM4 | Semen_06.1_TGM4 | Semen_03_SEMG2 | Semen_01.0_KLK3 | Semen_01.1_KLK3 | Saliva_01.0_HTN | 3 Saliva_01.1_HTN3 | Saliva_01.2_HTN3 | Saliva_03_PRB4 | Saliva_04_PRH2 | Saliva_02_MUC7 | Saliv+B41:P41a_05_STATH |
|------------------|---------------|---------------|---------------|-----------------|-----------------|----------------|-----------------|-----------------|-----------------|--------------------|------------------|----------------|----------------|----------------|-------------------------|
| SA-SE            | PRM1          | TGM4          | TGM4          | TGM4            | TGM4            | SEMG2          | KLK3            | KLK3            | HTN3            | HTN3               | HTN3             | PRB4           | PRH2           | MUC7           | STATH                   |
| donor 1          | TT            | т             | AA            | СТ              | AG              | CC             | TT              | AA              | СТ              | СТ                 | CC               | GG             | CC             | CC             |                         |
| Lab1_4           | T=9392        |               | A=81          | -               | -               | C=127          | T=5             | G=7             | -               | -                  | -                | -              | -              |                | -                       |
| Lab1_4.2         | T=11312       | T=10          | A=8           |                 |                 | C=84           | C=7             | A=5             |                 |                    |                  |                |                | C=9            |                         |
| Lab2_4           | T=4548        | -             | -             | -               | -               | -              | -               | -               | -               | -                  | -                | -              | -              | -              | -                       |
| Lab2_4<br>Lab3_4 | T=204133      | T=6           | A=53          | -               | -               | C=32           | T=34            | A=34            | -               | -                  | -                | -              | -              | -              | -                       |
| Lab4_4           | T=175825      | -             | A=293         | -               | -               | C=259          | T=66            | A=66            | C=18            | T=18               | C=18             | -              | -              | -              | -                       |
|                  |               |               |               |                 |                 |                |                 |                 | T=15            | C=15               |                  |                |                |                |                         |
| Lab5_4           | T=308273      | -             | -             | -               | -               | -              | T=60            | A=60            | -               | -                  | -                | -              | -              | -              | -                       |
| Lab6_4           | -             | -             | -             | -               | -               | -              | C=10949         | G=10949         | T=27            | C=27               | C=27             | G=26           | C=92           | C=208          | -                       |
|                  |               |               |               |                 |                 |                | T=8670          | A=8670          | C=14            | T=14               |                  |                |                | T=64           |                         |

| Stain_14  | Semen_02_PRM1 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06.0_TGM4 | Semen_06.1_TGM4 | Semen_03_SEMG2 | Semen_01.0_KLK3 | emen_01.1_KLK3 | Saliva_01.0_HTN3 | Saliva_01.1_HTN3 | Saliva_01.2_HTN3 | Saliva_03_PRB4 | Saliva_04_PRH2 | Saliva_02_MUC7 |
|-----------|---------------|---------------|---------------|-----------------|-----------------|----------------|-----------------|----------------|------------------|------------------|------------------|----------------|----------------|----------------|
| SA-SE     | PRM1          | TGM4          | TGM4          | TGM4            | TGM4            | SEMG2          | KLK3            | KLK3           | HTN3             | HTN3             | HTN3             | PRB4           | PRH2           | MUC7           |
| donor 1   | TT            | СТ            | AG            | СТ              | AG              | CC             | TT              | AA             | CC               | СТ               | CC               | CG             | СТ             | CC             |
| donor 2   | TT            | CC            | GG            | СТ              | AG              | CC             | П               | AA             | СТ               | СТ               | CC               | GG             | CC             | СС             |
| Lab1_14   | T=16          | -             | -             | -               | -               | -              | -               | -              | -                | -                | -                | -              | -              | -              |
| Lab1_14.2 | T=368         | T=15          | A=6           | -               | -               | -              | -               | -              | -                | -                | -                | -              | -              | -              |
| Lab2_14   | T=109640      | C=15          | -             | -               | -               | -              | -               | -              | -                | -                | -                | -              | -              | -              |
| Lab3_14   | T=483995      | C=1160        | G=575         | -               | -               | -              | T=520           | A=520          | -                | -                | -                | -              | -              | C=281          |
|           |               | T=58          |               |                 |                 |                | C=433           | G=433          |                  |                  |                  |                |                |                |
| Lab4_14   | T=176138      | C=308         | G=22          | -               | -               | -              | T=72            | A=72           | -                | -                | -                | -              | -              | C=72           |
|           |               | T=31          | A=6           |                 |                 |                | C=16            | G=16           |                  |                  |                  |                |                |                |
| Lab5_14   | T=126620      | T=61          | -             | -               | -               | -              | -               |                | -                | -                | -                | -              | -              | -              |
| Lab6_14   | T=228487      | C=68          | -             | -               |                 | -              | -               | -              | -                |                  |                  |                | -              | -              |

Stain 4:

overall low number of eads

- RNA cSNP genotype poorly reflects DNA genotypes

| Stain 14:              |
|------------------------|
| - high number of reads |
| only in one marker     |
| - RNA cSNP genotypes   |
| hardly reflects donor  |
| genotypes              |

| Stain_16 | Semen_02_PRM1 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06.0_TGM4 | Semen_06.1_TGM4 | Semen_03_SEMG2 | Semen_01.0_KLK3 | Semen_01.1_KLK3 | CYP2A6 | CYP2B7P1 |                        |
|----------|---------------|---------------|---------------|-----------------|-----------------|----------------|-----------------|-----------------|--------|----------|------------------------|
| SE-VAG   | PRM1          | TGM4          | TGM4          | TGM4            | TGM4            | SEMG2          | KLK3            | KLK3            | CYP2A6 | CYP2B7P1 |                        |
| donor 1  | TT            | TT            | AA            | TT              | AA              | AC             | СТ              | AG              |        |          | Stain 16:              |
| donor 2  | TT            | CC            | GG            | CC              | GG              | CC             | CC              | GG              |        |          | high number of reads   |
| Lab1_16  | T=32687       | T=2924        | A=3027        | T=385           | A=385           | A=349          | C=5308          | G=5308          | -      | -        | - high number of reads |
|          |               |               |               |                 |                 | C=284          | T=3732          | A=3732          |        |          | in some markers        |
| Lab2_16  | T=52123       | T=2268        | A=2576        | T=1037          | A=1037          | C=197          | C=4237          | G=4237          | -      | -        | - no VAG cSNPs in      |
|          |               |               |               |                 |                 | A=117          | T=2332          | A=2332          |        |          | - HO VAG CONFS III     |
| Lab3_16  | T=215279      | T=784         | A=1010        | -               | -               | C=19           | C=31282         | G=31282         |        | -        | panel                  |
|          |               |               |               |                 |                 | A=5            | T=27165         | A=27165         |        |          |                        |
| Lab4_16  | T=75917       | T=16668       | A=20414       | T=11450         | A=11450         | C=2719         | C=19113         | G=19113         | -      | -        | - SE RNA cSNP          |
|          |               |               |               |                 |                 | A=2134         | T=16487         | A=16487         |        |          | genotype reflects      |
| Lab5_16  | T=181028      | T=19788       | A=26766       | T=9180          | A=9180          | C=3713         | C=25524         | G=25524         | -      | -        |                        |
|          |               |               |               |                 |                 | A=2818         | T=17514         | A=17514         |        |          | donor genotype (except |
| Lab6_16  | T=223154      | T=55682       | A=8151        | -               | -               | C=164          | C=29081         | G=29081         |        | -        | Semen 05 TGM4)         |
|          |               |               | G=245         |                 |                 | A=82           | T=21114         | A=21114         |        |          | ,                      |



## Results for the Body Fluid Identification for the Own Stains (8 per laboratory)

#### BFID RNA Results – Laboratory 3 Stains n° 1-8

- mh counts: raw data, used to calculate the 0.5% threshold for correction
- mh counts corrected: everything below the 0.5% threshold set to 0

|                       | Lab3_1    | Lab3_1              | Lab3_2    | Lab3_2              | Lab3_3    | Lab3_3              | Lab3_4    | Lab3_4              | Lab3_5    | Lab3_5              | Lab3_6    | Lab3_6              | Lab3_7    | Lab3_7              | Lab3_8    | Lab3_8              |
|-----------------------|-----------|---------------------|-----------|---------------------|-----------|---------------------|-----------|---------------------|-----------|---------------------|-----------|---------------------|-----------|---------------------|-----------|---------------------|
| MH Target             | mh counts | mh counts corrected |
| Blood_01_ANK1         | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 137       | 0                   | 0         | 0                   | 0         | 0                   |
| Blood_02_ANK1         | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 6         | 0                   | 0         | 0                   | 0         | 0                   |
| Blood_03_CD3G         | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 6         | 6                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Blood_04_SPTB         | 0         | 0                   | 0         | 0                   | 15        | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Blood_05_SPTB         | 0         | 0                   | 0         | 0                   | 10        | 0                   | 0         | 0                   | 0         | 0                   | 17        | 0                   | 0         | 0                   | 0         | 0                   |
| Blood_06_SPTB         | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Menstrual_01_LEFTY2   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Menstrual_02_MMP10    | 0         | 0                   | 0         | 0                   | 16        | 0                   | 0         | 0                   | 0         | 0                   | 5         | 0                   | 16        | 0                   | 0         | 0                   |
| Saliva_01_HTN3        | 0         | 0                   | 0         | 0                   | 0         | 0                   | 3146      | 3146                | 0         | 0                   | 33        | 0                   | 98233     | 98233               | 0         | 0                   |
| Saliva_02_MUC7        | 786       | 786                 | 0         | 0                   | 24        | 0                   | 15409     | 15409               | 0         | 0                   | 0         | 0                   | 24357     | 24357               | 0         | 0                   |
| Saliva_03_PRB4        | 0         | 0                   | 0         | 0                   | 0         | 0                   | 7         | 0                   | 0         | 0                   | 0         | 0                   | 629       | 0                   | 0         | 0                   |
| Saliva_04_PRH2        | 343       | 343                 | 0         | 0                   | 9         | 0                   | 4366      | 4366                | 0         | 0                   | 8         | 0                   | 41730     | 41730               | 0         | 0                   |
| Saliva_05_STATH       | 4586      | 4586                | 0         | 0                   | 42        | 0                   | 20031     | 20031               | 5         | 5                   | 123       | 0                   | 428320    | 428320              | 9         | 9                   |
| Semen_01_KLK3         | 6         | 0                   | 0         | 0                   | 69459     | 69459               | 352       | 352                 | 9         | 9                   | 120869    | 120869              | 15        | 0                   | 0         | 0                   |
| Semen_02_PRM1         | 16        | 0                   | 41        | 41                  | 279262    | 279262              | 89        | 0                   | 27        | 27                  | 218220    | 218220              | 130       | 0                   | 0         | 0                   |
| Semen_03_SEMG2        | 0         | 0                   | 0         | 0                   | 69705     | 69705               | 216       | 0                   | 0         | 0                   | 7611      | 7611                | 7         | 0                   | 0         | 0                   |
| Semen_04_TGM4         | 15        | 0                   | 9         | 9                   | 293681    | 293681              | 427       | 427                 | 44        | 44                  | 352453    | 352453              | 199       | 0                   | 0         | 0                   |
| Semen_05_TGM4         | 0         | 0                   | 0         | 0                   | 116148    | 116148              | 295       | 295                 | 6         | 6                   | 181412    | 181412              | 169       | 0                   | 0         | 0                   |
| Semen_06_TGM4         | 0         | 0                   | 0         | 0                   | 528       | 0                   | 0         | 0                   | 0         | 0                   | 174       | 0                   | 0         | 0                   | 0         | 0                   |
| Semen-gDNA_01_TGM4    | 0         | 0                   | 0         | 0                   | 528       | 0                   | 0         | 0                   | 0         | 0                   | 174       | 0                   | 0         | 0                   | 0         | 0                   |
| Semen-gDNA_01_TGM4    | 0         | 0                   | 0         | 0                   | 528       | 0                   | 0         | 0                   | 0         | 0                   | 174       | 0                   | 0         | 0                   | 0         | 0                   |
| Skin_01_COL17A1       | 0         | 0                   | 0         | 0                   | 16        | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Skin_02_IL37          | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Skin_03_LCE1C         | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Vaginal_01_CYP2A6     | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Vaginal_02_CYP2B7P1   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 15        | 0                   | 0         | 0                   | 0         | 0                   |
| Total number of reads | 5752      | 5715                | 50        | 50                  | 829971    | 828255              | 44338     | 44026               | 97        | 97                  | 881431    | 880565              | 593805    | 592640              | 9         | 9                   |
| Threshold             | 28.76     |                     | 0.25      |                     | 4149.855  |                     | 221.69    |                     | 0.485     |                     | 4407.155  |                     | 2969.025  |                     | 0.045     |                     |
|                       |           |                     |           |                     |           |                     |           |                     |           |                     |           |                     |           |                     |           |                     |

Predicted Body Fluids: SA

?

SA-SE

SE

Ξ

?

SE

SA

?

#### **BFID RNA Results – Laboratory 5 Stains n° 1-8**

- mh counts: raw data, used to calculate the 0.5% threshold for correction
- mh counts corrected: everything below the 0.5% threshold set to 0

|                       | Lab5_1    | Lab5_1              | Lab5_2    | Lab5_2              | Lab5_3    | Lab5_3              | Lab5_4    | Lab5_4              | Lab5_5    | Lab5_5              | Lab5_6    | Lab5_6              | Lab5_7    | Lab6_7              | Lab5_8    | Lab5_8              |
|-----------------------|-----------|---------------------|-----------|---------------------|-----------|---------------------|-----------|---------------------|-----------|---------------------|-----------|---------------------|-----------|---------------------|-----------|---------------------|
| MH Target             | mh counts | mh counts corrected |
| Blood_01_ANK1         | 4025      | 4025                | 6765      | 6765                | 0         | 0                   | 0         | 0                   | 13        | 13                  | 54        | 0                   | 6219      | 6219                | 24        | 24                  |
| Blood_02_ANK1         | 80        | 80                  | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Blood_03_CD3G         | 2565      | 2565                | 1396      | 1396                | 0         | 0                   | 274       | 0                   | 0         | 0                   | 0         | 0                   | 236       | 236                 | 0         | 0                   |
| Blood_04_SPTB         | 48        | 48                  | 15        | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Blood_05_SPTB         | 1244      | 1244                | 7296      | 7296                | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 901       | 901                 | 0         | 0                   |
| Blood_06_SPTB         | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Menstrual_01_LEFTY2   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Menstrual_02_MMP10    | 0         | 0                   | 0         | 0                   | 622       | 622                 | 2673      | 2673                | 0         | 0                   | 635       | 0                   | 7         | 0                   | 0         | 0                   |
| Saliva_01_HTN3        | 0         | 0                   | 0         | 0                   | 195       | 0                   | 34392     | 34392               | 0         | 0                   | 5800      | 5800                | 0         | 0                   | 0         | 0                   |
| Saliva_02_MUC7        | 0         | 0                   | 0         | 0                   | 39377     | 39377               | 54757     | 54757               | 9         | 9                   | 63837     | 63837               | 765       | 765                 | 7         | 7                   |
| Saliva_03_PRB4        | 0         | 0                   | 0         | 0                   | 0         | 0                   | 292       | 0                   | 0         | 0                   | 52        | 0                   | 0         | 0                   | 0         | 0                   |
| Saliva_04_PRH2        | 0         | 0                   | 0         | 0                   | 193       | 0                   | 7123      | 7123                | 0         | 0                   | 6729      | 6729                | 144       | 144                 | 0         | 0                   |
| Saliva_05_STATH       | 0         | 0                   | 0         | 0                   | 26600     | 26600               | 126248    | 126248              | 12        | 12                  | 96388     | 96388               | 1174      | 1174                | 0         | 0                   |
| Semen_01_KLK3         | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Semen_02_PRM1         | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Semen_03_SEMG2        | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Semen_04_TGM4         | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Semen_05_TGM4         | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Semen_06_TGM4         | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Semen-gDNA_01_TGM4    | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Semen-gDNA_01_TGM4    | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Skin_01_COL17A1       | 0         | 0                   | 0         | 0                   | 220       | 0                   | 1984      | 1984                | 0         | 0                   | 8         | 0                   | 11        | 0                   | 0         | 0                   |
| Skin_02_IL37          | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Skin_03_LCE1C         | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 12        | 0                   | 0         | 0                   | 0         | 0                   |
| Vaginal_01_CYP2A6     | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Vaginal_02_CYP2B7P1   | 13        | 0                   | 111       | 111                 | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   | 0         | 0                   |
| Total number of reads | 7975      | 7962                | 15583     | 15568               | 67207     | 66599               | 227743    | 227177              | 34        | 34                  | 173515    | 172754              | 9457      | 9439                | 31        | 31                  |
| Threshold             | 39.875    |                     | 77.915    |                     | 336.035   | 332.995             | 1138.715  |                     | 0.17      |                     | 867.575   |                     | 47.285    |                     | 0.155     |                     |
|                       | -         |                     |           |                     |           |                     |           |                     |           |                     |           |                     |           |                     |           |                     |

Predicted Body Fluids: BL

ΒL

SA

SA-MB

?

SA-BL

SA

?



#### Assignment of Body Fluids with a Donor: Own Stains (8 per laboratory)

#### Assignment of Body Fluid with Donor – Own Stains Laboratory 3 (Stains 1-3)

- Supposed body fluid according to BFI are framed
- Matching RNA + DNA genotype in green, discrepancies in lilac
- Supposed donor in light blue

- Co-extracted DNA of stains was analyzed instead of DNA of reference persons
- Single stains: incomplete DNA reference profiles
- Mixed stains: mixed DNA profile, assignment with donor not possible
- DNA 1 belongs to RNA from stain 1 and so forth

| Genotypes References | Brown_IIISchool | Hope_HE_AWXE | Bring 18 (1999) | AND DELEMANTIN | 81000_05_STTE | 81000_06_STH | Saliva_01_H7N3 | Sallva 02 MUC7 | Serve_38_PR | se sanva-04-PRHZ |     | Semen_01_KLK3 | Semen_02_PRM1 | Semen_03_SEMG2 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06_TGM4 | Semen_07_TGM4 |
|----------------------|-----------------|--------------|-----------------|----------------|---------------|--------------|----------------|----------------|-------------|------------------|-----|---------------|---------------|----------------|---------------|---------------|---------------|---------------|
| Lab3_1_RNA           | 0               | 0            | 0               | 0              | 0             | 0            | 0              | C/C (786)      | 0           | C/T (216/127)    | 0   | C/C (6)       | T/G (9/7)     | 0              | C/C (9)       | 0             | Ó             | 0             |
| Lab3_1_DNA           | c/c             | G/G          | T/T             | c/c            | A/A           | c/c          | C/C            | c/c            | C/G         | C/T              | c/c | C/T           | G/T           | A/C            | C/T           | A/G           | C/T           | A/G           |
| Lab3_2_DNA           | 0               | 0            | 0               | c/c            | A/A           | c/c          | 0              | 0              | C/C         | 0                | 0   | 0             | G/T           |                | C/T           | 0             | 0             | A/A           |
| Lab3_3_DNA           | 0               | 0            | T/T             | c/c            | A/A           | c/c          | c/c            | 0              | C/G         | C/T              | c/c | 0             | G/T           | A/C            | C/T           | G/G           | C/T           | A/G           |
| Lab3_4_DNA           | 0               | 0            | T/T             | c/c            | A/A           | C/T          | c/c            | 0              | C/G         | C/T              | c/c | 0             | G/T           | 0              | C/T           | A/A           | 0             | A/G           |
| Lab3_5_DNA           | 0               | G/G          | T/T             | c/c            | A/A           | C/T          | c/c            | 0              | Ċ/G         | T/T              | c/c | c/c           | G/T           | 0              | C/T           | A/G           | T/T           | A/G           |
| Lab3_6_DNA           | 0               | 0            | T/T             | c/c            | A/A           | C/T          | c/c            | 0              | c/c         | C/T              | c/c | 0             | G/G           | A/C            | C/T           | 0             | T/T           | A/G           |
| Lab3_7_DNA           | 0               | 0            | 0               | c/c            | A/A           | C/T          | c/c            | 0              | 0           | c/c              | c/c | 0             | G/G           | A/A            | C/T           | 0             | T/T           | A/A           |
| Lab3_8_DNA           | 0               | 0            | 0               | c/c            | A/A           | C/T          | 0              | 0              | G/G         | c/c              | 0   | c/c           | G/G           | 0              | C/T           | 0             | T/T           | A/A           |

| Genotypes References | Blood_01_ANK1 | Blood_02_ANK1 | Blood_03_CD3G | Blood_04_SPTB | Blood_05_SPTB | Blood_06_SPTB | Saliva_01_HTN3 | Saliva_02_MUC | 7 Saliva_03_PRB4 | Saliva_04_PRH2 | Salva_05_H1N3_m75067954_209020 | Semen_01_KLK3 | Semen_02_PRM1 | Semen_03_SEMG2 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06_TGM4 | Semen_07_TGM4 |
|----------------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|------------------|----------------|--------------------------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|
| Lab3_2_RNA           | 0             | 0             | 0             | 0             | 0             | 0             | 0              | 0             | 0                | 0              | 0                              | 0             | T/T (41)      | 0              | C/C (9)       | 0             | 0             | 0             |
| Lab3_1_DNA           | C/C           | G/G           | T/T           | C/C           | A/A           | C/C           | C/C            | C/C           | C/G              | C/T            | C/C                            | C/T           | G/T           | A/C            | C/T           | A/G           | C/T           | A/G           |
| Lab3_2_DNA           | 0             | 0             | 0             | C/C           | A/A           | C/C           | 0              | 0             | C/C              | 0              | 0                              | 0             | G/T           |                | C/T           | 0             | 0             | A/A           |
| Lab3_3_DNA           | 0             | 0             | T/T           | C/C           | A/A           | C/C           | C/C            | 0             | C/G              | C/T            | C/C                            | 0             | G/T           | A/C            | C/T           | G/G           | C/T           | A/G           |
| Lab3_4_DNA           | 0             | 0             | T/T           | C/C           | A/A           | C/T           | C/C            | 0             | C/G              | C/T            | C/C                            | 0             | G/T           | 0              | C/T           | A/A           | 0             | A/G           |
| Lab3_5_DNA           | 0             | G/G           | T/T           | C/C           | A/A           | C/T           | C/C            | 0             | C/G              | T/T            | C/C                            | C/C           | G/T           | 0              | C/T           | A/G           | T/T           | A/G           |
| Lab3_6_DNA           | 0             | 0             | T/T           | C/C           | A/A           | C/T           | C/C            | 0             | C/C              | C/T            | C/C                            | 0             | G/G           | A/C            | C/T           | 0             | T/T           | A/G           |
| Lab3_7_DNA           | 0             | 0             | 0             | C/C           | A/A           | C/T           | C/C            | 0             | 0                | C/C            | C/C                            | 0             | G/G           | A/A            | C/T           | 0             | T/T           | A/A           |
| Lab3_8_DNA           | 0             | 0             | 0             | C/C           | A/A           | C/T           | 0              | 0             | G/G              | C/C            | 0                              | C/C           | G/G           | 0              | C/T           | 0             | T/T           | A/A           |

| Genotypes References | Blood_01_ANK1 | Blood_02_ANK1 | Blood_03_CD3G | Blood_04_SPTB | Blood_05_SPTB | Blood_06_SPTB | Saliva_01_HTN3 | Saliva_02_MUC7 S | aliva_03_PRB4 | 4 Saliva_04_PRH2 <sup>°</sup> | Salva_05_HTN3_n75067854_70902021 | Semen_01_KLK3     | Semen_02_PRM1         | Semen_03_SEMG2    | Semen_04_TGM4      | Semen_05_TGM4     | Semen_06_TGM4 | Semen_07_TGM4 |
|----------------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|------------------|---------------|-------------------------------|----------------------------------|-------------------|-----------------------|-------------------|--------------------|-------------------|---------------|---------------|
| Lab3_3_RNA           | 0             | 0             | 0             | C/C (15)      | 0             | C/C (10)      | 0              | C/T (19/5)       | 0             | C/C (9)                       | 0                                | C/T (35330/34129) | ) G/T (144901/134361) | C/A (46485/23220) | C/T (277091/16590) | G/A (109436/6712) | C/T (497/31)  | G/A (497/31)  |
| Lab3_1_DNA           | C/C           | G/G           | T/T           | C/C           | A/A           | C/C           | C/C            | C/C              | C/G           | C/T                           | C/C                              | C/T               | G/T                   | A/C               | C/T                | A/G               | C/T           | A/G           |
| Lab3_2_DNA           | 0             | 0             | 0             | C/C           | A/A           | C/C           | 0              | 0                | C/C           | 0                             | 0                                | 0                 | G/T                   |                   | C/T                | 0                 | 0             | A/A           |
| Lab3_3_DNA           | 0             | 0             | T/T           | C/C           | A/A           | C/C           | C/C            | 0                | C/G           | C/T                           | C/C                              | 0                 | G/T                   | A/C               | C/T                | G/G (10)          | C/T           | A/G           |
| Lab3_4_DNA           | 0             | 0             | T/T           | C/C           | A/A           | C/T           | C/C            | 0                | C/G           | C/T                           | C/C                              | 0                 | G/T                   | 0                 | C/T                | A/A               | 0             | A/G           |
| Lab3_5_DNA           | 0             | G/G           | T/T           | C/C           | A/A           | C/T           | C/C            | 0                | C/G           | T/T                           | C/C                              | C/C               | G/T                   | 0                 | C/T                | A/G               | T/T           | A/G           |
| Lab3_6_DNA           | 0             | 0             | T/T           | C/C           | A/A           | C/T           | C/C            | 0                | C/C           | C/T                           | C/C                              | 0                 | G/G                   | A/C               | C/T                | 0                 | T/T           | A/G           |
| Lab3_7_DNA           | 0             | 0             | 0             | C/C           | A/A           | C/T           | C/C            | 0                | 0             | C/C                           | C/C                              | 0                 | G/G                   | A/A               | C/T                | 0                 | T/T           | A/A           |
| Lab3_8_DNA           | 0             | 0             | 0             | C/C           | A/A           | C/T           | 0              | 0                | G/G           | C/C                           | 0                                | C/C               | G/G                   | 0                 | C/T                | 0                 | T/T           | A/A           |

#### Assignment of Body Fluid with Donor – Own Stains Laboratory 3 (Stains 4-8)

- Supposed body fluid according to BFI are framed
- Matching RNA + DNA genotype in green, discrepancies in lilac
- Supposed donor in light blue

| Genotypes References | Blood_01_ANK1 | Blood_02_ANK1 | Blood_03_CD3G | Blood_04_SPT | B Blood_05_SPTB | Blood_06_SPTB | Saliva_01_HTN3 | Saliva_02_MUC7 | 7 Saliva_03_PRB4 | Saliva_04_PRH2 | a_05_HTN3_m75067954_70902021 | Semen_01_KLK3 | Semen_02_PRM1 | Semen_03_SEMG2 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06_TGM4 | Semen_07_TGM4 |
|----------------------|---------------|---------------|---------------|--------------|-----------------|---------------|----------------|----------------|------------------|----------------|------------------------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|
| Lab3_4_RNA           | 0             | 0             | 0             | 0            | 0               | 0             | C/C (3146)     | C/C (15409)    | G/G (7)          | /T (3163/120:  | 0                            | C/C (352)     | G/T (68/21)   | C/C (216)      | C/C (427)     | G/G (295)     | 0             | 0             |
| Lab3_1_DNA           | C/C           | G/G           | T/T           | C/C          | A/A             | C/C           | C/C            | C/C            | C/G              | C/T            | C/C                          | C/T           | G/T           | A/C            | C/T           | A/G           | C/T           | A/G           |
| Lab3_2_DNA           | 0             | 0             | 0             | C/C          | A/A             | C/C           | 0              | 0              | C/C              | 0              | 0                            | 0             | G/T           | 0              | C/T           | 0             | 0             | A/A           |
| Lab3_3_DNA           | 0             | 0             | T/T           | C/C          | A/A             | C/C           | C/C            | 0              | C/G              | C/T            | C/C                          | 0             | G/T           | A/C            | C/T           | G/G           | C/T           | A/G           |
| Lab3_4_DNA           | 0             | 0             | T/T           | C/C          | A/A             | C/T           | C/C            | 0              | C/G (21/10)      | C/T            | C/C                          | 0             | G/T           | 0              | C/T (45/17)   | G/G           | 0             | A/G           |
| Lab3_5_DNA           | 0             | G/G           | T/T           | C/C          | A/A             | C/T           | C/C            | 0              | C/G              | T/T            | C/C                          | C/C           | G/T           | 0              | C/T           | A/G           | T/T           | A/G           |
| Lab3_6_DNA           | 0             | 0             | T/T           | C/C          | A/A             | C/T           | C/C            | 0              | C/C              | C/T            | C/C                          | 0             | G/G           | A/C            | C/T           | 0             | T/T           | A/G           |
| Lab3_7_DNA           | 0             | 0             | 0             | C/C          | A/A             | C/T           | C/C            | 0              | 0                | C/C            | C/C                          | 0             | G/G           | A/A            | C/T           | 0             | T/T           | A/A           |
| Lab3_8_DNA           | 0             | 0             | 0             | C/C          | A/A             | C/T           | 0              | 0              | G/G              | C/C            | 0                            | C/C           | G/G           | 0              | C/T           | 0             | T/T           | A/A           |

| Genotypes References                                                                                     | Blood_01_ANK1 B                        | lood_02_ANK1                    | Blood_03_CD3G                         | Blood_04_SPTB                    | Blood_05_SPTB                   | Blood_06_SPTB                    | Saliva_01_HTN3                    | Saliva_02_MUC7             | Saliva_03_PRB4                    | Saliva_04_PRH2 Saliva                    | _05_HTN3_m75067854_70902021    | Semen_01_KLK3                                | Semen_02_PRM1                                         | Semen_03_SEMG2                            | Semen_04_TGM4                                                | Semen_05_TGM4                                | Semen_06_TGM4                                    | Semen_07_TGM4                                   |
|----------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------|---------------------------------------|----------------------------------|---------------------------------|----------------------------------|-----------------------------------|----------------------------|-----------------------------------|------------------------------------------|--------------------------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------------------|
| Lab3_5_RNA                                                                                               | 0                                      | 0                               | T/T (6)                               | 0                                | 0                               | 0                                | 0                                 | 0                          | 0                                 | 0                                        | 0                              | C/C (9)                                      | T/G (15/12)                                           | 0                                         | C/T (38/6)                                                   | G/G (6)                                      | 0                                                | 0                                               |
| Lab3_1_DNA                                                                                               | C/C                                    | G/G                             | T/T                                   | C/C                              | A/A                             | C/C                              | C/C                               | C/C                        | C/G                               | C/T                                      | C/C                            | C/T                                          | G/T                                                   | A/C                                       | C/T                                                          | A/G                                          | C/T                                              | A/G                                             |
| Lab3_2_DNA                                                                                               | 0                                      | 0                               | 0                                     | C/C                              | A/A                             | C/C                              | 0                                 | 0                          | C/C                               | 0                                        | 0                              | 0                                            | G/T                                                   |                                           | C/T                                                          | 0                                            | 0                                                | A/A                                             |
| Lab3_3_DNA                                                                                               | 0                                      | 0                               | T/T                                   | C/C                              | A/A                             | C/C                              | C/C                               | 0                          | C/G                               | C/T                                      | C/C                            | 0                                            | G/T                                                   | A/C                                       | C/T                                                          | G/G                                          | C/T                                              | A/G                                             |
| Lab3_4_DNA                                                                                               | 0                                      | 0                               | T/T                                   | C/C                              | A/A                             | C/T                              | C/C                               | 0                          | C/G                               | C/T                                      | C/C                            | 0                                            | G/T                                                   | 0                                         | C/T                                                          | A/A                                          | 0                                                | A/G                                             |
| Lab3_5_DNA                                                                                               | 0                                      | G/G                             | T/T                                   | C/C                              | A/A                             | C/T                              | C/C                               | 0                          | C/G                               | T/T                                      | C/C                            | C/C                                          | G/T                                                   | 0                                         | C/T                                                          | A/G                                          | T/T                                              | A/G                                             |
| Lab3_6_DNA                                                                                               | 0                                      | 0                               | T/T                                   | C/C                              | A/A                             | C/T                              | C/C                               | 0                          | C/C                               | C/T                                      | C/C                            | 0                                            | G/G                                                   | A/C                                       | C/T                                                          | 0                                            | T/T                                              | A/G                                             |
| Lab3_7_DNA                                                                                               | 0                                      | 0                               | 0                                     | C/C                              | A/A                             | C/T                              | C/C                               | 0                          | 0                                 | C/C                                      | C/C                            | 0                                            | G/G                                                   | A/A                                       | C/T                                                          | 0                                            | T/T                                              | A/A                                             |
| Lab3_8_DNA                                                                                               | 0                                      | 0                               | 0                                     | C/C                              | A/A                             | C/T                              | 0                                 | 0                          | G/G                               | C/C                                      | 0                              | C/C                                          | G/G                                                   | 0                                         | C/T                                                          | 0                                            | T/T                                              | A/A                                             |
|                                                                                                          |                                        |                                 |                                       |                                  |                                 |                                  |                                   |                            |                                   |                                          |                                |                                              |                                                       |                                           |                                                              |                                              |                                                  |                                                 |
| Genotypes References                                                                                     | Blood_01_ANK1 E                        | Blood_02_ANK1                   | Blood_03_CD3G                         | Blood_04_SPTB                    | Blood_05_SPTB                   | Blood_06_SPTB                    | Saliva_01_HTN3                    | Saliva_02_MUC7             | Saliva_03_PRB4                    | Saliva_04_PRH2 500                       | va_05_HTN 2_H75067954_70902023 | Semen_01_KLK3                                | Semen_02_PRM1                                         | Semen_03_SEMG2                            | Semen_04_TGM4                                                | Semen_05_TGM4                                | Semen_06_TGM4                                    | Semen_07_TGM4                                   |
|                                                                                                          | Blood_01_ANK1 E<br>G/C (115/22)        | Blood_02_ANK1<br>G/G (6)        | Blood_03_CD3G<br>0                    | Blood_04_SPTB<br>0               | Blood_05_SPTB<br>0              | Blood_06_SPTB<br>C/C (17)        | Saliva_01_HTN3<br>C/C (19)        | Saliva_02_MUC7<br>0        | Saliva_03_PRB4                    | Saliva_04_PRH2 ***<br>C/C (8)            | 0<br>0                         | Semen_01_KLK3<br>C/C (120869)                |                                                       |                                           |                                                              | Semen_05_TGM4<br>G/A (134950/46462)          |                                                  | Semen_07_TGM4<br>A/G (125/49)                   |
| Genotypes References                                                                                     | Blood_01_ANK1 E<br>G/C (115/22)<br>C/C | Blood_02_ANK1<br>G/G (6)<br>G/G | Blood_03_CD3G<br>0<br>T/T             | Blood_04_SPTB<br>0<br>C/C        | Blood_05_SPTB<br>0<br>A/A       | Blood_06_SPTB<br>C/C (17)<br>C/C | Saliva_01_HTN3<br>C/C (19)<br>C/C | Saliva_02_MUC7<br>0<br>C/C | Saliva_03_PRB4<br>0<br>C/G        |                                          | 0<br>C/C                       |                                              |                                                       |                                           |                                                              |                                              |                                                  |                                                 |
| Genotypes References<br>Lab3_6_RNA                                                                       |                                        |                                 | Blood_03_CD3G<br>0<br>T/T<br>0        | Blood_04_SPTB<br>0<br>C/C<br>C/C |                                 |                                  |                                   |                            | Saliva_03_PRB4<br>0<br>C/G<br>C/C | C/C (8)                                  |                                | C/C (120869)                                 | G/T (115594/102626                                    | ) C/A (5452/2159)                         | C/T (263640/88813)                                           | G/A (134950/46462)                           | T/C (125/49)                                     | A/G (125/49)                                    |
| Genotypes References<br>Lab3_6_RNA<br>Lab3_1_DNA                                                         |                                        |                                 | Blood_03_CD3G<br>0<br>T/T<br>0<br>T/T |                                  | A/A                             | C/C                              |                                   |                            | -7 -                              | C/C (8)                                  |                                | C/C (120869)                                 | G/T (115594/102626<br>G/T                             | ) C/A (5452/2159)                         | C/T (263640/88813)<br>C/T                                    | G/A (134950/46462)                           | T/C (125/49)                                     | A/G (125/49)<br>A/G                             |
| Genotypes References<br>Lab3_6_RNA<br>Lab3_1_DNA<br>Lab3_2_DNA                                           |                                        |                                 | 0                                     | C/C                              | A/A<br>A/A                      | C/C<br>C/C                       | C/C<br>0                          |                            | C/C                               | C/C (8)<br>C/T<br>0                      | C/C<br>0                       | C/C (120869)                                 | G/T (115594/102626<br>G/T<br>G/T                      | ) C/A (5452/2159)<br>A/C                  | C/T (263640/88813)<br>C/T<br>C/T                             | G/A (134950/46462)<br>A/G<br>0               | <br>T/C (125/49)<br>C/T<br>0                     | A/G (125/49)<br>A/G<br>A/A                      |
| Genotypes References<br>Lab3_6_RNA<br>Lab3_1_DNA<br>Lab3_2_DNA<br>Lab3_3_DNA                             |                                        |                                 | 0<br>T/T                              | C/C<br>C/C                       | A/A<br>A/A<br>A/A               | C/C<br>C/C<br>C/C                | C/C<br>0<br>C/C                   |                            | C/C<br>C/G                        | C/C (8)<br>C/T<br>0<br>C/T               | C/C<br>0<br>C/C                | C/C (120869)                                 | G/T (115594/102626<br>G/T<br>G/T<br>G/T               | ) C/A (5452/2159)<br>A/C                  | C/T (263640/88813)<br>C/T<br>C/T<br>C/T                      | G/A (134950/46462)<br>A/G<br>0<br>G/G        | <br>T/C (125/49)<br>C/T<br>0                     | A/G (125/49)<br>A/G<br>A/A<br>A/G               |
| Genotypes References<br>Lab3_6_RNA<br>Lab3_1_DNA<br>Lab3_2_DNA<br>Lab3_3_DNA<br>Lab3_4_DNA               |                                        | G/G<br>0<br>0<br>0              | 0<br>T/T<br>T/T                       | c/c<br>c/c<br>c/c                | A/A<br>A/A<br>A/A<br>A/A        | С/С<br>С/С<br>С/С<br>С/Т         | C/C<br>0<br>C/C<br>C/C            |                            | C/C<br>C/G<br>C/G                 | C/C (8)<br>C/T<br>0<br>C/T<br>C/T        | C/C<br>0<br>C/C<br>C/C         | C/C (120869)<br>C/T (835\367)<br>0<br>0<br>0 | G/T (115594/102626<br>G/T<br>G/T<br>G/T<br>G/T<br>G/T | ) C/A (5452/2159)<br>A/C                  | C/T (263640/88813)<br>C/T<br>C/T<br>C/T<br>C/T<br>C/T        | G/A (134950/46462)<br>A/G<br>0<br>G/G<br>A/A | T/C (125/49)<br>C/T<br>0<br>C/T<br>0<br>C/T<br>0 | A/G (125/49)<br>A/G<br>A/A<br>A/G<br>A/G        |
| Genotypes References<br>Lab3_6_RNA<br>Lab3_1_DNA<br>Lab3_2_DNA<br>Lab3_3_DNA<br>Lab3_4_DNA<br>Lab3_5_DNA |                                        | G/G<br>0<br>0<br>0              | 0<br>T/T<br>T/T<br>T/T                | c/c<br>c/c<br>c/c<br>c/c         | A/A<br>A/A<br>A/A<br>A/A<br>A/A | С/С<br>С/С<br>С/С<br>С/Т<br>С/Т  | C/C<br>0<br>C/C<br>C/C<br>C/C     |                            | C/C<br>C/G<br>C/G<br>C/G          | C/C (8)<br>C/T<br>0<br>C/T<br>C/T<br>T/T | C/C<br>0<br>C/C<br>C/C<br>C/C  | C/C (120869)<br>C/T (835\367)<br>0<br>0<br>0 | G/T (115594/102626<br>G/T<br>G/T<br>G/T<br>G/T<br>G/T | ) C/A (5452/2159)<br>A/C<br>A/C<br>0<br>0 | C/T (263640/88813)<br>C/T<br>C/T<br>C/T<br>C/T<br>C/T<br>C/T | G/A (134950/46462)<br>A/G<br>0<br>G/G<br>A/A | T/C (125/49)<br>C/T<br>0<br>C/T<br>0<br>T/T (7)  | A/G (125/49)<br>A/G<br>A/A<br>A/G<br>A/G<br>A/G |

| Genotypes References | Blood_01_ANK1 | Blood_02_ANK1 | Blood_03_CD3G | Blood_04_SPTB | Blood_05_SPTB | Blood_06_SPTB | Saliva_01_HTN3 | Saliva_02_MUC7    | Saliva_03_PRB4 | Saliva_04_PRH2 | 05_HTN3_rd5067954_70902021 | Semen_01_KLK3 | Semen_02_PRM1 | Semen_03_SEMG2 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06_TGM4 | Semen_07_TGM4 |
|----------------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|-------------------|----------------|----------------|----------------------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|
| Lab3_7_RNA           | 0             | 0             | 0             | 0             | 0             | 0             | C/C (50200)    | C/T (12371/11986) | G/G (629)      | C/C (41730)    | 0                          | C/T (8/7)     | G/T (76/54)   | C/C (7)        | C/T (135/64)  | G/G (169)     | 0             | 0             |
| Lab3_1_DNA           | C/C           | G/G           | T/T           | C/C           | A/A           | C/C           | C/C            | C/C               | C/G            | C/T            | C/C                        | C/T           | G/T           | A/C            | C/T           | A/G           | C/T           | A/G           |
| Lab3_2_DNA           | 0             | 0             | 0             | C/C           | A/A           | C/C           | 0              | 0                 | C/C            | 0              | 0                          | 0             | G/T           |                | C/T           | 0             | 0             | A/A           |
| Lab3_3_DNA           | 0             | 0             | T/T           | C/C           | A/A           | C/C           | C/C            | 0                 | C/G            | C/T            | C/C                        | 0             | G/T           | A/C            | C/T           | G/G           | C/T           | A/G           |
| Lab3_4_DNA           | 0             | 0             | T/T           | C/C           | A/A           | C/T           | C/C            | 0                 | C/G            | C/T            | C/C                        | 0             | G/T           | 0              | C/T           | A/A           | 0             | A/G           |
| Lab3_5_DNA           | 0             | G/G           | T/T           | C/C           | A/A           | C/T           | C/C            | 0                 | C/G            | T/T            | C/C                        | C/C           | G/T           | 0              | C/T           | A/G           | T/T           | A/G           |
| Lab3_6_DNA           | 0             | 0             | T/T           | C/C           | A/A           | C/T           | C/C            | 0                 | C/C            | C/T            | C/C                        | 0             | G/G           | A/C            | C/T           | 0             | T/T           | A/G           |
| Lab3_7_DNA           | 0             | 0             | 0             | C/C           | A/A           | C/T           | C/C            | 0                 | 0              | C/C            | C/C                        | 0             | G/G           | A/A            | C/T           | 0             | T/T           | A/A           |
| Lab3_8_DNA           | 0             | 0             | 0             | C/C           | A/A           | C/T           | 0              | 0                 | G/G            | C/C            | 0                          | C/C           | G/G           | 0              | C/T           | 0             | T/T           | A/A           |

• Stain 8: no reads except for STATH (no cSNPs)

#### Assignment of Body Fluid with Donor – Own Stains Laboratory 5 (Stains 1-4)

- Supposed body fluid according to BFI are framed
- Matching RNA + DNA genotype in green, discrepancies in lilac
- Supposed donor in light blue
- Genotypes in DNA reference profiles set to zero, if the coverage was ≤5 (see brackets)

| Genotypes References | Blood_01_ANK1   | Blood_02_ANK1 | Blood_03_CD3G | Blood_04_SPTB | Blood_05_SPT | Blood_06_SPTB | Saliva_01_HTN3 | Saliva_02_MUC7 | Saliva_03_PRB | 4 Saliva_04_PRH2 | 2 Saliva_05_HTN3 | Semen_01_KLK3 | Semen_02_PRM1 | Semen_03_SEMG2 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06_TGM4 | Semen_07_TGM4 |
|----------------------|-----------------|---------------|---------------|---------------|--------------|---------------|----------------|----------------|---------------|------------------|------------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|
| Lab5_1_RNA           | G/C (2490/1535) | A/G (40/40)   | T/T (2565)    | C/C (48)      | 0            | C/T (643/601) | 0              | 0              | 0             | 0                | 0                | 0             | 0             | 0              | 0             | 0             | 0             | 0             |
| Lab5_1_DNA           | C/G (10/8)      | A/G           | T/T           | C/C           | A/G          | C/T           | C/T            | 0 (C/C, 3)     | G/G           | C/C              | C/C              | C/T           | G/T           | C/C            | T/T           | A/A           | C/T           | A/G           |
| Lab5_2_DNA           | 0 (C/G, 2/3)    | G/G           | T/T           | C/C           | A/G          | C/T           | C/C            | 0 (C/C, 3)     | C/G           | C/C              | C/T              | C/T           | G/G           | C/C            | C/C           | G/G           | C/C           | G/G           |
| Lab5_3_DNA           | 0 (C/C, 4)      | A/G           | T/T           | C/C           | A/A          | C/C           | C/C            | 0 (C/C, 4)     | G/G           | C/C              | C/C              | C/T           | T/T           | A/A            | C/T           | A/G           | C/T           | A/A           |
| Lab5_4_DNA           | 0 (C/C,3)       | G/G           | T/T           | C/T           | A/G          | C/C           | C/C            | 0              | C/G           | C/T              | C/C              | T/T           | T/T           | C/C            | C/T           | A/G           | C/T           | A/G           |
| Lab5_5_DNA           | C/G (23/29)     | G/G           | C/T           | C/C           | A/A          | C/C           | T/T            | C/C (10)       | G/G           | C/C              | C/C              | C/T           | T/T           | C/C            | C/T           | A/G           | C/T           | A/G           |
| Lab5_6_DNA           | 0 (C/C,1)       | G/G           | C/T           | T/T           | A/A          | T/T           | C/C            | 0 (C/C, 1)     | G/G           | C/C              | C/C              | T/T           | G/T           | C/C            | C/T           | A/G           | C/T           | A/A           |
| Lab5_7_DNA           | C/C (23)        | G/G           | T/T           | C/C           | A/A          | C/C           | C/C            | T/T (8)        | C/G           | C/C              | C/C              | C/C           | T/T           | A/C            | C/C           | G/G           | C/T           | A/G           |
| Lab5_8_DNA           | C/G (11/11)     | G/G           | T/T           | C/C           | A/A          | C/C           | C/C            | C/C (9)        | C/G           | C/T              | C/C              | T/T           | G/T           | C/C            | C/C           | G/G           | C/T           | A/G           |

| Genotypes References | Blood_01_ANK1 E | Blood_02_ANK1 | Blood_03_CD3G | Blood_04_SPTB | Blood_05_SPT | B Blood_06_SPTB | Saliva_01_HTN3 | 3 Saliva_02_MUC7 | Saliva_03_PRB | 4 Saliva_04_PRH2 | Saliva_05_HTN3 | Semen_01_KLK3 | Semen_02_PRM | 1 Semen_03_SEM0 | <sup>2</sup> Semen_04_TGN | 14 Semen_05_TGM | 4 Semen_06_TGM4 | Semen_07_TGM4 |
|----------------------|-----------------|---------------|---------------|---------------|--------------|-----------------|----------------|------------------|---------------|------------------|----------------|---------------|--------------|-----------------|---------------------------|-----------------|-----------------|---------------|
| Lab5_2_RNA           | G/C (3651/3114) | 0             | T/T (1396)    | C/C (15)      | 0            | C/T (3941/3355) | 0              | 0                | 0             | 0                | 0              | 0             | 0            | 0               | 0                         | 0               | 0               | 0             |
| Lab5_1_DNA           | C/G (10/8)      | A/G           | T/T           | C/C           | A/G          | C/T             | C/T            | 0 (C/C, 3)       | G/G           | C/C              | C/C            | C/T           | G/T          | C/C             | T/T                       | A/A             | C/T             | A/G           |
| Lab5_2_DNA           | 0 (C/G, 2/3)    | G/G           | T/T           | C/C           | A/G          | C/T             | C/C            | 0 (C/C, 3)       | C/G           | C/C              | C/T            | C/T           | G/G          | C/C             | C/C                       | G/G             | C/C             | G/G           |
| Lab5_3_DNA           | 0 (C/C, 4)      | A/G           | T/T           | C/C           | A/A          | C/C             | C/C            | 0 (C/C, 4)       | G/G           | C/C              | C/C            | C/T           | T/T          | A/A             | C/T                       | A/G             | C/T             | A/A           |
| Lab5_4_DNA           | 0 (C/C,3)       | G/G           | T/T           | C/T           | A/G          | C/C             | C/C            | 0                | C/G           | C/T              | C/C            | T/T           | T/T          | C/C             | C/T                       | A/G             | C/T             | A/G           |
| Lab5_5_DNA           | C/G (23/29)     | G/G           | C/T           | C/C           | A/A          | C/C             | T/T            | C/C (10)         | G/G           | C/C              | C/C            | C/T           | T/T          | C/C             | C/T                       | A/G             | C/T             | A/G           |
| Lab5_6_DNA           | 0 (C/C,1)       | G/G           | C/T           | T/T           | A/A          | T/T             | C/C            | 0 (C/C, 1)       | G/G           | C/C              | C/C            | T/T           | G/T          | C/C             | C/T                       | A/G             | C/T             | A/A           |
| Lab5_7_DNA           | C/C (23)        | G/G           | T/T           | C/C           | A/A          | C/C             | C/C            | T/T (8)          | C/G           | C/C              | C/C            | C/C           | T/T          | A/C             | C/C                       | G/G             | C/T             | A/G           |
| Lab5_8_DNA           | C/G (11/11)     | G/G           | T/T           | C/C           | A/A          | C/C             | C/C            | C/C (9)          | C/G           | C/T              | C/C            | T/T           | G/T          | C/C             | C/C                       | G/G             | C/T             | A/G           |

| Genotypes References | Blood_01_ANK1 E | Blood_02_ANK1 | Blood_03_CD3G | Blood_04_SPT | Blood_05_SPTB | Blood_06_SPTB | Saliva_01_HTN3 | Saliva_02_MUC7 | Saliva_03_PRB | 4 Saliva_04_PRH2 | Saliva_05_HTN3 | Semen_01_KLK | Semen_02_PRM1 | Semen_03_SEMG2 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06_TGM4 | Semen_07_TGM4 |
|----------------------|-----------------|---------------|---------------|--------------|---------------|---------------|----------------|----------------|---------------|------------------|----------------|--------------|---------------|----------------|---------------|---------------|---------------|---------------|
| Lab5_3_RNA           | 0               | 0             | 0             | 0            | 0             | 0             | C/T (103/92)   | C/C (103)      | 0             | C/C (193)        | 0              | 0            | 0             | 0              | 0             | 0             | 0             | 0             |
| Lab5_1_DNA           | C/G (10/8)      | A/G           | T/T           | C/C          | A/G           | C/T           | C/T            | 0 (C/C, 3)     | G/G           | C/C              | C/C            | C/T          | G/T           | C/C            | T/T           | A/A           | C/T           | A/G           |
| Lab5_2_DNA           | 0 (C/G, 2/3)    | G/G           | T/T           | C/C          | A/G           | C/T           | C/C            | 0 (C/C, 3)     | C/G           | C/C              | C/T            | C/T          | G/G           | C/C            | C/C           | G/G           | C/C           | G/G           |
| Lab5_3_DNA           | 0 (C/C, 4)      | A/G           | T/T           | C/C          | A/A           | C/C           | C/C            | 0 (C/C, 4)     | G/G           | C/C              | C/C            | C/T          | T/T           | A/A            | C/T           | A/G           | C/T           | A/A           |
| Lab5_4_DNA           | 0 (C/C,3)       | G/G           | T/T           | C/T          | A/G           | C/C           | C/C            | 0              | C/G           | C/T              | C/C            | T/T          | T/T           | C/C            | C/T           | A/G           | C/T           | A/G           |
| Lab5_5_DNA           | C/G (23/29)     | G/G           | C/T           | C/C          | A/A           | C/C           | T/T            | C/C (10)       | G/G           | C/C              | C/C            | C/T          | T/T           | C/C            | C/T           | A/G           | C/T           | A/G           |
| Lab5_6_DNA           | 0 (C/C,1)       | G/G           | C/T           | T/T          | A/A           | T/T           | C/C            | 0 (C/C, 1)     | G/G           | C/C              | C/C            | T/T          | G/T           | C/C            | C/T           | A/G           | C/T           | A/A           |
| Lab5_7_DNA           | C/C (23)        | G/G           | T/T           | C/C          | A/A           | C/C           | C/C            | T/T (8)        | C/G           | C/C              | C/C            | C/C          | T/T           | A/C            | C/C           | G/G           | C/T           | A/G           |
| Lab5_8_DNA           | C/G (11/11)     | G/G           | T/T           | C/C          | A/A           | C/C           | C/C            | C/C (9)        | C/G           | C/T              | C/C            | T/T          | G/T           | C/C            | C/C           | G/G           | C/T           | A/G           |

| Genotypes References | Blood_01_ANK1 | Blood_02_ANK1 | Blood_03_CD3G | Blood_04_SPT | B Blood_05_SPTB | Blood_06_SPTB | Saliva_01_HTN3 | Saliva_02_MUC7 | Saliva_03_PRB4 | Saliva_04_PRH2 | Saliva_05_HTN3 | Semen_01_KLK3 | Semen_02_PRM1 | Semen_03_SEMG2 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06_TGM4 | Semen_07_TGM4 |
|----------------------|---------------|---------------|---------------|--------------|-----------------|---------------|----------------|----------------|----------------|----------------|----------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|
| Lab5_4_RNA           | 0             | 0             | T/T (274)     | 0            | 0               | 0             | C/C (18626)    | C/C (54757)    | C/G (152/140)  | C/C (7123)     | 0              | 0             | 0             | 0              | 0             | 0             | 0             | 0             |
| Lab5_1_DNA           | C/G (10/8)    | A/G           | T/T           | C/C          | A/G             | C/T           | C/T            | 0 (C/C, 3)     | G/G            | C/C            | C/C            | C/T           | G/T           | C/C            | T/T           | A/A           | C/T           | A/G           |
| Lab5_2_DNA           | 0 (C/G, 2/3)  | G/G           | T/T           | C/C          | A/G             | C/T           | C/C            | 0 (C/C, 3)     | C/G            | C/C            | C/T            | C/T           | G/G           | C/C            | C/C           | G/G           | C/C           | G/G           |
| Lab5_3_DNA           | 0 (C/C, 4)    | A/G           | T/T           | C/C          | A/A             | C/C           | C/C            | 0 (C/C, 4)     | G/G            | C/C            | C/C            | C/T           | T/T           | A/A            | C/T           | A/G           | C/T           | A/A           |
| Lab5_4_DNA           | 0 (C/C,3)     | G/G           | T/T           | C/T          | A/G             | C/C           | C/C            | 0              | C/G            | C/T            | C/C            | T/T           | T/T           | C/C            | C/T           | A/G           | C/T           | A/G           |
| Lab5_5_DNA           | C/G (23/29)   | G/G           | C/T           | C/C          | A/A             | C/C           | T/T            | C/C (10)       | G/G            | C/C            | C/C            | C/T           | T/T           | C/C            | C/T           | A/G           | C/T           | A/G           |
| Lab5_6_DNA           | 0 (C/C,1)     | G/G           | C/T           | T/T          | A/A             | T/T           | C/C            | 0 (C/C, 1)     | G/G            | C/C            | C/C            | T/T           | G/T           | C/C            | C/T           | A/G           | C/T           | A/A           |
| Lab5_7_DNA           | C/C (23)      | G/G           | T/T           | C/C          | A/A             | C/C           | C/C            | T/T (8)        | C/G            | C/C            | C/C            | C/C           | T/T           | A/C            | C/C           | G/G           | C/T           | A/G           |
| Lab5_8_DNA           | C/G (11/11)   | G/G           | T/T           | C/C          | A/A             | C/C           | C/C            | C/C (9)        | C/G            | C/T            | C/C            | T/T           | G/T           | C/C            | C/C           | G/G           | C/T           | A/G           |

 $\rightarrow$  Donor 1 or 2

→Donor 1

→Donor 1

→Donor 2

#### Assignment of Body Fluid with Donor – Own Stains Laboratory 5 (Stains 5-8)

- Supposed body fluid according to BFI are framed
- Matching RNA + DNA genotype in green, discrepancies in lilac
- Supposed donor in light blue
- Genotypes in DNA reference profiles set to zero, if the coverage was ≤5 (see brackets)

T/T

C/C

C/C

C/C

C/C

T/T

C/C

C/C

C/C

C/C

C/C

C/C

T/T

C/C

C/C

C/C

0 (C/C, 1)

T/T (8)

C/C (9)

0

C/C (10)

0 (C/C, 1)

T/T (8)

C/C (9)

C/T

T/T

T/T

T/T

C/T

C/T

T/T

T/T

T/T

C/C

C/C

C/T

C/C

T/T

C/C

C/C

A/A

A/A

A/A

A/G

A/A

A/A

A/A

A/A

Lab5 6 DNA

Lab5 7 DNA

Lab5 8 DNA

Lab5\_4\_DNA

Lab5 5 DNA

Lab5 6 DNA

Lab5\_7\_DNA

Lab5\_8\_DNA

0 (C/C,1)

C/C (23)

C/G (11/11)

0 (C/C,3)

C/G (23/29)

0 (C/C,1)

C/C (23)

C/G (11/11)

G/G

G/G

G/G

G/G

G/G

G/G

G/G

G/G

| Genotypes References | Blood_01_ANK1 Bl | ood_02_ANK1 | Blood_03_CD3G | Blood_04_SPTB | Blood_05_SPTB | Blood_06_SPTB | Saliva_01_HTN3 | Saliva_02_MUC7 | Saliva_03_PRB4 | Saliva_04_PRH2 S | aliva_05_HTN3 | Semen_01_KLK3 | Semen_02_PRM1 | Semen_03_SEMG2 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06_TGM4 | Semen_07_TGM4 |
|----------------------|------------------|-------------|---------------|---------------|---------------|---------------|----------------|----------------|----------------|------------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|
| Lab5_5_RNA           | C/G (7/6)        | 0           | 0             | 0             | 0             | 0             | 0              | C/C (9)        | 0              | 0                | 0             | 0             | 0             | 0              | 0             | 0             | 0             | 0             |
| Lab5_1_DNA           | C/G (10/8)       | A/G         | T/T           | C/C           | A/G           | C/T           | C/T            | 0 (C/C, 3)     | G/G            | C/C              | C/C           | C/T           | G/T           | C/C            | T/T           | A/A           | C/T           | A/G           |
| Lab5_2_DNA           | 0 (C/G, 2/3)     | G/G         | T/T           | C/C           | A/G           | C/T           | C/C            | 0 (C/C, 3)     | C/G            | C/C              | C/T           | C/T           | G/G           | C/C            | C/C           | G/G           | C/C           | G/G           |
| Lab5_3_DNA           | 0 (C/C, 4)       | A/G         | T/T           | C/C           | A/A           | C/C           | C/C            | 0 (C/C, 4)     | G/G            | C/C              | C/C           | C/T           | T/T           | A/A            | C/T           | A/G           | C/T           | A/A           |
| Lab5_4_DNA           | 0 (C/C,3)        | G/G         | T/T           | C/T           | A/G           | C/C           | C/C            | 0              | C/G            | C/T              | C/C           | T/T           | T/T           | C/C            | C/T           | A/G           | C/T           | A/G           |
| Lab5_5_DNA           | C/G (23/29)      | G/G         | C/T           | C/C           | A/A           | C/C           | T/T            | C/C (10)       | G/G            | C/C              | C/C           | C/T           | T/T           | C/C            | C/T           | A/G           | C/T           | A/G           |
| Lab5_6_DNA           | 0 (C/C,1)        | G/G         | C/T           | T/T           | A/A           | T/T           | C/C            | 0 (C/C, 1)     | G/G            | C/C              | C/C           | T/T           | G/T           | C/C            | C/T           | A/G           | C/T           | A/A           |
| Lab5_7_DNA           | C/C (23)         | G/G         | T/T           | C/C           | A/A           | C/C           | C/C            | T/T (8)        | C/G            | C/C              | C/C           | C/C           | T/T           | A/C            | C/C           | G/G           | C/T           | A/G           |
| Lab5_8_DNA           | C/G (11/11)      | G/G         | T/T           | C/C           | A/A           | C/C           | C/C            | C/C (9)        | C/G            | C/T              | C/C           | T/T           | G/T           | C/C            | C/C           | G/G           | C/T           | A/G           |
| Genotypes References | Blood_01_ANK1 Bl | ood_02_ANK1 | Blood_03_CD3G | Blood_04_SPTB | Blood_05_SPTB | Blood_06_SPTB | Saliva_01_HTN3 | Saliva_02_MUC7 | Saliva_03_PRB4 | Saliva_04_PRH2 S | aliva_05_HTN3 | Semen_01_KLK3 | Semen_02_PRM1 | Semen_03_SEMG2 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06_TGM4 | Semen_07_TGM4 |
| Lab5_6_RNA           | G/G (54)         | 0           | 0             | 0             | 0             | 0             | C/C (3000)     | C/C (63837)    | G/C (31/21)    | C/C (6729)       | 0             | 0             | 0             | 0              | 0             | 0             | 0             | 0             |
| Lab5_1_DNA           | C/G (10/8)       | A/G         | T/T           | C/C           | A/G           | C/T           | C/T            | 0 (C/C, 3)     | G/G            | C/C              | C/C           | C/T           | G/T           | C/C            | T/T           | A/A           | C/T           | A/G           |
| Lab5_2_DNA           | 0 (C/G, 2/3)     | G/G         | T/T           | C/C           | A/G           | C/T           | C/C            | 0 (C/C, 3)     | C/G            | C/C              | C/T           | C/T           | G/G           | C/C            | C/C           | G/G           | C/C           | G/G           |
| Lab5_3_DNA           | 0 (C/C, 4)       | A/G         | T/T           | C/C           | A/A           | C/C           | C/C            | 0 (C/C, 4)     | G/G            | C/C              | C/C           | C/T           | T/T           | A/A            | C/T           | A/G           | C/T           | A/A           |
| Lab5_4_DNA           | 0 (C/C,3)        | G/G         | T/T           | C/T           | A/G           | C/C           | C/C            | 0              | C/G            | C/T              | C/C           | T/T           | T/T           | C/C            | C/T           | A/G           | C/T           | A/G           |
| Lab5_5_DNA           | C/G (23/29)      | G/G         | C/T           | C/C           | A/A           | C/C           | T/T            | C/C (10)       | G/G            | C/C              | C/C           | C/T           | T/T           | C/C            | C/T           | A/G           | C/T           | A/G           |

|                     |                    |               |                 |               |             |                  |                |                |               |                  |                | _             |               |                |               |               |               |              |
|---------------------|--------------------|---------------|-----------------|---------------|-------------|------------------|----------------|----------------|---------------|------------------|----------------|---------------|---------------|----------------|---------------|---------------|---------------|--------------|
| Genotypes Reference | es Blood_01_ANK1 E | Blood_02_ANK1 | L Blood_03_CD3G | Blood_04_SPTB | Blood_05_SP | TB Blood_06_SPTB | Saliva_01_HTN3 | Saliva_02_MUC7 | Saliva_03_PRE | 4 Saliva_04_PRH2 | Saliva_05_HTN3 | Semen_01_KLK3 | Semen_02_PRM1 | Semen_03_SEMG2 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06_TGM4 | Semen_07_TGM |
| ab5_7_RNA           | G/C (3589/2630)    | 0             | T/T (236)       | 0             | 0           | C/T (485/416)    | 0              | C/C (765)      | 0             | C/C (144)        | 0              | 0             | 0             | 0              | 0             | 0             | 0             | 0            |
| ab5_1_DNA           | C/G (10/8)         | A/G           | T/T             | C/C           | A/G         | C/T              | C/T            | 0 (C/C, 3)     | G/G           | C/C              | C/C            | C/T           | G/T           | C/C            | T/T           | A/A           | C/T           | A/G          |
| b5_2_DNA            | 0 (C/G, 2/3)       | G/G           | T/T             | C/C           | A/G         | C/T              | C/C            | 0 (C/C, 3)     | C/G           | C/C              | C/T            | C/T           | G/G           | C/C            | C/C           | G/G           | C/C           | G/G          |
| b5_3_DNA            | 0 (C/C, 4)         | A/G           | T/T             | C/C           | A/A         | C/C              | C/C            | 0 (C/C, 4)     | G/G           | C/C              | C/C            | C/T           | T/T           | A/A            | C/T           | A/G           | C/T           | A/A          |
| b5_4_DNA            | 0 (C/C,3)          | G/G           | T/T             | C/T           | A/G         | C/C              | C/C            | 0              | C/G           | C/T              | C/C            | T/T           | T/T           | C/C            | C/T           | A/G           | C/T           | A/G          |
| b5_5_DNA            | C/G (23/29)        | G/G           | C/T             | C/C           | A/A         | C/C              | T/T            | C/C (10)       | G/G           | C/C              | C/C            | C/T           | T/T           | C/C            | C/T           | A/G           | C/T           | A/G          |
| b5_6_DNA            | 0 (C/C,1)          | G/G           | C/T             | T/T           | A/A         | T/T              | C/C            | 0 (C/C, 1)     | G/G           | C/C              | C/C            | T/T           | G/T           | C/C            | C/T           | A/G           | C/T           | A/A          |
| b5_7_DNA            | C/C (23)           | G/G           | T/T             | C/C           | A/A         | C/C              | C/C            | T/T (8)        | C/G           | C/C              | C/C            | C/C           | T/T           | A/C            | C/C           | G/G           | C/T           | A/G          |
| b5_8_DNA            | C/G (11/11)        | G/G           | T/T             | C/C           | A/A         | C/C              | C/C            | C/C (9)        | C/G           | C/T              | C/C            | T/T           | G/T           | C/C            | C/C           | G/G           | C/T           | A/G          |
| enotypes Referenc   | es Blood_01_ANK1 E | Blood_02_ANK1 | L Blood_03_CD3G | Blood_04_SPTB | Blood_05_SP | TB Blood_06_SPTB | Saliva_01_HTN3 | Saliva_02_MUC7 | Saliva_03_PRE | 4 Saliva_04_PRH2 | Saliva_05_HTN3 | Semen_01_KLK3 | Semen_02_PRM1 | Semen_03_SEMG2 | Semen_04_TGM4 | Semen_05_TGM4 | Semen_06_TGM4 | Semen_07_TG  |
| b_8_RNA             | G/C (12)           | 0             | 0               | 0             | 0           | 0                | 0              | C/C (7)        | 0             | 0                | 0              | 0             | 0             | 0              | 0             | 0             | 0             | 0            |
| b5_1_DNA            | C/G (10/8)         | A/G           | T/T             | C/C           | A/G         | C/T              | C/T            | 0 (C/C, 3)     | G/G           | C/C              | C/C            | C/T           | G/T           | C/C            | T/T           | A/A           | C/T           | A/G          |
| b5_2_DNA            | 0 (C/G, 2/3)       | G/G           | T/T             | C/C           | A/G         | C/T              | C/C            | 0 (C/C, 3)     | C/G           | C/C              | C/T            | C/T           | G/G           | C/C            | C/C           | G/G           | C/C           | G/G          |
| b5_3_DNA            | 0 (C/C, 4)         | A/G           | T/T             | C/C           | A/A         | C/C              | C/C            | 0 (C/C, 4)     | G/G           | C/C              | C/C            | C/T           | T/T           | A/A            | C/T           | A/G           | C/T           | A/A          |

C/G

G/G

G/G

C/G

C/G

G/G

C/G

C/G

C/C

C/C

C/T

C/T

C/C

C/C

C/C

C/T

C/C

C/C

C/C

C/C

C/C

C/C

C/C

C/C

T/T

C/C

T/T

T/T

C/T

T/T

C/C

T/T

G/T

T/T

G/T

T/T

T/T

G/T

T/T

G/T

C/C

A/C

C/C

C/C

C/C

C/C

A/C

C/C

C/T

C/C

C/C

C/T

C/T

C/T

C/C

C/C

A/G

G/G

G/G

A/G

A/G

A/G

G/G

G/G

C/T

C/T

C/T

C/T

C/T

C/T

C/T

C/T

A/A

A/G

A/G

A/G

A/G

A/A

A/G

A/G

→Donor 2

→Donor 1 for
blood
→Donor 5 for
saliva



## **Conclusion and Outlook**



## Conclusions

#### Stain n° 1-16:

BFID

- 13/16 stains were predicted correctly 2/4 low input stains correctly predicted
- 3/16 stains could not be predicted 2/3 one body fluid was missing 1/3 skin generally difficult
- Difficulties arise because of various misleading reads
- Are there any misleading reads arising systematically (marked in pink)?

cSNPs

• performance dependent on how many markers are detected per body fluid

#### **Own Stains of the Laboratories:**

BFID

• Overall we could predict 21/32 stains (65%)

#### cSNPs

- performance dependent on how many reads per RNA cSNP were detected
   → the more, the more accurate/complete the reflection of DNA genotypes
- Some labs did not analyze reference persons?



#### Outlook

New Thermofisher cSNP assay - BFID-cSNP-6F (6 fluids/tissues):

- Includes cSNP markers for vaginal secretion, menstrual blood and skin:
  - menstrual blood (3 genes)
  - vaginal secrection (1 gene)
  - skin (3 genes)
- $\rightarrow$  additional 18 cSNPs for body fluids + 6 cSNPs for tissue (skin) = 23 BFI markers + 46 cSNPs
- $\rightarrow$  Separate RNA + DNA assays

Manuscript submitted to FSI Genetics



#### Outlook

Potential EDNAP mRNA MPS exercise 4 testing BFID-cSNP-6F in winter 2022/23?

- 16 dried stains
- 8 own samples and donor samples (reference)
- 2 primer pools (RNA/DNA)
- on IonTorrent S5

Timeline:

- September 2022: Suggestion for collaborative exercise 4
- November 2022: Shipment of samples, primers, protocols
- March 2023: Submission of results
- April/May 2023: Presentation of results at next EDNAP meeting

→ If you are interested to participate in this exercise, please contact cordula.haas@irm.uzh.ch



## Acknowledgements



*University of Zurich:* Cordula, Jacqueline, Manuel, Berci, Shouyu, Guro, Mario





*University of Central Florida:* Jack Ballantyne, Erin Hanson





*Thermofisher:* Robert Lagace, Chantal Roth



Neth Minis

Netherlands Forensic Institute Ministry of Justice

## EDNAP Exercise mtDNA quantification

Kris van der Gaag Natalie Weiler Titia Sijen Arnoud Kal



## EDNAP exercise mtDNA quantification

- •Home made assay (cheap!)
- •Quantification of autosomal, Y and mtDNA
- Long and short mt probes

| DNA       | Probe     | Вр     | Dye |
|-----------|-----------|--------|-----|
| Total DNA | Alu Ya5   | 127 bp | VIC |
| Y DNA     | DYZ5      | 137 bp | FAM |
| mtDNA     | 16533-180 | 217 bp | JUN |
| mtDNA     | 2502-2571 | 70 bp  | ABY |

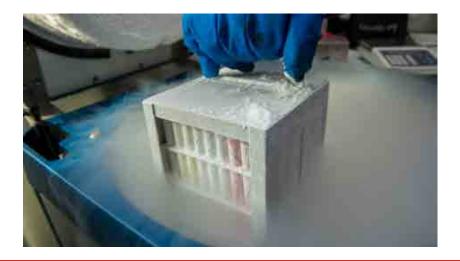


## 21 Labs

- •16 x Europe
- •1 x Asia
- •4 x USA

NFI provides:

- Primers and probes
- Challenging samples
- Protocols


Labs provide:

- •Their own favourite sample
- Their own total/Y/mtDNA quantification method



## **Challenging Samples**

- Control DNA
- Sperm
- Unbalanced mixture male:female
- Fragmented DNA
- Oligo short mt amplicon
- Humic acid inhibited sample



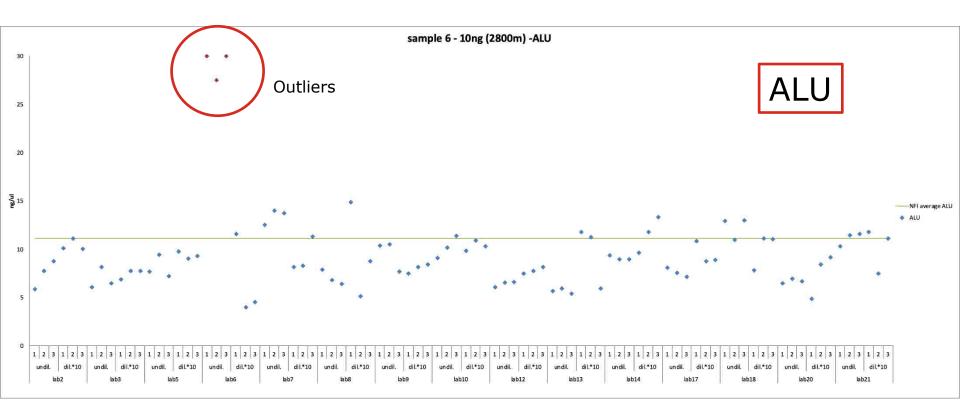


#### Analysis of the results

- Analysis started but delayed
- Variable results: effect of transit time?
- Unexplaned results outliers
- Data from 2 labs excluded
- Some examples in the next slides



### Sample #6


Sample = 10 ng 2800M control DNA (male)

Expected results:

Quant value >0 for ALU, Y, mt short and mt long



## Sample #6, 10 ng control DNA 2800M

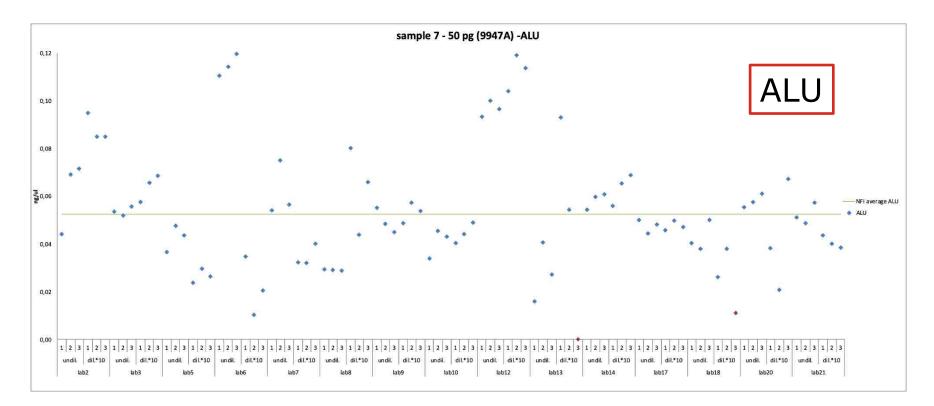


Similar results for Y, mt long and mt short



#### Sample #7

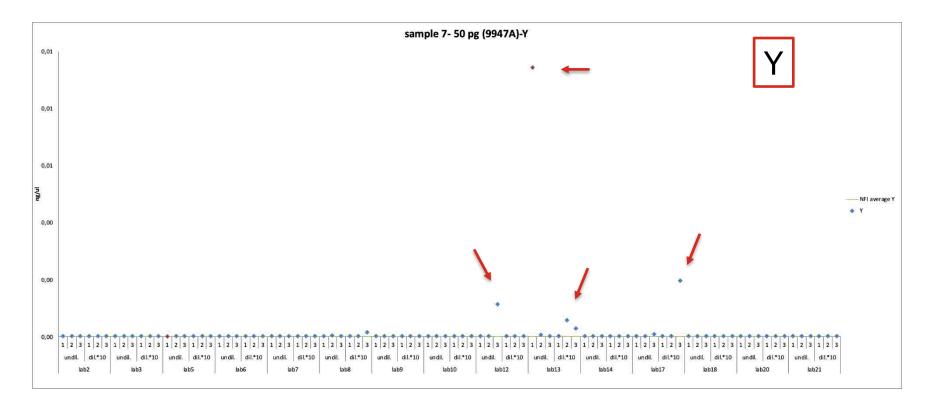
Sample = 50 pg control DNA 9947A (female)


Expected results

Quant value >0 for ALU, mt short and mt long

Quant value = 0 for Y




#### Sample #7 Control DNA 9947A – female



Similar results for mt short and mt long



#### Sample #7 Control DNA 9947A – female

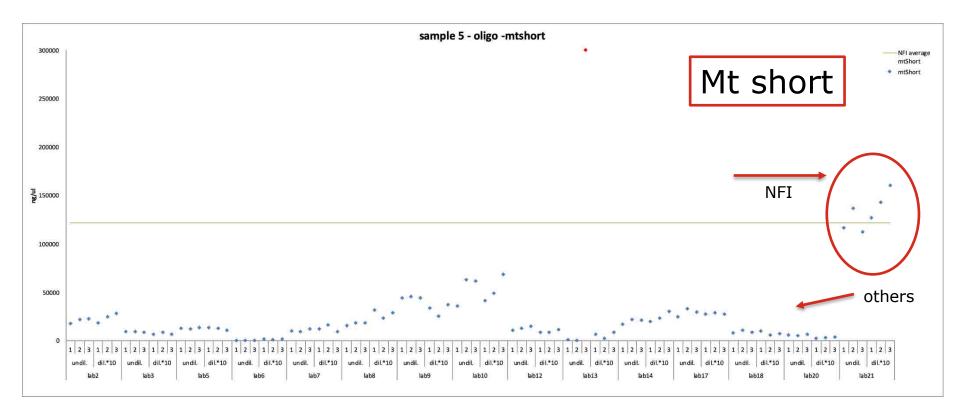


#### Unexpected results for Y quant

EDNAP Exercise mtDNA quant



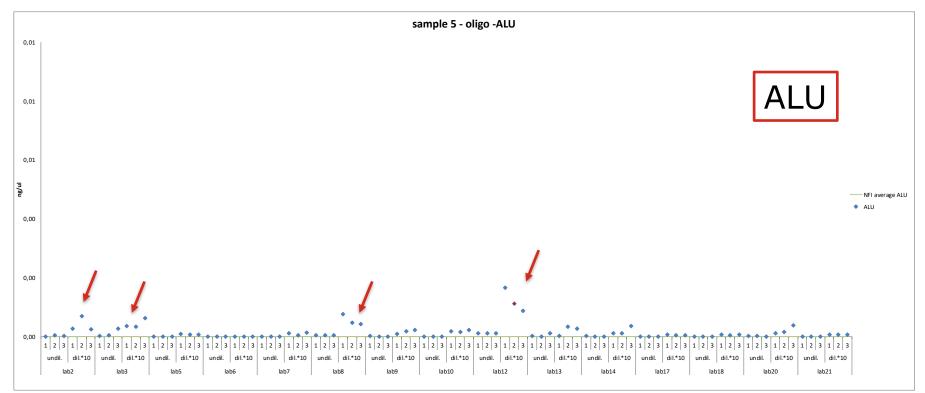
#### Sample #5


Sample = oligo for the short mtDNA amplicon

Expected results:

Quant value >0 for mt short Quant value = 0 for ALU, Y and mt long




### Sample #5 oligo for the short mtDNA amplicon



Effect of transit time?



#### Sample #5 oligo for the short mtDNA amplicon

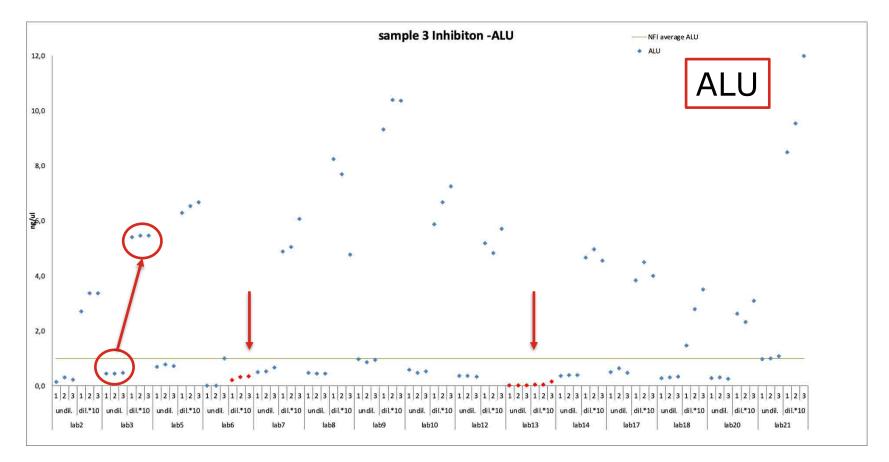


Unexpected results



#### Sample #3

Sample = male DNA + inhibitor humic acid

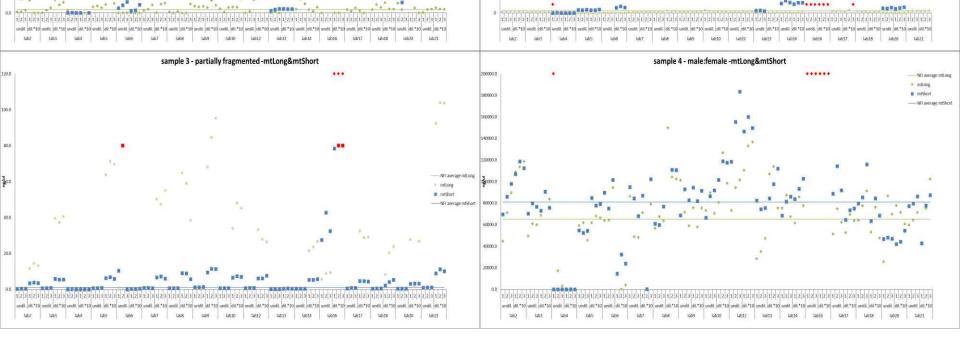

Expected results:

Quant value >0 for ALU, Y, mt short and mt long

Quant value higher for diluted sample vs undiluted sample




#### Sample #3 Male DNA + humic acid



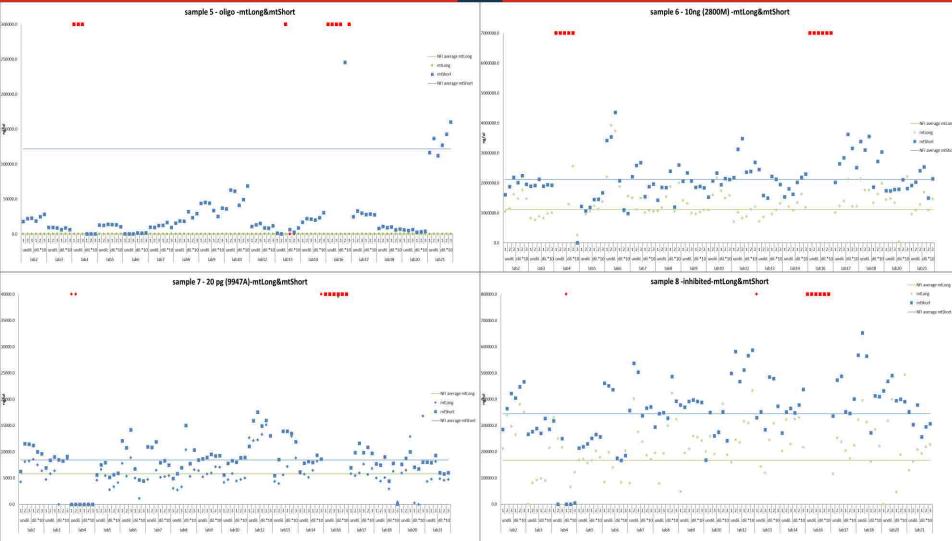



#### Next steps

- Further analysis of the data
- Decide if it is worthwhile to publish
- Update at the next EDNAP meeting






200003

100000

12 E E

\*\*\*\*\*\*\*\*\*\*\*







#### NFI has made changes

Standaards were up to 8 ng, now up to 50ng.

Switched from van 7500 to QS5 and QS7

Passive dye was mustang purple, now switched to rox

Addition of IPC, mito long removed



#### Conclusions

The quantification assay worked wel for the NFI, but.....

The quantification exercise resulted in large variation of measured DNA concentration, outliers and unexpected results, perhaps caused by negative effects of distribution of samples and reagents.

The results are insufficient for publication.

Thank you all for your contribution!



# EDNAP collaborative exercises on DNA transfer

#### Progress update – September 2022

Bas Kokshoorn (Netherlands Forensic Institute) Roland van Oorschot (Victoria Police Forensic Services Department) Bianca Szkuta (Deakin University)

27 September 2022 | Lisbon, Portugal

## Outline of series of exercises

- Exercise A: *Case file data collection*. Lab participation. Paper/electronically based.
- Exercise B: *Experimental data generation*. Lab participation. Laboratory & paper/electronically based.
- Exercise C: *Case assessment*. Individual participation. Paper/electronically based.
- Exercise D: *Evaluation of findings*. Individual participation. Paper/electronically based.

### Outline of series of exercises

- Exercise A: Case file data collection. Lab participation. Paper/electronically based.
- Exercise B: *Experimental data generation*. Lab participation. Laboratory & paper/electronically based.
- Exercise C: *Case assessment*. Individual participation. Paper/electronically based.
- Exercise D: *Evaluation of findings*. Individual participation. Paper/electronically based.

# Proposal for Exercise A in more detail

Purpose

- First collaborative exercise on lab results to
  - Accumulate and compare data on profile types obtained from particular item types given information on item history, methods, and procedures applied to generate the profiles
  - Help assess the impacts of differences in methods and procedures
  - Help assess the appropriateness / limitation of using data from other laboratories in evaluation of findings given activity level scenarios
  - Help drive potential improvement opportunities in respect to the methodologies and procedures utilized by a lab as part of their service delivery
- The exercise will gain insight on how readily the requested information was able to be sourced within each laboratory

### Timeline

- Proposal at ENAP meeting Riga (Latvia) October 2019
- Call for expression of interest in Exercise A Q1 2020
  - report of responses shared with EDNAP Q2 2020

### Response from laboratories

Response from 49 laboratories

| - Europe                                  | 36 |
|-------------------------------------------|----|
| <ul> <li>Australia/New Zealand</li> </ul> | 8  |
| - North America                           | 4  |
| - Asia                                    | 1  |

### Interest in participation – exercise A

- Yes: 44

- No: 5 (reasons cited: no casework data; no interest in HVC type data; lack of detailed info on past cases)

# Timeline

- Proposal at ENAP meeting Riga (Latvia) October 2019
- Questionnaire / expression of interest Exercise A Q1 2020
- Development of Exercise A Started Q1 2020
  - ✓ put on hold after COVID outbreak
  - ✓ continued development 2021
  - ✓ pilot testing VPFSD/NFI Q4 2021 Q1 2022
  - ✓ pilot testing three other labs Q2-Q3 2022
  - Currently addressing feedback and finalizing questionnaire and associated documentation

### Proposal for Exercise A in more detail

Questions will be asked within four separate Excel sheets:

- Sheet 1: Questions relating to the sets of methodologies used
- Sheet 2: Questions relating to **Tool handles**.
- Sheet 3: Questions relating to **Gloves**.
- Sheet 4: Questions relating to Data availability and relevance

# Proposal for Exercise A in more detail

### Questions in sheets 2 and 3 (related to items):

- Section A: Item type
- Section B: Item history
- Section C: Packaging
- Section D: Storage
- Section E: Durations
- Section F: Prior examinations pre DNA sampling
- Section G: Target area
- Section H: Methodology set used (referencing set(s) detailed in Sheet 1)
- Section I: DNA quantitation
- Section J: DNA amplification
- Section K: DNA profile results
- Section L: Profile interpretation
- Section M: Other

### Screenshot of Excel document

|          | А                              | В                | С                  | D                                             | E                 | F                           | G                                                                                                                  | Н                        | I          | J                                                    |                         |
|----------|--------------------------------|------------------|--------------------|-----------------------------------------------|-------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------|------------|------------------------------------------------------|-------------------------|
| 1        |                                |                  |                    |                                               |                   | A: ITEM TYPE                |                                                                                                                    |                          |            |                                                      |                         |
| 2        |                                |                  |                    |                                               |                   | Item details                |                                                                                                                    |                          |            |                                                      |                         |
| -        |                                |                  |                    |                                               |                   |                             |                                                                                                                    |                          |            |                                                      |                         |
|          |                                |                  |                    | Lab sample<br>code<br><u>For lab use only</u> |                   |                             |                                                                                                                    | 3. Handle length:        |            | 5. Handle groves:                                    | 6. Handle edges:        |
|          |                                |                  | Exercise sample    | Please don't                                  | Please don't      |                             |                                                                                                                    |                          |            | (if no clear handle, please indicate groves on item) | (if no clear handle, pl |
| -        | Lab code                       | Sample No.       |                    | forward this info                             | forward this info | 1. Type of tool:            | 2. Handle type:                                                                                                    | indicate length of item) |            | See information document for images                  | See information docume  |
| 4        | [insert text]                  | [insert text]    | [insert text]      |                                               |                   | Screw driver - non-powered  | Don't know                                                                                                         | Don't know               | Don't know | Don't know                                           | Don't know              |
|          | [insert text]                  | [insert text]    | [insert text]      |                                               |                   | Screw driver - non-powered  | Don't know                                                                                                         | Don't know               | Don't know | Don't know                                           | Don't know              |
| 5        |                                |                  |                    |                                               |                   |                             |                                                                                                                    |                          |            |                                                      |                         |
| 6        | [insert text]                  | [insert text]    | [insert text]      |                                               |                   | Screw driver - non-powered  | Don't know                                                                                                         | Don't know               | Don't know | Don't know                                           | Don't know              |
| į        | [insert text]                  | [insert text]    | [insert text]      |                                               |                   | Screw driver - non-powered  | Don't know                                                                                                         | Don't know               | Don't know | Don't know                                           | Don't know              |
| <b>,</b> | incert tout!                   | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | +                           | 1 handle typically handled by one hand (e.g. screw driver)                                                         |                          |            | +                                                    |                         |
| -        | [insert text]<br>[insert text] | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | 1                           | Thandle typically handled by two hands (e.g. Jarge awa)     2 handles typically handled by two hands (e.g. pliers) |                          | +          | +                                                    |                         |
| -        | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | 1                           | 2 handles typically handled by two hands (e.g. bolt cutter)                                                        |                          | +          | +                                                    |                         |
|          | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | 1                           | No clear handle (e.g. crowbar)<br>Other (please address in comments section and Go to Q.3)                         | _                        | +          | 1                                                    |                         |
| -        | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | 1                           | - Don'tknow                                                                                                        | <b>T</b>                 | 1          |                                                      |                         |
| -        | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | 1                           | 1                                                                                                                  | 1                        | 1          | 1                                                    |                         |
|          | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     |                             |                                                                                                                    |                          |            |                                                      |                         |
|          | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     |                             |                                                                                                                    |                          |            |                                                      |                         |
| 16       | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     |                             |                                                                                                                    |                          |            |                                                      |                         |
|          | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     |                             |                                                                                                                    |                          |            |                                                      |                         |
| 18       | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     |                             |                                                                                                                    |                          |            |                                                      |                         |
|          | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     |                             |                                                                                                                    |                          |            |                                                      |                         |
| -        | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     |                             |                                                                                                                    |                          |            |                                                      |                         |
|          | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | <u> </u>                    |                                                                                                                    |                          |            |                                                      |                         |
|          | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | <u> </u>                    |                                                                                                                    |                          |            |                                                      |                         |
|          | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | l                           |                                                                                                                    |                          |            |                                                      |                         |
| _        | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | ų                           |                                                                                                                    |                          | l          |                                                      |                         |
| -        | [insert text]                  | [insert text]    |                    | [insert text]                                 | [insert text]     | ų                           |                                                                                                                    | L                        | L          | l                                                    |                         |
|          | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | ų                           |                                                                                                                    |                          |            |                                                      |                         |
| -        | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | ų                           |                                                                                                                    |                          |            | l                                                    |                         |
| _        | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | ų                           |                                                                                                                    | L                        | L          | l                                                    |                         |
|          | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | ų                           |                                                                                                                    |                          |            |                                                      |                         |
| -        | [insert text]                  | [insert text]    |                    | [insert text]                                 | [insert text]     | ų                           |                                                                                                                    |                          |            |                                                      |                         |
| 31       | [insert text]                  | [insert text]    | [insert text]      | [insert text]                                 | [insert text]     | J                           | <u> </u>                                                                                                           |                          | L          | L                                                    |                         |
| 1        | <ul> <li>♦ She</li> </ul>      | heet 1 - Methods | Sheet 2 - Tool Har | ndles Sheet 3 -                               | - Inside Gloves   | Sheet 4 - General Questions | $\oplus$                                                                                                           | : •                      |            |                                                      | Þ                       |

### Timeline - tentative

- November 2022 Reach out to labs that expressed interest
   Gauge whether they are still interested
- January 2023 Distribute questionnaire
- May 2023 Return of filled out questionnaires
- Q3 2023 Q2 2024 Data analysis/interpretation
- Q3-Q4 2024 Communication/publication
  - EDNAP meeting
  - Publication of dataset
  - Publication of analysis/interpretation

### Next exercises – Exercise B

- ReACT (ENFSI monopoly)

   partial overlap with aims of Exercise B
   Roland v. O. involved in both
- Exercise B on hold, pending progress of ReACT (lab based exercises planned to continue into Q2 2023)



### Exercise C – Case assessment

- Benchmark on case assessment and triage
- Provide (mock) case
  - Case issue
  - Case information

- Purpose to compare;

  - What info would expert use? (CIM) Which scenario's would be considered relevant?

  - What factors impacting on DNA-TPPR are being considered?
    What examination strategies would be considered?
    What would be the expected outcomes for examinations?
    based on which information/expertise?
    What would the recommended strategy be?

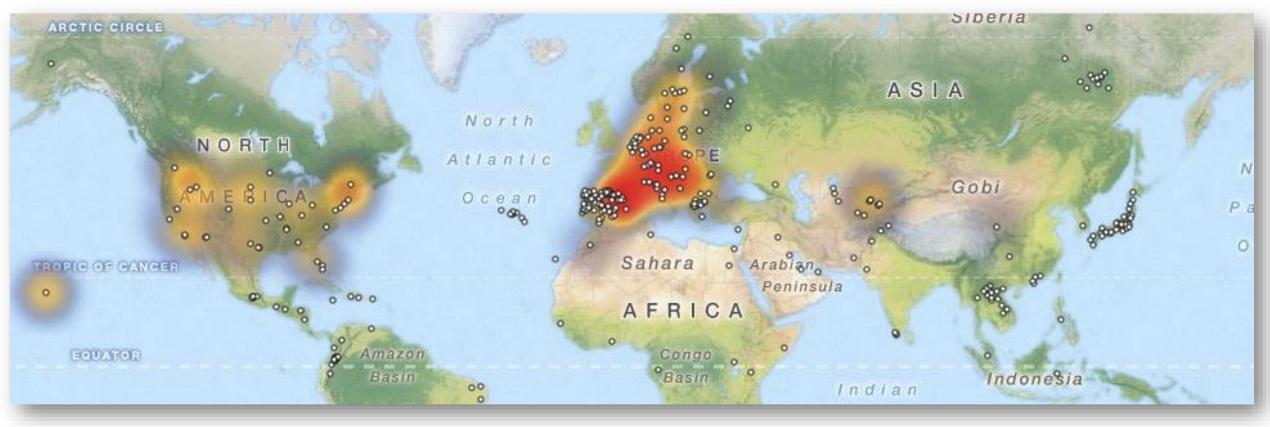
### Next exercises – Exercise C

- Start TBD
- After finalizing Exercise A

# Exercise D: Evaluation of findings

- Benchmark on reporting given activity propositions •
- Provide (mock) case
  - Case context
  - Case examination and profiling data
- Purpose to compare;

  - Formulating propositions
    Management of case information
    Structure of argument


  - Data sources used
  - Reporting structure



### Next exercises – Exercise D

- Considering bringing this exercise forward and start planning, development and roll-out in 2023
- Project lead(s) TBD

**EDNAP Meeting**, Lisbon, Portugal, Sep 27 2022



YEARS

# mtDNA/EMPOP Update

Dr. Walther Parson ao. Prof. Institute of Legal Medicine, Medical University of Innsbruck, Austria adj. Prof. Forensic Science Program, Penn State University, PA, USA walther.parson@i-med.ac.at

### mtDNA publications (2019-2022)

#### **Population studies**

Bodner, M. *et al.* (2022) 'Helena's Many Daughters: More Mitogenome Diversity behind the **Most Common West Eurasian mtDNA Control Region** Haplotype in an Extended **Italian** Population Sample', *International Journal of Molecular Sciences*, 23(12), p. 6725.

Cardinali, I. *et al.* (2021) 'Mitochondrial DNA Footprints from Western Eurasia in Modern **Mongolia**', *Front Genet*, 12, p. 819337.

Bodner, M. et al. (2021) 'The Mitochondrial DNA Landscape of Modern Mexico', Genes, 12(9), p. 1453.

Simão, F. et al. (2021) 'The Ancestry of Eastern **Paraguay**: A Typical South American Profile with a Unique Pattern of Admixture', Genes, doi 10.3390/genes12111788

Taylor, C.R. et al. (2020) 'Platinum-Quality Mitogenome Haplotypes from United States Populations', Genes, 11(11), p. 1290.

Garcia, O. *et al.* (2020) 'Forensically relevant phylogeographic evaluation of mitogenome variation in the **Basque** Country', *Forensic Sci Int Genet*, 46, p. 102260.

Göbel, T.M.K. *et al.* (2020) 'Mitochondrial DNA variation in Sub-Saharan Africa: Forensic data from a mixed West African sample, **Côte d'Ivoire** (Ivory Coast), and **Rwanda**', *Forensic Science International: Genetics*, 44.



### mtDNA publications (2019-2022)

#### **Population studies - continued**

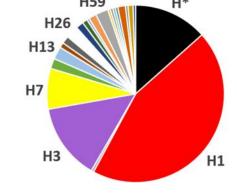
Modi, A. *et al.* (2020) 'The mitogenome portrait of Umbria in **Central Italy** as depicted by contemporary inhabitants and pre-Roman remains', *Sci Rep*, 10(1), p. 10700.

Barbarić, L. *et al.* (2020) 'Maternal perspective of **Croatian** genetic diversity', *Forensic Science International. Genetics*, 44, p. 102190.

Simão, F. *et al.* (2019) 'The maternal inheritance of the Ashaninka native group from **Peru**', *Forensic Science International: Genetics Supplement Series*, 7(1), pp. 135–137.

Zimmermann, B. *et al.* (2019) 'Mitochondrial DNA control region variation in **Lebanon**, **Jordan**, and **Bahrain**', *Forensic Science International: Genetics*, 42, pp. 99–102.

Wood, M.R. *et al.* (2019) 'Resolving mitochondrial haplogroups B2 and B4 with next-generation mitogenome sequencing to distinguish **Native American** from **Asian** haplotypes', *Forensic Science International: Genetics*, 43.




### Dissecting CR matches with mitogenome sequences

# 216 identical CR sequences 16519C 263G 315.1C (= most common CR in Europe) dissected into 163 different mitogenomes (131 unique) 24 different haplogroups (Phylotree b17) within hg H

**Table 1.** Diversity parameters of the 216 Italian mtDNAs exhibiting the most common West Eurasian control region (CR) haplotype using different sequence ranges. Percentages are rounded (see text for details).

|                                           | CR               | CR + 3 codR SNPs <sup>1</sup> | Complete Mitogenome <sup>2</sup> |
|-------------------------------------------|------------------|-------------------------------|----------------------------------|
| Haplotypes                                | 1                | 4                             | 163                              |
| Unique haplotypes                         | 0                | 0                             | 131                              |
| Discrimination capacity (DC)              | 3 <del>—</del> 3 | 0.019                         | 0.755                            |
| Named haplogroups <sup>3</sup>            | 1                | 4                             | 61                               |
| Random match probability (RMP)            | 1.000            | 0.342                         | 0.009                            |
| Power of discrimination (PD) <sup>4</sup> | 0.0%             | 66.1%                         | 99.6%                            |



<sup>1</sup> specific for haplogroups H1 (np 3010), H3 (np 6776), and H7 (np 4793); <sup>2</sup> see Table S2 for alternative scenarios; <sup>3</sup> including the paraphyletic group (paragroup) H\*; <sup>4</sup> Haplotype diversity (HD).



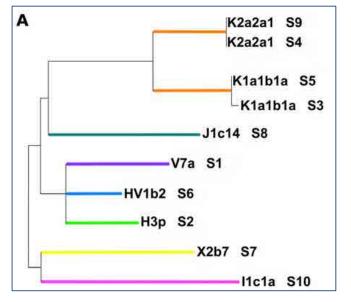
### mtDNA publications (2019-2022)

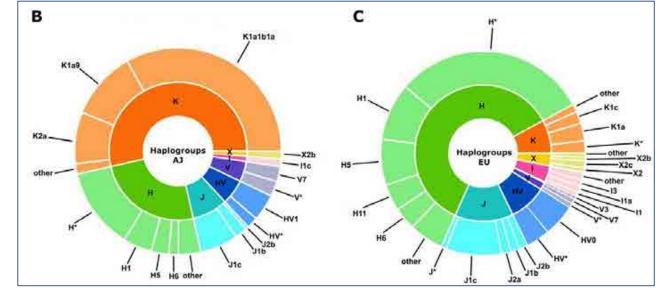
#### **Archaeological studies**

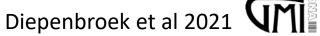
Cemper-Kiesslich, J. *et al.* (2021) 'aDNA Analyses of the Late Merovingian Children's Double Tomb under **Frankfurt Cathedral**, *Archaeologia Austriaca*, Band 105/2021, pp. 283–296.

Diepenbroek, M. *et al.* (2021) 'Genetic and phylogeographic evidence for **Jewish Holocaust victims** at the Sobibór death camp', *Genome Biology*, 22(1).

Pany-Kucera, D., *et al.* (2020) 'Social Relations, Deprivation and Violence at Schleinbach, **Lower Austria**. Insights from an Interdisciplinary Analysis of the Early Bronze Age Human Remains', *Archaeologia Austriaca* 


Tobias, B. *et al.* (2020) 'House of the dead-exceptional burials of the **Avar period** (seventh century AD) in Podersdorf am See (Burgenland/A)', *Archaeological and Anthropological Sciences*, 12(8).


Bus, M.M. *et al.* (2019) 'Mitochondrial dna analysis of a **viking age mass grave in sweden**', *Forensic Science International: Genetics*, 42, pp. 268–274.




#### Genetic and phylogeographic evidence for Jewish Holocaust victims at the Sobibór death camp









### mtDNA publications (2019-2022)

#### **Mito MPS Validation**

Cihlar, Jennifer Churchill, Amory, C., *et al.* (2020) '**Developmental Validation** of a MPS Workflow with a PCR-Based Short Amplicon Whole Mitochondrial Genome Panel', *Genes*, 11(11), p. E1345.

Cihlar, J.C. *et al.* (2020) 'The lot-to-lot variability in the **mitochondrial genome of controls**', *Forensic Science International: Genetics*, 47.

Strobl, C. *et al.* (2019) 'Evaluation of **mitogenome sequence concordance, heteroplasmy detection, and haplogrouping** in a worldwide lineage study using the Precision ID mtDNA Whole Genome Panel', *Forensic Sci Int Genet*, 42, pp. 244–251.





### mtDNA publications (2019-2022)

#### Heteroplasmy

McElhoe, J.A. *et al.* (2022) 'Exploring statistical weight estimates for mitochondrial DNA matches involving heteroplasmy', *International Journal of Legal Medicine*, 136(3), pp. 671–685.

Sturk-Andreaggi, K. *et al.* (2022) 'The Value of Whole-Genome Sequencing for Mitochondrial DNA Population Studies: Strategies and Criteria for Extracting High-Quality Mitogenome Haplotypes', *Int. Journal of Molecular Sciences*, 23(4), p. 2244.

Sturk-Andreaggi, K. *et al.* (2020) 'Impact of the sequencing method on the detection and interpretation of mitochondrial DNA length heteroplasmy', *Forensic Science International. Genetics*, 44, p. 102205.

#### NUMTs

Marshall, C. and Parson, W. (2021) 'Interpreting NUMTs in forensic genetics: Seeing the forest for the trees', *Forensic Science International: Genetics*, 53.

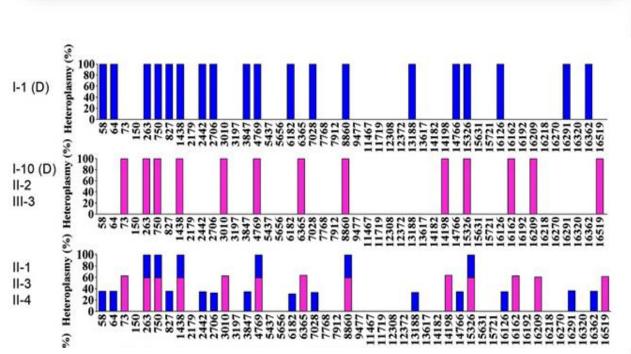
Lutz-Bonengel, S. et al. (2021) 'Evidence for multi-copy Mega-NUMTs in the human genome', NAR, 49(3), pp. 1517–1531

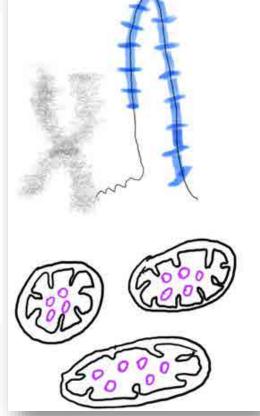
Cihlar, Jennifer Churchill, Strobl, C., *et al.* (2020) 'Distinguishing mitochondrial DNA and NUMT sequences amplified with the precision ID mtDNA whole genome panel', *Mitochondrion*, 55, pp. 122–133.

Lutz-Bonengel, S. and Parson, W. (2019) 'No further evidence for paternal leakage of mitochondrial DNA in humans yet', *Proceedings of the National Academy of Sciences*, 116(6), pp. 1821–1822.






### **Biparental Inheritance of Mitochondrial DNA** in Humans **PNAS**


Shiyu Luo<sup>s,b</sup>, C. Alexander Valencia<sup>a,1</sup>, Jinglan Zhang<sup>c</sup>, Ni-Chung Lee<sup>d</sup>, Jesse Slone<sup>a</sup>, Baoheng Gui<sup>a,b</sup>, Xinjian Wang<sup>a</sup>, Zhuo Li<sup>a,2</sup>, Sarah Dell<sup>a</sup>, Jenice Brown<sup>a</sup>, Stella Maris Chen<sup>c</sup>, Yin-Hsiu Chien<sup>d</sup>, Wuh-Liang Hwu<sup>d</sup>, Pi-Chuan Fan<sup>a</sup>, Lee-Jun Wong<sup>4</sup>, Paldeep S. Atwal<sup>1,3</sup>, and Taosheng Huang<sup>3,3,4</sup>

7

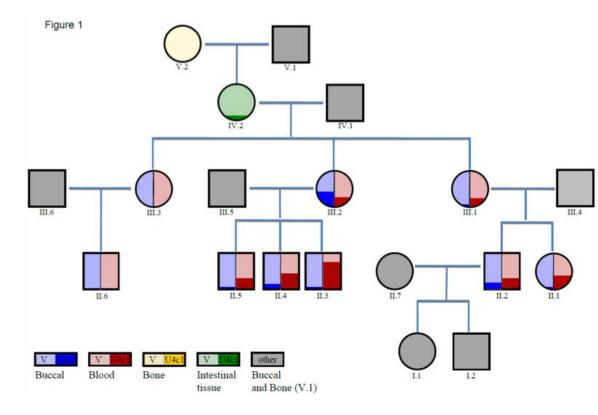
'Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; <sup>b</sup>Maternal and Child Health Hospital of Guanoxi Zhuang Autonomous Region, Nanning, 530003 Guangxi, China; <sup>3</sup>Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030. Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 100 Taiper, Taiwan: "Department of Pediatrics, National Taiwan University Hospital, 100 Taipei, Taiwar; and 'Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic Hospital, Jacksonville, FL 32224

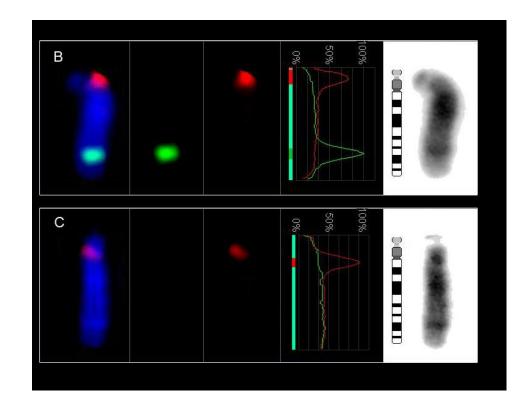
Edited by Douglas C. Wallace, Children's Hospital of Philadelphia and University of Philadelphia, Philadelphia, PA, and approved October 29, 2018 (received for review June 26, 2018)

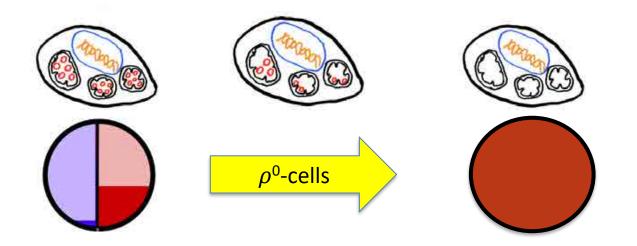




### "Mega-NUMTs"


**Balciuniene 2019** 


No further evidence for paternal leakage of


mitochondrial DNA in humans yet

Sabine Lutz-Bonengel<sup>a,b</sup> and Walther Parson<sup>c,d,1</sup>









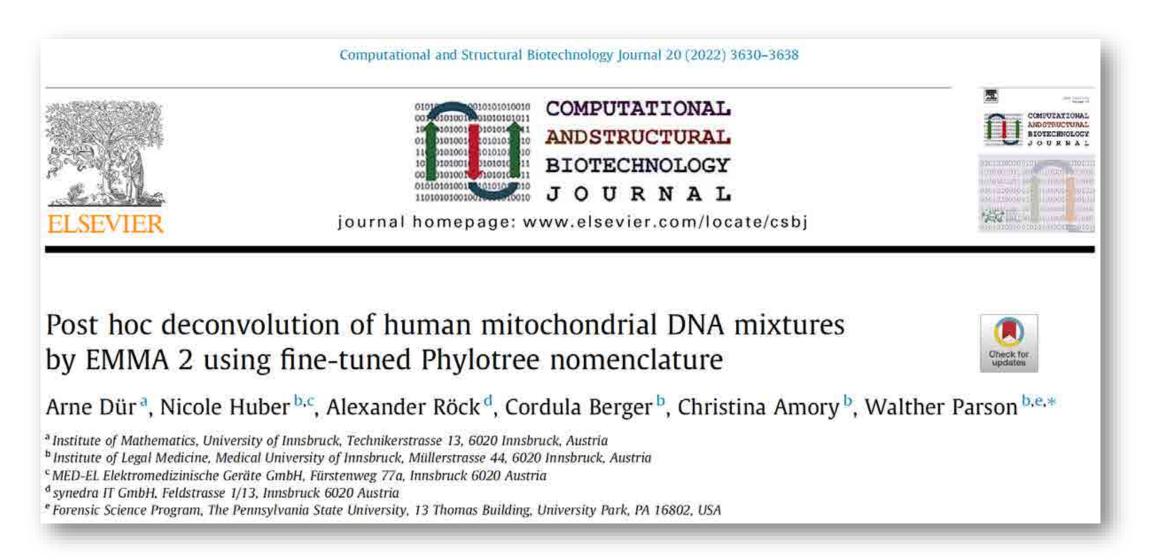
### qPCR and ddPCR ca. 50 mitogenome copies/cell

Lutz-Bonengel et al 2021



### mtDNA publications (2019-2022)

#### **EMPOP** engine/software

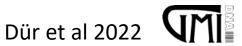

Dür, A. *et al.* (2022) 'Post hoc deconvolution of human mitochondrial DNA mixtures by EMMA 2 using fine-tuned Phylotree nomenclature', *Computational and Structural Biotechnology Journal*, 20, pp. 3630–3638.

Dür, A., Huber, N. and Parson, W. (2021) 'Fine-Tuning Phylogenetic Alignment and Haplogrouping of mtDNA Sequences', *International Journal of Molecular Sciences*, 22(11), p. 5747.

Parson, W., Marshall, C., et al. (2020) 'Pathogenic Variant Filtering for Mitochondrial Genome Haplotype Reporting', Genes

Roth, C. *et al.* (2019) 'MVC: an integrated mitochondrial variant caller for forensics', *Australian Journal of Forensic Sciences*, 51(sup1), pp. S52–S55.








Splitting of sequences more complex than deconvoluting fragment sizes Previous attempts rely on MPS data (quantitative, phased data) Software scarce, e.g. MMDIT (Mandape et al 2021; github)

### EMMA 2

Database of 6380 mitogenomes for 5435 haplogroup motifs Q=Q<sub>1</sub>&Q<sub>2</sub>&...&Q<sub>k</sub> (currently up to 3 contributor mixtures) Differences between Q and haplogroup motifs are quantified by costs Costs = sum of LLRs of fluctuation rates at each mtDNA position (Röck et al 2013) Output is graded by clustering costs and corresponding haplogroups



#### Random mitogenome mixtures (1000 two contributors; 100 three contributors)

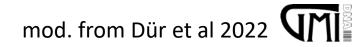
### Table 2Artificial mixtures deconvolved.

|                                                               | 2 components                   | 3 components              |
|---------------------------------------------------------------|--------------------------------|---------------------------|
| covered by rank 1 combinations covered by rank 2 combinations | 997/1000 (99.7%)<br>3/3 (100%) | 95/100 (95%)<br>4/5 (80%) |

#### GEDNAP mixtures (with know contributors)



#### Q GEDNAP 36 S4


CR: 16093Y 16224Y 16256Y 16311Y 16352Y 16519Y 73R 152Y 263G 309.1C 315.1C 497Y

| # contributors | Costs     | Haplogroups (MRCA) |
|----------------|-----------|--------------------|
| 1              | 3.12-3.61 | R                  |
| 2              | 0.80-1.29 | H&K1a              |
| 3              | 1.20-1.70 | R&R0&K1a           |

#### **True components**

Q1: 16093C 16224C 16311C 16519C 73G 263G 315.1C 497T (hg K1a)

Q2: 16256T 16352C 152C 263G 309.1C 315.1C (hg H14a)



### Deconvolution of mtDNA mixtures with EMMA 2

Splitting is fast and does not require raw data (Sanger, MPS) Identify up to 3 contributor mixtures in less than an hour (conventional PC) Can also be used to identify NUMTs (Dür et al in preparation)

### Limitations

Private mutations may be diagnostic for other haplogroups



### **EMPOP training**

ISFG Summer School, Online, Jul 20-30 2021



#### 





### EMPOP training

Dublin, IRE, Mar 29-31 2022







### **EMPOP training**

#### ISFG pre-congress workshop, Aug 29 2022







# MONOPOLY 2016 - STEFA - WP G7

Empowering forensic genetic DNA databases for the interpretation of next generation sequencing profiles (dna.bases)

Co-funded by the Internal Security Fund of the European Union

STRIDER & EmPOP

Jan 2018 - Dec 2019

**STRidER** 

Sequence alignments Increase sample size Increase markers/regions Further develop QC tools User-friendly access



# dna.bases EMPOP

# **ISFG Update**



EDNAP Innsbruck 2018



EDNAP Santiago 2015



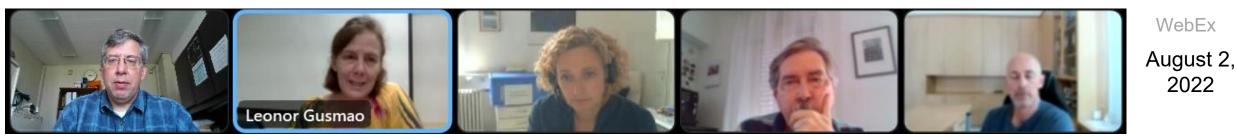


| Peter | Schneider |
|-------|-----------|
| 199   | 55-2022   |

President: John Butler, Gaithersburg • Vice President: Walther Parson, Innsbruck • Secretary: Peter M. Schneider, Cologie Treasurer: Marielle Vennemann, Münster • Representative of the Working Parties: Leonor Gusmão, Rio de Janeiro

# Achievements and Activities 2019-2022

- Moving to Regular Virtual Executive Board Meetings
- Newsletters and Website
- Conference Proceedings from Prague
- Virtual Summer School 2021
- DNA Commission publications
- FSI Genetics Impact Factor (Loss and Restoration)
- Forensic Databasing Advisory Board (FDAB)
- Prize Winners
- Future Meetings


### **Executive Board Meetings:** Mostly Virtual Now and More Often



September 14, 2021

WebEx

2022



#### Virtual Meetings since ISFG 2019 in Prague:

**2019** (1): November 21

2020 (5): May 13, July 10, September 3, October 15, November 11

2021 (10): January 20, February 2, February 15, March 10, May 5, July 9, September 14, October 6 (FDAB), November 10, December 9 (FDAB), December 15

**2022** (8): March 2, April 27, April 28, June 22, July 12, July 21 (FDAB), August 2, August 28

### **Newsletters Published to Inform ISFG Members**



cc JM Butler

# **ISFG Update Published in FSI Genetics**



- 1. President's message
- 2. ISFG 2021 moved to 2022
- 3. Virtual ISFG Summer School in 2021
- 4. DNA-TrAC keeping track of DNA transfer
- 5. Forensic Practitioner's Guide to the Interpretation of Complex DNA Profiles
- 6. Recommendations published from Italian Working Group



Supplement The 28th Congress of the International Society for Forensic Genetics Prague

Guest Editors: Mechthild Prinz, John M. Butler and Jiri Drabek





FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES

# **ISFG 2019 Proceedings**

- Published in December 2019
- FSI Genetics Supplement Series, Volume 7
- 914 pages freely available online
- <u>https://www.fsigeneticssup.com/current</u>
- 347 articles + 1 editorial + 1 corrigendum

## **Abstract Selection Meeting – April 27-28, 2022**



Reviewed 415 abstracts

#### Selected:

- 49 orals
- 12 session chairs
- 307 posters
- We rejected 73 due to multiple submissions from the same author

An additional 45 did not register and therefore were removed

# **ISFG Virtual Summer School 2021**



| WS    | Title                                                                  | Speakers                                        |
|-------|------------------------------------------------------------------------|-------------------------------------------------|
| WS1   | Evaluative reporting for contact traces/Activity level reporting       | Lydie Samie-Foucart & Tacha Hicks               |
| WS 2  | NGS Bioinformatics 101 (STRait Razor, FDSTools)                        | Jonathan King & Jerry Hoogenboom                |
| W\$ 3 | Advanced DNA mixture interpretation                                    | Peter Gill, Corina Benschop, Oyvind Bleka       |
| WS 4  | Perform BGA analyses and how to interpret them                         | Chris Phillips, Walther Parson, Peter Schneider |
| WS S  | Inference of relationships – from Basic to Advanced Kinship Statistics | Daniel Kling & Andreas Tillmar                  |
| WS 6  | Statistical Genetics                                                   | Bruce Weir & Sanne Aalbers                      |
| WS 7  | Pedigree Analysis in R                                                 | Thore Egeland & Magnus Vigeland                 |



#### Organized by Cíntia Alves

- 279 people registered for 532 participations from all over the world for these seven courses
- Recordings were later watched by 68 people from August to December 2021 for a total of 137 workshop view requests

# **Educational Materials in Multiple Languages**

1



| German |  |
|--------|--|
|        |  |

Spanish

Portuguese

translation in preparation approx. EUR 10,000/translation

other languages to be considered?



#### **Polish and Spanish** versions completed

German, Italian, and Portuguese versions in preparation

https://senseaboutscience.org/activities/making-sense-of-forensic-genetics/

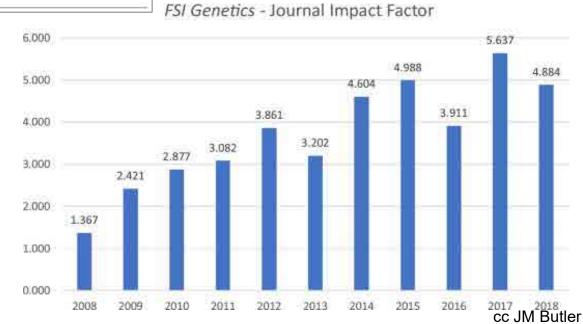
# **ISFG DNA Commissions**

Publications since 2019

- 1. Activity level propositions (Gill & Hicks et al. 2020)
- 2. Y-STR interpretation (Roewer et al. 2020)

#### On-Going Efforts (meeting virtually)

- STR Nomenclature (Chair: Katherine Gettings, NIST)
- Phenotyping (Chair: Manfred Kayser, Erasmus Medical University)

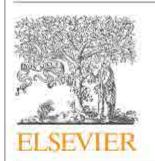

#### Discussion on Impact Factor Suppression for FSI Genetics in 2020

|           | Forensic Science International: Genetics 48 (2020) 102357 |          |                        |
|-----------|-----------------------------------------------------------|----------|------------------------|
|           | Contents lists available at ScienceDirect                 | * FSI    | Table 1<br>Self citati |
|           | Forensic Science International: Genetics                  | GENETICS | Year<br>2014           |
| ELSEVIER  | journal homepage: www.elsevier.com/locate/fsigen          |          | 2015<br>2016<br>2017   |
| Editorial |                                                           |          | 2018<br>2019           |

On the suppression of Forensic Science International: Genetics from the 2019 Journal Citations Report

Angel Carracedo (Editor-in-Chief, Forensic Science International: Genetics)  $\stackrel{>}{\sim}$   $\stackrel{\boxtimes}{\rightarrow}$ , John M. Butler (President, International Society for Forensic Genetics)  $\stackrel{\boxtimes}{\rightarrow}$ , Leonor Gusmao (Associate Editor, Forensic Science International: Genetics and Representative for All Working Parties, International Society for Forensic Genetics)  $\stackrel{\boxtimes}{\rightarrow}$ , Adrian Linacre (Associate Editor, Forensic Science International: Genetics)  $\stackrel{\boxtimes}{\rightarrow}$ , Walther Parson (Associate Editor, Forensic Science International: Genetics)  $\stackrel{\boxtimes}{\rightarrow}$ , Walther Parson (Associate Editor, Forensic Science International: Genetics)  $\stackrel{\boxtimes}{\rightarrow}$ , Peter M. Schneider (Associate Editor, Forensic Science International: Genetics and Secretary, International Society for Forensic Genetics)  $\stackrel{\boxtimes}{\rightarrow}$ , Peter M. Vallone (Associate Editor, Forensic Science International: Genetics)  $\stackrel{\boxtimes}{\rightarrow}$ , Marielle Vennemann (Treasurer, International Society for Forensic Genetics)  $\stackrel{\boxtimes}{\rightarrow}$ 

| Self citations vs. total citations, FSI Genetics 2014-2019. |       |            |             |        |  |
|-------------------------------------------------------------|-------|------------|-------------|--------|--|
| Year                                                        | IF    | Self cites | Total cites | % Self |  |
| 2014                                                        | 4.604 | 552        | 999         | 55.3%  |  |
| 2015                                                        | 4.988 | 779        | 1272        | 61.2%  |  |
| 2016                                                        | 3.911 | 616        | 1232        | 50.0%  |  |
| 2017                                                        | 5.637 | 781        | 1629        | 47.9%  |  |
| 2018                                                        | 4.884 | 654        | 1348        | 48.5%  |  |
| 2019                                                        | n/a   | n/a        | n/a         | 45.0 % |  |




### **Response to FSI Genetics Impact Factor Clarivate Suppression in 2020**

- Thank you to members of the ISFG Working Groups who provided letters of support
  - GHEP-ISFG manifest and petition (August 26, 2020)
  - Korean Speaking Working Group (August 2020)
  - Polish Speaking Working Group (August 25, 2020)
  - German Speaking Working Group (August 31, 2020)
  - Italian Speaking Working Group (September 2, 2020)
  - Spanish & Portuguese Speaking Working Group (September 3, 2020)
  - French Speaking Working Group (September 9, 2020)
- German Society of Legal Medicine (September 15, 2020)
- ENFSI DNA Working Group (October 26, 2020)

#### https://www.isfg.org/Clarivate+suppression

Journal Impact Factor was restored in June 2021: **4.882**  Forensic Science International: Genetics 48 (2020) 102299



Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsigen

# Ethical publication of research on genetics and genomics of biological material: guidelines and recommendations

Maria Eugenia D'Amato<sup>a,\*</sup>, Martin Bodner<sup>b</sup>, John M. Butler<sup>c</sup>, Leonor Gusmão<sup>d</sup>, Adrian Linacre<sup>e</sup>, Walther Parson<sup>b,f</sup>, Peter M. Schneider<sup>8</sup>, Peter Vallone<sup>c</sup>, Angel Carracedo<sup>h</sup>

<sup>a</sup> Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, South Africa

<sup>b</sup> Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria

<sup>c</sup> National Institute of Standards and Technology, Gaithersburg, MD, USA

- <sup>d</sup> DNA Diagnostic Laboratory, State University of Rio de Janeiro, Brazil
- <sup>e</sup> Flinders University, College of Science & Engineering, Adelaide, Australia
- <sup>f</sup> Forensic Science Program, The Pennsylvania State University, University Park, PA, USA
- <sup>8</sup> Institute of Legal Medicine, University Clinic and Faculty of Medicine, University of Cologne, Cologne, Germany
- <sup>h</sup> Institute of Forensic Sciences, Genomic Medicine Group-CIBERER, University of Santiago de Compostela, Spain



# CRIME-SOLVING DNA DATABASE FACES ETHICAL SCRUTINY

Geneticists say a global Y-chromosome database holds profiles from men who are unlikely to have given free informed consent. **By Quirin Schiermeier** 

"Judges anywhere in the world rely on robust forensic data. Excluding data from minority groups could bias statistical evaluations in forensic reports – to their disadvantage."

the inhabitants of Kollum, a small village in the Netherlands. A local 16-year-old girl was found raped and murdered in a field nearby, and some people said that Iraqi or Afghan residents at an asylum seekers' centre in the village could be to blame. Tensions rose: a fight broke out at case unsolved, the public prosecutor turned to a newly launched research database containing Y-chromosome profiles from men across the world. When forensic scientists compared DNA from semen collected at the crime scene with profiles stored in this Y-chromosome Haplotype Reference Database (YHRD) and elsewhere, they found that the murderer was very probably of northwestern European descent, showing that the villagers' assumptions were unfounded. The discovery helped to calm social tensions – although the case was not solved for many years until, with the aid of more DNA work, a local farmer was found guilty.

The YHRD, which was first released online in 2000, is now widely used across the world to help solve sex crimes and settle paternity cases. Holding more than 300,000 anonymous Y-chromosome profiles, it shows how particular genetic markers are fingerprints of male lineages in more than 1,300 distinct global populations. It can point to the likely geographic origin of mystery males, as in the Kollum case, but is now more often relied on to calculate the weight of evidence against a male suspect whose Y-chromosome DNA profile matches traces found at a crime scene. Although the YHRD is a research database, scientists both from academia and crime laboratories have uploaded data to it, and it has become a key tool for prosecutors and defence lawyers.

"The YHRD is absolutely essential for suspects anywhere in the world to get a fair chance in court," says <u>Walther Parson</u>, a forensic geneticist at Innsbruck Medical University in Austria, and the vice-president of the International Society for Forensic Genetics (ISFG).

But some European geneticists say that the

#### Y-chromosome Haplotype Reference Database https://yhrd.org/

...it asks for, but doesn't verify, consent or ethical approval Concerns have been raised about DNA samples taken from Chinese ethnic minorities without informed consent

The **ISFG** is now setting up an oversight board to examine cases in which consent is unclear

#### An article in Nature June 2021

# **Supporting Forensic Population Databases**

- The Board has met several times with Sascha Willuweit and Lutz Roewer regarding YHRD as well as with EMPOP (Walther Parson) and STRidER (Martin Bodner) database managers
- A Forensic Databasing Advisory Board (FDAB) has been created (as described in our latest newsletter) and the Board has reviewed their initial draft of recommendations (Eugenia D'Amato will speak later in this program)
- An LLC (Limited Liability Company) is a required instrument for ISFG to be able to carry the database work forward, and the Board has met with a legal consultant to explore how this action might be pursued



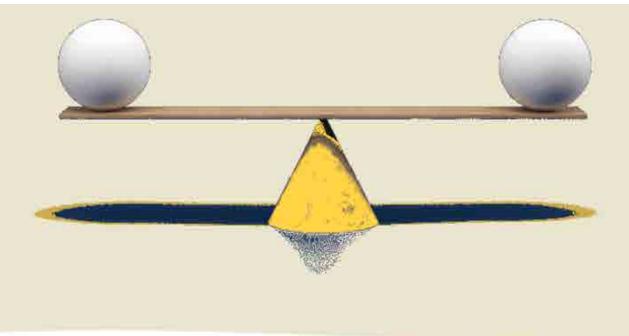
challenged over ethics of DNA holdings https://www.nature.com/articles/d41586-021-01584-w

9 July 2021 Board meeting discussing creating the Forensic Databasing Advisory Board (FDAB)

### FDAB BOARD MEMBERS



#### Draft guidelines for the forensic community and curators of the Forensic Genetic Frequency Databases\* ('FGFD')


#### Assessment of:

FDAB

MANDATE

- · Law enforcement processes and ethics
- Minorities/vulnerable populations
- Legacy data/samples
- Data sensitivity/privacy
- Data protection
- Custody of the FGFD\*

\*YHRD, EMPOP and STRidER



### Risk-Benefit Evaluation

The evaluation of the content of the FGFD was categorized in terms of **High**, **Medium** or **Low** risk of having contravened ethical principles

- Criteria:
  - Submitter categories
  - Sample categories
  - Temporal categories



Dissemination of first report: online ISFG site



Online workshop-meeting: feedback (2022-23?)

#### œ**₽**₽

Publication of the first report (submission 2022)



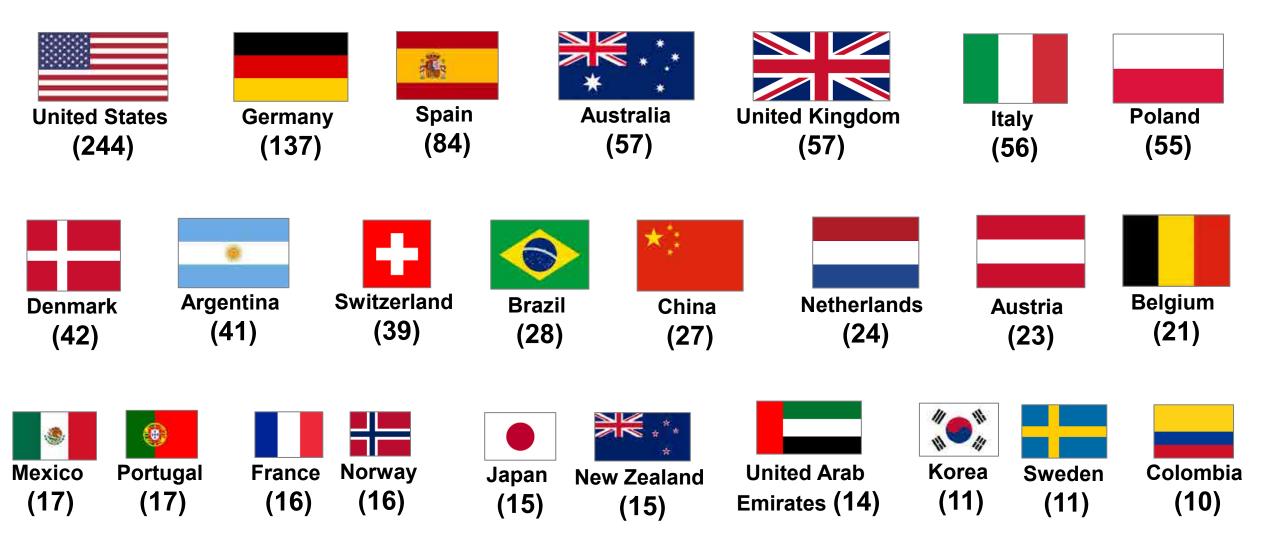
Work in progress: ISFG meeting 2024

## **NEXT STEPS**

# **Expand the ISFG Executive Board**

<u>Currently</u>

- 1. President
- 2. Past-president (VP)
- 3. Secretary
- 4. Treasurer
- 5. Representative of the Working Parties
- 6. Representative for Training and Education
- 7. Operational Manager for ISFG Interests (future LLC)


- Increase Executive Board by 2 members
  - Representative for Training and Education Corina Benschop
  - Operational Manager for ISFG Interests (LLC) PM Schneider
- New Representative WP Lourdes Prieto
- Use committees to accomplish more
  - Scientific Prize Committee (organized by VP Walther Parson)
  - Best Oral Presentation Review Committee
  - Best Poster Presentation Review Committee
- Need to change society statutes to expand the Board
  - will be discussed and voted on later in this meeting

### **ISFG Membership** 1217 members from 77 countries (as of 8 July 2022)



# **ISFG Membership Ranked by Country (Top 25)**

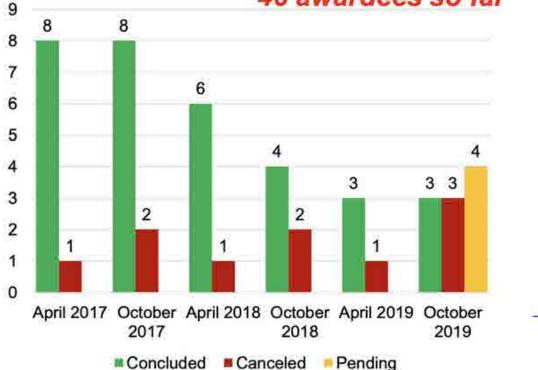
1217 members from 77 countries (as of 8 July 2022)



# Working Group Report (by Leonor Gusmão)

Due to the pandemic, most activities slow down and scientific meeting were cancelled during 2022

| Working Group                       | Working Group Chair (Location)    | Recent Activities                                                                                                                                  |  |  |  |
|-------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| German                              | Uta-Dorothee Immel (Mainz)        | Virtual Meeting in June 2021; Casework Workshop ISFG/UFG in May/June<br>(virtual); Meeting in June 2022 (Halle an der Saale)                       |  |  |  |
| English (ESWG-ISFG)                 | Andreas Tillmar (Linköping)       | Virtual Meeting in October 2021; Meeting in Washington 2022; active<br>proficiency testing program on relationship testing                         |  |  |  |
| French                              | Christel Roudaut (Bordeaux)       | Virtual Meeting in May 2021 and in June 2022; Meeting in Washington 2022                                                                           |  |  |  |
| Italian (Ge.F.I.)                   | Loredana Buscemi (Ancona)         | Virtual workshops in October 2020 and in April/May 2022; Meeting in Washington 2022                                                                |  |  |  |
| Spanish & Portuguese<br>(GHEP-ISFG) | Leonor Gusmão<br>(Rio de Janeiro) | Virtual Meeting in December 2020 and in October 2021; Meeting in Washington 2022; published 2 articles since 2019; active proficiency test program |  |  |  |
| Chinese                             | Yiping Hou (Sichuan)              | Meeting in Washington 2022                                                                                                                         |  |  |  |
| Korean                              | Kyoung-Jin Shin (Seoul)           | Virtual scientific meetings in May 2020 and in November 2021; Meeting in Washington 2022                                                           |  |  |  |
| Polish                              | Tomasz Kupiec (Krakow)            | Virtual Meeting in November 2021; Meeting in Washington 2022; published 2 articles since 2019                                                      |  |  |  |
| Arabian                             | Rashed Alghafri (Dubai)           | Virtual Meeting in April 2021; Meeting in Washington 2022                                                                                          |  |  |  |
| CaDNAP                              | Cordula Berger (Innsbruck)        | Organizing bi-annual proficiency tests for canine DNA genotyping                                                                                   |  |  |  |


### **Short-Term Fellowship Awardees**

- Purpose: To support transnational exchange visits between collaborating research groups for specific projects related to forensic genetics
- · For Terms of Reference, see
  - https://www.isfg.org/files/ISFG Fellowships Nov2016.pdf
- Announcement was made via the November 2016 ISFG newsletter
- Financial support for travel and accommodations for up to 1000 euros (within continent) and 2000 euros (between continents)
- Selection committee include the Working Group chairs and is chaired by the representative of the ISFG Working Groups
- Application rounds: (1) April 2017, (2) October 2017, (3) April 2018, (4) October 2018, (5) April 2019, (6) October 2019 see
  - https://www.isfg.org/Members+Area/Short+Term+Fellowships

#### Due to the COVID-19 pandemic, the fellowship program has been suspended

### **ISFG Short-Term Fellowship Awardees**

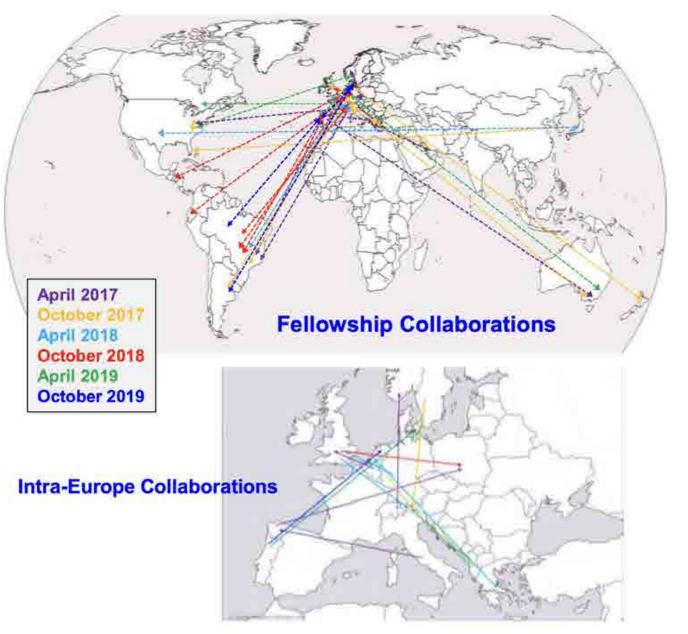
#### Can fund up to 10 awardees per competition



#### 46 awardees so far

32 concluded so far

| * | Paroira                                                         | University of<br>Copenhagen<br>(Denmark)                                        | DNA Diagnostic<br>Laboratory, State<br>University of Rio de<br>Janeiro (Brazil)                                                                                                                                                                                         | estima<br>explor                                                                                                                                                                              | sing differences between ancestry<br>ites with different marker sets and<br>ing Y-chromosomal diversity in<br>America |            |
|---|-----------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------|
|   |                                                                 | Aalborg University<br>(Denmark)                                                 | University of<br>Santiago de<br>Compostela (Spain)                                                                                                                                                                                                                      | questi                                                                                                                                                                                        | on ancestry related research<br>ons involving both statistical<br>s and informative markers                           | Canceled   |
| * |                                                                 | University of Leicester<br>(UK)                                                 | Norwegtan<br>University of Life<br>Sciences (Norway)                                                                                                                                                                                                                    | Exploring the potential of massively<br>parallel sequencing (MPS) forensic<br>multiplexes and genome-wide SNP data<br>in relationship estimation with<br>simulations and with real-world data |                                                                                                                       |            |
| * | Sturk-                                                          | Arried Forces DNA<br>Identification<br>Laboratory (USA)                         | Medical University<br>of Innstruck<br>(Austria)                                                                                                                                                                                                                         | Perform mIDNA phylogenetic analyses<br>on approximately 2000 mtGenomes<br>using EMPOP database and software                                                                                   |                                                                                                                       |            |
|   | Byron Freire                                                    | Universidad de Las<br>Américas, Quito<br>(Equador)                              | University of<br>Copenhagen<br>(Denmark)                                                                                                                                                                                                                                | Gain experience regarding human<br>identification techniques, sample and<br>data management.                                                                                                  |                                                                                                                       | Canceled   |
|   | Franco                                                          | Banco Nacional de<br>Datos Geneficos<br>(Argentina)                             | Evaluation of the statistical power of<br>DNA-based identification of family<br>groups in their database, which was<br>University of Life developed to find the missing<br>grandchildren of Argentina, and to take a<br>course being taught in Oslo during his<br>visit |                                                                                                                                                                                               | BESTRopo                                                                                                              |            |
| * | Masinda<br>Nguidi                                               | DNA Diagnostic<br>Laboratory, State<br>University of Rio de<br>Janeiro (Brazil) | Medical University<br>of Innsbruck<br>(Austria)                                                                                                                                                                                                                         | techno                                                                                                                                                                                        | e knowledge and training in MPS<br>ology and analyze mtDNA data<br>tree Nigerian population groups                    |            |
|   | Brunelli                                                        | Universidade Estadual<br>Júlio de Mesquita<br>Filho (Brazil)                    | IPATIMUP Study Y-STR mutations in father-son<br>(Portugal) dvos                                                                                                                                                                                                         |                                                                                                                                                                                               | Canceled                                                                                                              |            |
| 1 | Postpone                                                        | d to 2023                                                                       |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                               |                                                                                                                       |            |
|   | ISFG Short To                                                   | erm Fellowhips awa                                                              | orded in 2021                                                                                                                                                                                                                                                           |                                                                                                                                                                                               |                                                                                                                       |            |
|   | Recipient                                                       | Coming from                                                                     | Visiting at                                                                                                                                                                                                                                                             |                                                                                                                                                                                               | Topic                                                                                                                 | Report     |
|   | Jorge Ruiz Universidade de<br>Ramirez Santiago de<br>Compostela |                                                                                 | International<br>Commision on N<br>Persons                                                                                                                                                                                                                              | Commision on Missing the Identification                                                                                                                                                       |                                                                                                                       | 112 Report |
|   | Julyana da Silv                                                 | A Universidade do<br>Estado do Río de                                           | IPATIMUP (Part                                                                                                                                                                                                                                                          | lgal).                                                                                                                                                                                        | Y chromosomal lineages in                                                                                             | HIT Raport |


South America

Janeiro

Varela Ribeiro

#### cc JM Butler

### **ISFG Short-Term Fellowship Awardees**



#### The board decided to resume the fellowship program

Call for the next year travels:

- Applications to be submitted between
   October 1 to November 15, 2022
- ✓ 10 fellowships up to EUR 1,000 for visits within the same continent, and up to EUR 2,000 for visits from continent to continent
- ✓ Deadline for use (travels in 2023)

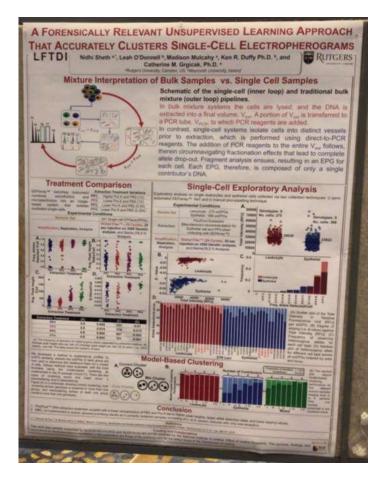
# Welcome to Washington, D.C.

by President George Washington @

151 (10022

WASHINGTON, DC ISFG 2022 INTERNATIONAL SOCIETY FOR FORENSIC GENETICS

## **Comparison to Previous ISFG Meetings**


|                                                  | Washington DC<br>(29 <sup>th</sup> Congress)   | Prague<br>(28 <sup>th</sup> Congress) | Seoul<br>(27 <sup>th</sup> Congress) | Krakow<br>(26 <sup>th</sup> Congress) |
|--------------------------------------------------|------------------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|
| Registered<br>Participants                       | 783                                            | 1017                                  | 705                                  | 750                                   |
| Countries                                        | 49                                             | 64                                    | 68                                   | 69                                    |
| Top Country<br>(# Participating)                 | United States<br>( <mark>365 attended</mark> ) | Germany<br>(105 attended)             | South Korea<br>(>100 attended)       | United States (~115 attended)         |
| Submitted Abstracts                              | 415                                            | 753                                   | 535                                  | 480                                   |
| Oral Presentations                               | 62                                             | 67                                    | 57                                   | 57                                    |
| Poster Presentations                             | 262 Only 1 pe                                  | r 637                                 | 478                                  | 423                                   |
| Workshops                                        | 16                                             | 14                                    | 11                                   | 10                                    |
| Conference Proceedings<br>FSI Genetics Suppl Ser | v8 ( <mark>???</mark> articles)<br><560 pages  | v7 (347 articles)<br>914 pages        | v6 (236 articles)<br>612 pages       | v5 (265 articles)<br>679 pages        |

Thank you to all workshop, oral, and poster presenters! You are the "giants" on whose shoulders we stand to see further

# **ISFG 2022 Travel Award Winners**



# **ISFG Prize for best poster presentation**





P194 A forensically relevant unsupervised learning approach that accurately clusters singlecell electropherograms Nidhi C. Sheth\*, Leah O'Donnell, Madison M. Mulcahy, Ken R. Duffy, Catherine M.

Grgicak \*Rutgers University

# **ISFG Prize for best oral presentation**





O-06 A novel rotationally-driven microfluidic approach for forensic epigenetic sample preparation for human chronological age determination Rachelle Turiello\*, Leah M. Dignan, Logan Cunningham, Soumil Madhiwala, James P. Landers \*University of Virginia

# **Previous Honorary ISFG Members**

- 1. E. Essen-Möller (Germany)
- 2. P. Dahr (Germany)
- 3. E. Krah (Germany)
- 4. M. Krüpe (Germany)
- 5. W. Zimmermann (Germany)
- 6. J.-J. van Loghem (The Netherlands)
- 7. F. Levine (USA)
- 8. R.R. Race (UK)
- 9. R. Sanger (UK)
- 10. O. Prokop (Germany)
- 11. H. Leithoff (Germany)
- 12. K. Hummel (Germany)
- 13. B. Dodd (UK)
- 14. E. van Loghem (The Netherlands)
- 15. M. Pereira (UK)

- 16. E. Schwarzfischer (Germany)
- 17. C.P. Engelfriet (The Netherlands)
- 18. K. Henningsen (Denmark)
- 19. A.G. Gathof (Germany)
- 20. H.H. Hoppe (Germany)
- 21. W. Spielmann (Germany)
- 22. D.A. Hopkinson (UK)
- 23. H. Matsumoto (Japan)
- 24. A. Arndt-Hanser (Germany)
- 25. R. Bütler (Germany)
- 26. Alec Jeffreys (UK)
- 27. A. Fiori (Italy)
- 28. E. Villanueva (Spain)
- 29. P.J. Lincoln (UK)
- 30. C. Rittner (Germany)

- 31. B. Brinkmann (Germany)
- s) 32. B. Olaisen (Norway)
  - 33. W. Bär (Switzerland)
  - 34. J. Gómez Fernández (Spain)
  - 35. Wolfgang Mayr (Austria)
  - 36. George Sensabaugh (USA)
  - 37. Liu Yacheng (China)
  - 38. Ate Kloosterman (The Netherlands)
  - 39. Hermann Schmitter (Germany)

#### Proposed 2022 Additions

Antonio Amorim (Portugal) Bruce Budowle (USA) Daniel Corach (Argentina) Ken Kidd (USA) Niels Morling (Denmark)

# **Previous Honorary ISFG Members**



#### Proposed 2022 Additions

Antonio Amorim (Portugal) Bruce Budowle (USA) Daniel Corach (Argentina) Ken Kidd (USA) Niels Morling (Denmark)

# **Previous ISFG Scientific Prize Winners**

- 1987 Wolfgang Dahr (Germany)
- 1989 Manfred Hochmeister (Switzerland)
- 1997 Antti Sajantila (Finland)
- 1997 Colin Kimpton & UK National DNA Database Group (England)
- 1999 Lutz Roewer (Germany)
- 2003 John Butler (USA)
- 2005 Walther Parson (Austria)

- 2007 Reinhard Szibor (Germany)
- 2009 Antonio Salas (Spain)
- 2013 Peter Gill (Norway)
- 2015 **Thomas Parsons** (Bosnia & Hercegovina)
- 2017 Manfred Kayser (The Netherlands)
- 2019 Thore Egeland (Norway)
- 2019 Chris Phillips (Spain)
- 2022 Charla Marshall (USA)

# **ISFG Prize for Scientific Excellence**



#### FORENSIC GENETICS



The Biennial Scientific Prize 2022 for outstanding contributions (Scientific Excellence) has been awarded to

#### **Charla Marshall**

for development of forensically-motivated capture-based massively parallel sequencing to aid missing persons identifications with particularly challenging samples.

(John M. Butler)



The Secretary (Peter M. Schneider)

Washington DC, 1<sup>er</sup> September 2022

# **ISFG Award for Lifetime Achievement**



INTERNATIONAL SOCIETY FOR FORENSIC GENETICS



The Biennial Scientific Prize 2022 for outstanding contributions (Lifetime Achievement) has been awarded to

### **Bruce Budowle**

for being a leading contributor to our field for the past 40 years, for pioneering many aspects of DNA analysis, and for sharing his knowledge and enthusiasm with the forensic genetics community from fellow experts to those just starting their careers



The President

(John M. Busler)

The Secretary (Peter M. Schneider)

Washington DC, 1" September 2022

## **30 ISFG Conference 2024**

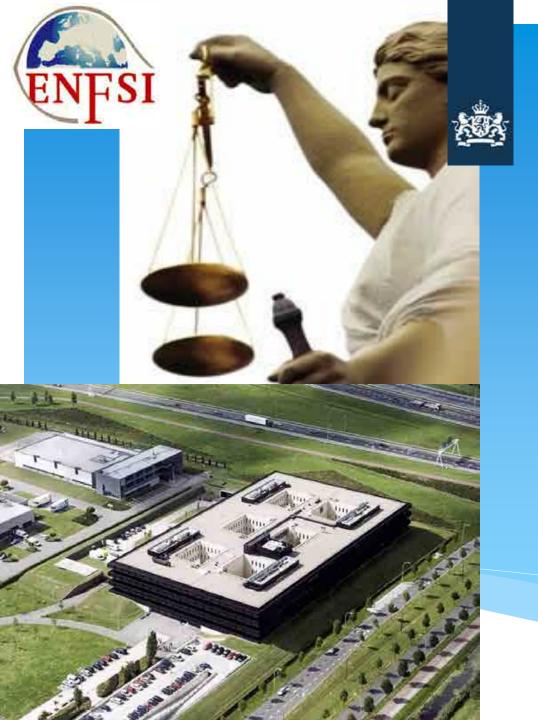




2026 ISFG Congress INTERNATIONAL SOCIETY FOR FORENSIC GENETICS

August 17-21, 2026




# 31 ISFG Conference 2026

https://www.isfg.org/files/ISFG2026\_Montreal\_Bid\_2022.pdf

## Your Research and Efforts Benefit the World



| Gracias     | ありが | とうございる   | ました | ขอบคุ     | t | eşekkür ederim | T I  | akk skal  | du ha    |           |
|-------------|-----|----------|-----|-----------|---|----------------|------|-----------|----------|-----------|
|             |     | 謝謝       | ਤਹਾ | ਡਾ ਧੰਨਵਾਦ |   | Dank je        | ٦    | Terima ka | asih     |           |
| Obrigado    |     |          | Ŭ   |           |   | -              |      | Pa        | ldies    |           |
| Vielen Dank |     | شکرم     | مت  | Than      | k | tak skal du h  | ave  | Mulț      | umesc    |           |
|             |     | ىرىم     | شک  | _         |   | Tack           | Kö   | szönöm    |          |           |
| Merci       |     |          |     | you!      |   | Děkuji         | Sala | mat       | Hvala va | am        |
| Grazie      |     | 1        | شك  | 0         |   | Dankie         | Ki   | itos      | Ači      | ū         |
|             |     | דה –     | IJ  | धन्यवाद   |   | Eskerrik asko  | Ευχ  | αριστώ    | Спаси    | бо        |
| Dziękuję Ci |     | Баярлала | 2   | ;사합니C     | ╞ |                | Cảm  | n ơn bạn  | cc JN    | ∕l Butler |



### Update ENFSI DNA Expert Working Group activities

Sander Kneppers Chair ENFSI DNA Expert Working Group

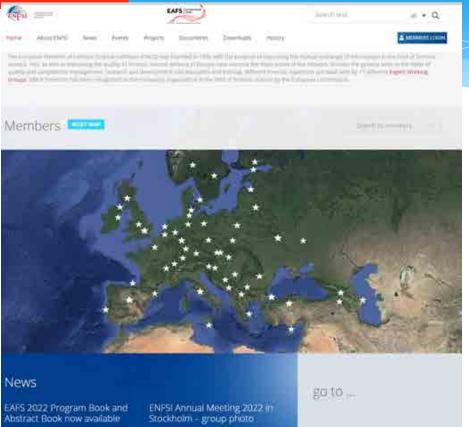
> Netherlands Forensic Institute Division Biological Traces

### **ENFSI IS RECOGNIZED AS A**

# PROMINENT VOICE IN FORENSIC SCIENCE WORLDWIDE BY ENSURING THE QUALITY

### OF DEVELOPMENT AND DELIVERY OF

### FORENSIC SCIENCE SERVICES THROUGHOUT EUROPE






### **71 MEMBERS IN 38 COUNTRIES**



### COMMUNICATION



2. a me 2022 On 1010 - 31th May 2022 Sectimed in

3rd International Scientific and

International Scientific and Disastra Conference "Carried South of Paryons Lagerballing, Contractation,

Practical Conference "Current

soccashi Avenue Meeting based by Tim Halester

Fol-

READ MORE

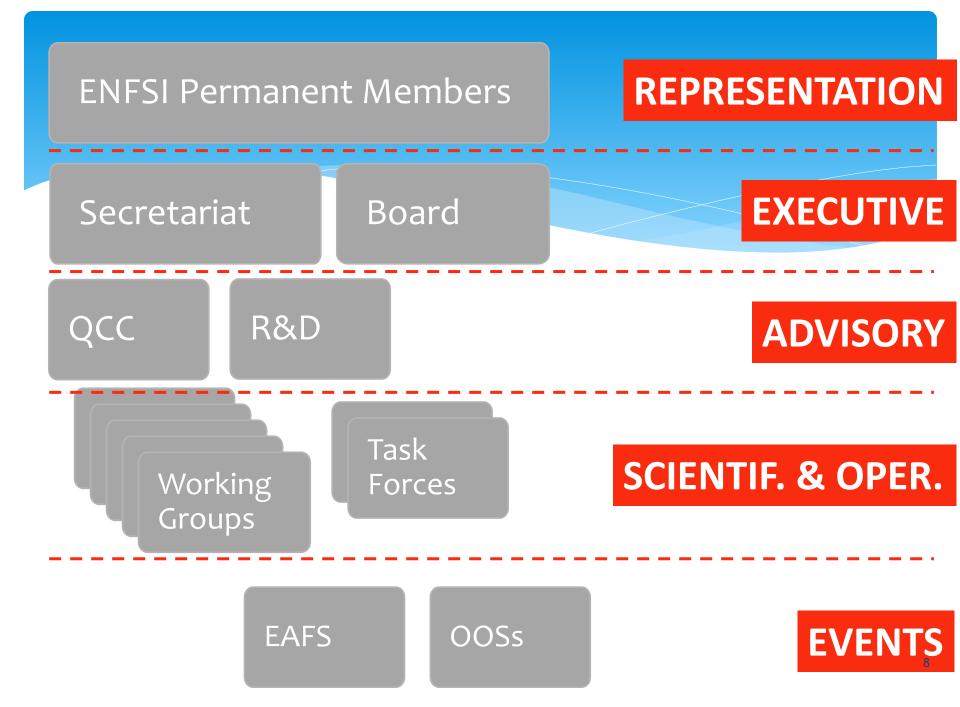
READ MOR

#### i i ann mi

13, July 2007 The INFO 2007 Angrow book on obstact Book are now available. Chick here to descended the Program Book...

#### READ MORE

Statement of ENFSI on the acts of war in Ukraine


#### D 15, MARCH 22

READ MORE



### **EXTERNAL:** <u>WWW.ENFSI.EU</u> <sup>5</sup>







### **SYNERGY IN NETWORKING**



> **1000** Forensic Experts

### **17 WORKING GROUP**,S

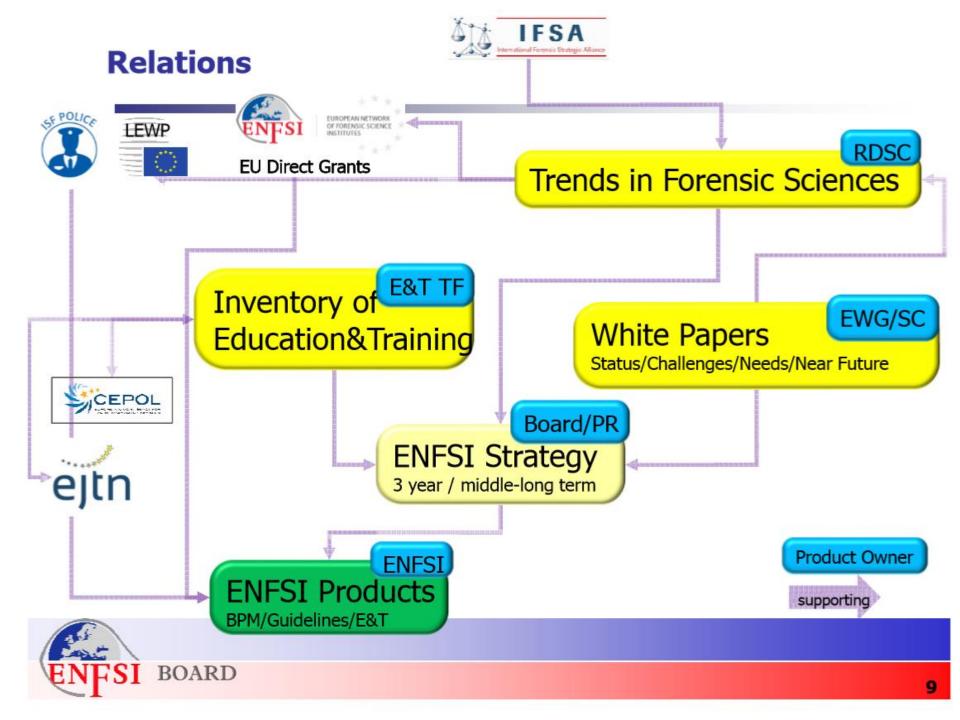
### COMMUNICATION



📇 Sign Out

ENFSI - European Network of Forensic Science Institutes

#### Platforms -


ENFSI - EUROPEAN NETWORK OF FORENSIC SCIE. 5 DNA EWO S Room

| HOME NEWS ORGANISATION WIKI DOCUMENTS MESSAGE FORUM BLOGVANNOUNCEMENTS                                                | USER DIRECTORY ~                                                                               |    |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----|
| Velcome                                                                                                               | Calendar Resources                                                                             |    |
| Expert Working Group DNA                                                                                              | September 2022                                                                                 |    |
| Welcome to the EPE site of the ENFSI Expert Working Group DNA.                                                        | Su Mo Tu We Th Fr                                                                              | Sa |
|                                                                                                                       | 1 2                                                                                            | 3  |
|                                                                                                                       | 4 5 6 7 8 9                                                                                    | 10 |
|                                                                                                                       | 11 12 13 14 15 16                                                                              | 17 |
| For any questions regarding the DNA EWG please contact the chair Sander Kneppers or the secretary Astrid Quak         | 18 19 20 21 22 23                                                                              | 24 |
| If you need some help or information, please send an email to fabrice noel@just.fgov.be                               | 25 26 27 28 29 30                                                                              |    |
| ctivities<br>September 20                                                                                             | <ul> <li>My Calendars</li> <li>(NL) Alexander Kneppers</li> <li>DNA EWG's Calendars</li> </ul> |    |
| (org) Fabrice Noel updated a document, ENFSI Kit, Instrumentation and LIMS inventory list. Download File Go to Folder | <ul> <li>DNA EWG</li> <li>Other Calendars</li> </ul>                                           |    |

### INTERNAL: EPE.EUROPOL.EUROPA.EU

## **Board Members ENFSI**

- \* Christina Bertler Edlund (Chairperson)
- \* Dorijan Kerzan (Treasurer)
- \* Agnieszka Łukomska (Member)
- \* Alexandra André (Member)
- \* Chris Porter (Member)
- \* Aleksandar Ivanovic (Member)
- \* Attila Kuczmann (Member)



# Strategic Plan 2020-2023

- **I** The medium- and long-term trends in forensic science are recognized and a process for development is defined
- **II** Consolidate the interaction with the stakeholders and partners
- **III-** Strengthening the network through professionalization

## Summary of the report 2021

### ENFSI has focused on activities as follows;

- \* Summary of White Papers
- \* Dissemination of project results/information at EAFS 2022
- \* CERTAIN-FORS (EU-funded projects) has started
- \* ENFSI Vision of European Forensic Science Area 2030
  - \* "Improving the Reliability and Validity of Forensic Science and Fostering the Implementation of Emerging Technologies"
- \* Implementation of GDPR-procedure

## Membership DNA working group

\* To have a structure of a working group

- \* One person per laboratory
- Unless active in working group, than an additional person is allowed to attend meetings.

| Number of members in mailing list | 101 |
|-----------------------------------|-----|
| Number of full members            | 51  |
| (institutes):                     |     |
| Number of associated members      | 50  |



## ENFSI DNA Working group Steering Committee

- \* Chair Sander Kneppers NFI, the Netherlands
- \* Vice chair Livia Zatkalikova, Ministry of Interior, Slovakia
- \* Secretary Astrid Quak, NFI, the Netherlands
- Treasurer
   Ingo Bastisch, BKA, Germany
- \* QCLG Heli Autere, Nat. bureau of investigation, Finland
- \* R&D vacant position
- \* E&T Paula di Simone, Italian National Police
- \* Webmaster Fabrice Noël, NICC Belgium
- \* EDNAP Niels Morling, Univ. Copenhagen, Denmark



## DNA working group subgroups

- \* Group A: Quality Assurance
  - \* Stavroulla Xenophontos
  - \* Heli Autere
- \* Group B: DNA Analysis Methods & Interpretation
  - \* Antonio Alonso
  - \* Walther Parson
- \* Group C: DNA Database and Legislation
  - \* Izanda Puncule
  - \* Emilia Lindberg
- \* Group D: Automation & Expert Systems
  - \* Christina Forsberg
  - \* Shazia Khan
- \* Group E: Forensic Biology and casework
  - \* Ricky Ansell
  - \* Arnoud Kal

## Public review of ENFSI documents

- proper, balanced and agreed content of these documents for the target groups (forensic community)
- a transparent and documented, public reviewing process is needed > practicable procedure for public review of ENFSI documents
- \* OSAC requirement that only documents which went through an SDO assessment (standardizing body like ASTM or ISO) will be listed in the OSAC registry

## Documents DNA EWG

#### **Best Practice**

BPM:Human DNA Analysis (concept)

BPM: DNA pattern recognition and comparison

#### Guidance

Quality Assurance Program for DNA Laboratories

Recommended Minimum Criteria for the Validation of Various Aspects of the DNA Profiling Process

Validation of mixture interpretation software

Training of staff

Contamination prevention guidelines

Document on DNA Database Management

#### Surveys and inventory lists:

ENFSI Kit, Instrumentation and LIMS inventory list

Inventory list test pre-examination in use

R&D inventory list

Survey regarding DNA DBs

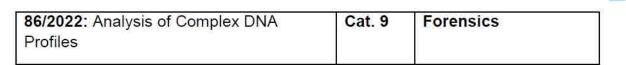


## **Education and Training**

# E&T Liaison Paola Di Simone

- Online ENFSI training course 2020
  - \* DNA Mixture Analysis and Statistical Interpretation
  - \* Corina Benschop, Øyvind Bleka and Peter Gill

### Online ENFSI training course 2021


- \* Kinship statistics using Familias
- \* Teacher: Thore Egeland
- \* December 2021



## **Education and Training**

CEPOL

ANNEX 3 - TRAINING CATALOGUE OF GRANTED ACTIVITIES 2022



| Duration                       | 4 days     |
|--------------------------------|------------|
| Minimum number of participants | 26         |
| Maximum budget                 | EUR 25,000 |

In cooperation with ENFSI - DNA Working Group which may provide experts for the course development.

Trainers: Corina Benschop, Øyvind Bleka and Peter Gill Organizer: Izanda Puncule October 2022 (17<sup>th</sup> to 21<sup>st</sup>) in Riga



## **Education and Training**

### Online ENFSI training course 2022

- \* Kinship statistics using Familias
- \* Teacher: Thore Egeland
- \* 17<sup>th</sup> and 18<sup>th</sup> of November 2022
- \* Information and registration after the meeting



### Monopoly 2018 AFORE (Accreditation of Forensic Laboratories in Europe)

- "Accreditation of Forensic Laboratories in Europe" (AFORE)
  - Accreditation of Scene of Crime Services
  - Training of Forensic Personnel in Accreditation Matters
  - Training of Technical Experts
  - Production of New and/or Updated Best Practice Manuals
    - BPM on Digital Image Authentication
    - BPM on Forensic Examination on Fibres
    - BPM on Forensic Examination of Gunshot Residues
    - BPM on Forensic Handwriting Examination
    - BPM on Forensic Voice Comparison
    - BPM on Human DNA Analysis (Application for funding (40K EUR))
    - BPM on Glass or BPM on Paint

## ENFSI direct grant 2020 ISF-Police

- \* CERTAIN-FORS:
- Competency
- Education
- Research
- Testing
- Accreditation
- Innovation
- .... In Forensic Science

### **Monopoly Projects 2020**

### Selected proposals

| Work Package | Title                                                                                                                                 |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| #1           | Project management, finance management & administration                                                                               |  |
| #2           | UNLOCK - fUNdamentaL fOrensiC Knowledge                                                                                               |  |
| #3           | Development of E Learning Concept Phase 2 – Evaluative Reporting and<br>Interpretation, Textile Damage and Raman Spectroscopy Courses |  |
| #4           | Training and competence assessment for Forensic Handwriting Experts                                                                   |  |
| #5           | Establishment of a Trace DNA Transfer Rate Repository & Bayes Net to Calculate LRs                                                    |  |
| #6           | App Analyses and Reference Database Solution                                                                                          |  |
| #7           | Forensic Multilingual Voices Database                                                                                                 |  |
| #8           | Development of a New PT on the Interpretation of GSR Findings according to ISO 17043 and ISO13528 Demands                             |  |
| #9           | Multidisciplinary Proficiency Test and Collaborative Exercises in Forensics                                                           |  |
| #10          | Benchmarking of Proficiency Tests for the Fingerprint Domain                                                                          |  |
| #11          | Fingerprint WG Best Practice Manual 2nd Edition                                                                                       |  |
| #12          | European Day - Dissemination Event                                                                                                    |  |

#### CERTAIN-FORS

## Horizon 2020

## ENFSI MP2020 Project

Establishment of a Trace DNA Transfer Rate Repository & Bayes Net(s) to Calculate LRs



(Recovery; Activity)

## Horizon 2020 ReAct

- \* Ingo Bastisch (project lead) with core team
- \* 34 participating laboratories
- \* Budget € 295.000
- \* Period January 2022-December 2023

### **Monopoly Project 2020 – WP9**

#### Multidisciplinary Collaborative Exercises Project Leader: Francesco Zampa (RaCIS, Italy)

- EFP-WG (Fingerprints): Helen Bandey (DSTL, UK), Aldo Mattei (RaCIS, Italy) and Andy Becue/Alexandre Anthonioz (UNIL, Switzerland)
- DNA-WG: Livia Zatkalikova (IFS, Slovakia) and Sander Kneppers (NFI ,The Netherlands)
- EDEWG (Documents): Kairi Kriiska-Maivali (FSI, Estonia) and Juergen Bugler (LKA Munich, Germany)
- ENFHEX (Handwriting): Maria Joao Branco (University of Porto, Portugal)
- ETHG (Textile and Hair): Maria Kambosos (BKA, Germany) and Eric Bouzaid (SNPS, France)
- FINEX (Explosives): Matthew Beardah (DSTL, UK)

# Multidisciplinary Collaborative Exercise

• Multidisciplinary Collaborative Exercise 2022

Documents, DNA, Fingerprints and Handwriting

- As a follow up of the MP2016 STEFA project
- 54 laboratories participated

Currently result laboratories under review, report by December 2022

• Multidisciplinary Collaborative Exercise 2023

DNA, Fingerprint, Explosives, Textile/Hair



### FBI Rapid DNA multi-laboratory study

The FBI is planning a multi-laboratory to test Rapid DNA enhancements outlined in the Joint Letter to the Editor in Forensic Science International – Genetics titled :

Rapid DNA for crime scene use: Enhancements and data needed to consider use on forensic evidence for State and National DNA Databasing - An agreed position statement by ENFSI, SWGDAM and the Rapid DNA Crime Scene Technology Advancement Task Group (FSI-Genetics 48 (2020) 102349).

## FBI Rapid DNA multi-laboratory study

- \* main objectives of the study
  - \* to determine the variability between the instruments of the same manufacturer
  - to determine the limitations of the enhanced technology through sensitivity and mixture studies
- \* two current manufacturers of the Rapid technology
  - \* Thermo Fisher Applied Biosystems
  - \* ANDE
- \* The FBI will provide the test samples at no cost.
- \* 6 USA labs and 3 ENFSI labs
- Topic for the Automation and Expert Systems subgroup on Wednesday



## Future grant possibilities

- ISF-P funding program 2021 2025 Direct Grants options for ENFSI
- "Horizon Europe" which is operational 2021-2030



## **DNA EWG meetings**

### Two annual meetings per year

- One virtual meeting
- \* One in person meeting

Local organizers 2022

- \* Sandra Cristina Costa & Paolo Miguel Ferreira
- \* Biology and DNA Laboratory
- \* Laboratório de Polícia Científica | Portuguese Forensic Science Laboratory



## Next meetings

- DNA EWG Steering committee online meetings every two months
- \* 48<sup>th</sup> annual DNA working group meeting and CODIS/EDNAP meetings
  - \* Lisbon week 27<sup>th</sup> September 30<sup>th</sup> September 2022
    - \* 16<sup>th</sup> European CODIS meeting 27<sup>th</sup> September 2022
    - \* 57<sup>th</sup> EDNAP meeting 27<sup>th</sup> September 2022
    - \* 48<sup>th</sup> ENFSI DNA EWG meeting 28<sup>th</sup> to 30<sup>th</sup> September 2022
- Annual ENFSI joint meeting (board/EWG chairs/Standing Committees)
  - \* <sup>29th</sup> November 1<sup>st</sup> December 2022, Bratislava
- \* Annual ENFSI meeting with directors
  - \* 23<sup>rd</sup> May 26<sup>th</sup> May 2023, the Hague
- Next candidates to host the annual DNA working group meeting (and EDNAP/European CODIS meeting)
  - \* 2023 ?
  - \* 2024 -?
- \* EAFS
  - \* 2024/2025?

## 43rd DNA Working Group Meeting 2019

7th-10th May.



UROPEAN NETWORK OF FORENSIC SCIENCE INSTITUTES



# MPSproto: A tool to interpret STR-MPS mixtures with artefacts

#### An **extension of EuroForMix** for modelling MPS stutters with complex structure

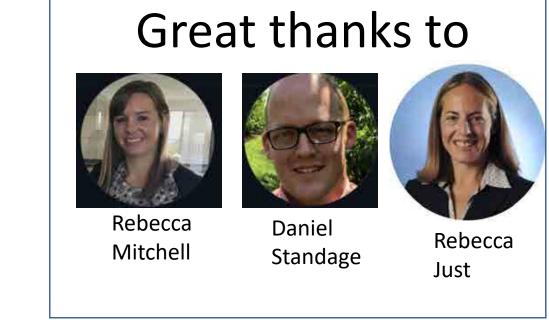
#### Øyvind Bleka(1), Maria Martin Agudo(1), Peter Gill(1,2),

- 1) Forensic Genetics Research Group, Oslo University Hospital, Oslo, Norway
- 2) Department of Clinical Medicine, University of Oslo, Oslo, Norway



# Part I: The MPSproto model(s)

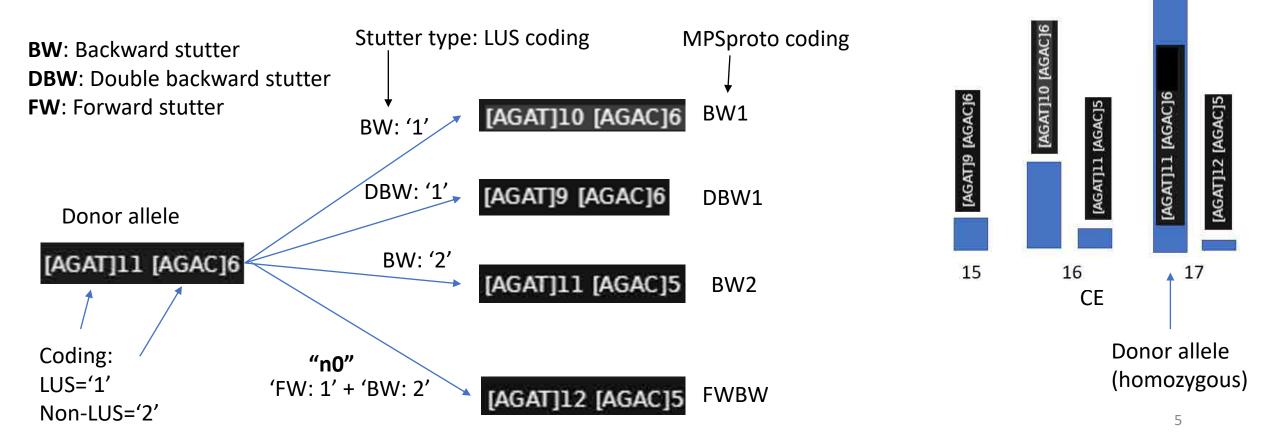
Used to interpret mixtures where analytical threshold (AT) is reduced


**Requires following calibrations:** 

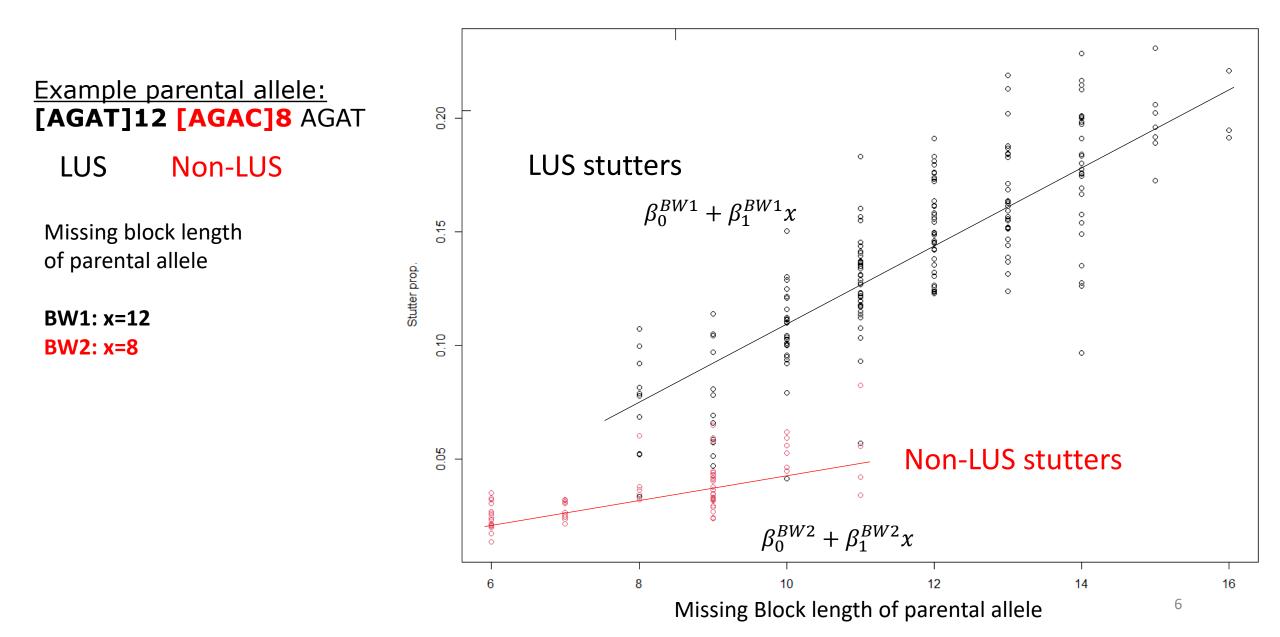
#### 1. Locus specific amplification efficiency (LSAE)

- Constant and (optionally) Distribution
- 2. Stutter proportions (for each stutter type per locus)
  - Supports many kinds of stutter types
- 3. Noise model
  - Sequences not explained as stutters
  - Modelled per locus

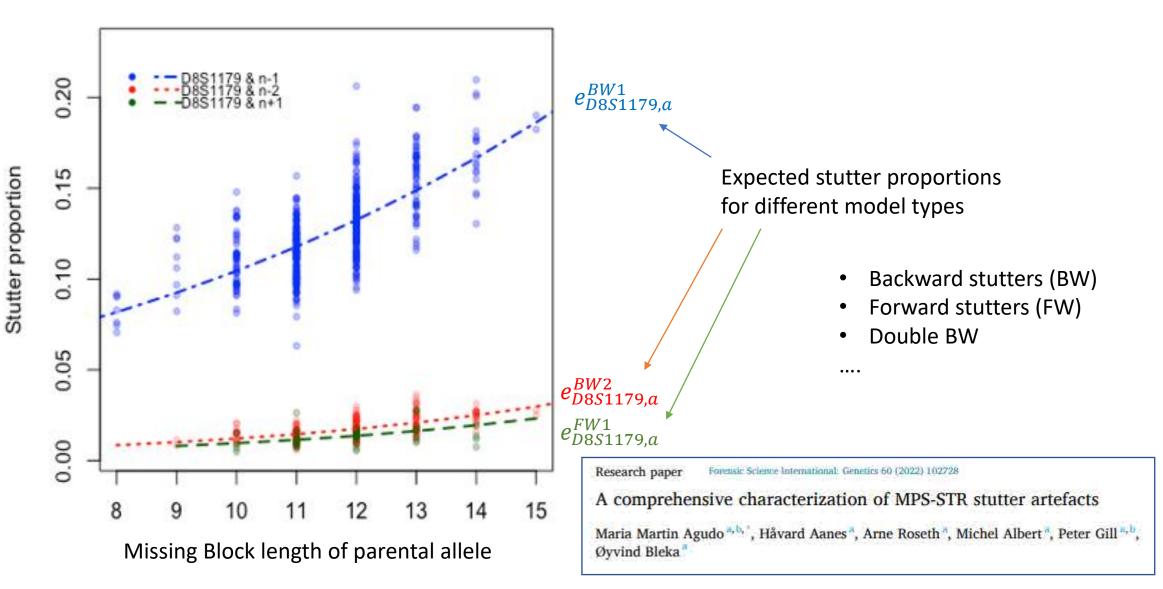
Utilizes lusSTR to convert sequences into block lengths (**bracket format**)


- Reimplemented as LUSstrR available at <u>https://github.com/oyvble/LUSstrR</u>
- Example for D3S1358
  - 'TCTATCTGTCTGTCTATCTA.... TCTA'
  - Bracket format='TCTA [TCTG]2 [TCTA]13'



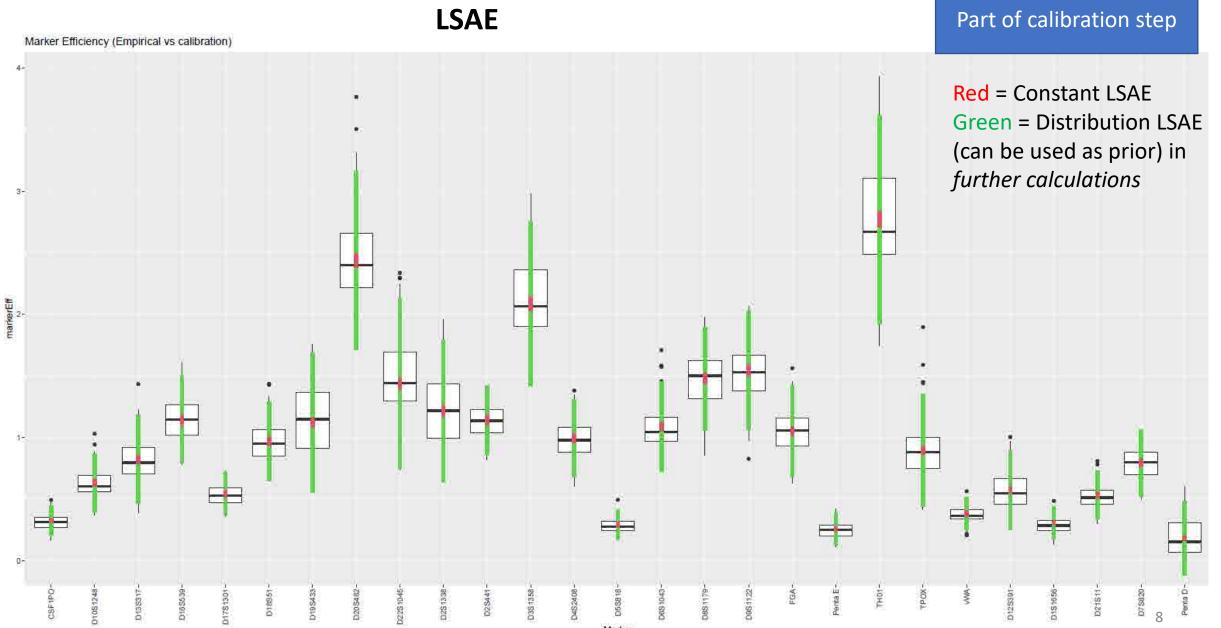

• Block lengths are easy to extract using bracket format

# Challenging STR-MPS stutters


- Some markers exhibit comprehensive stutters
- Example of D12 with structure [AGAT]n [AGAC]m

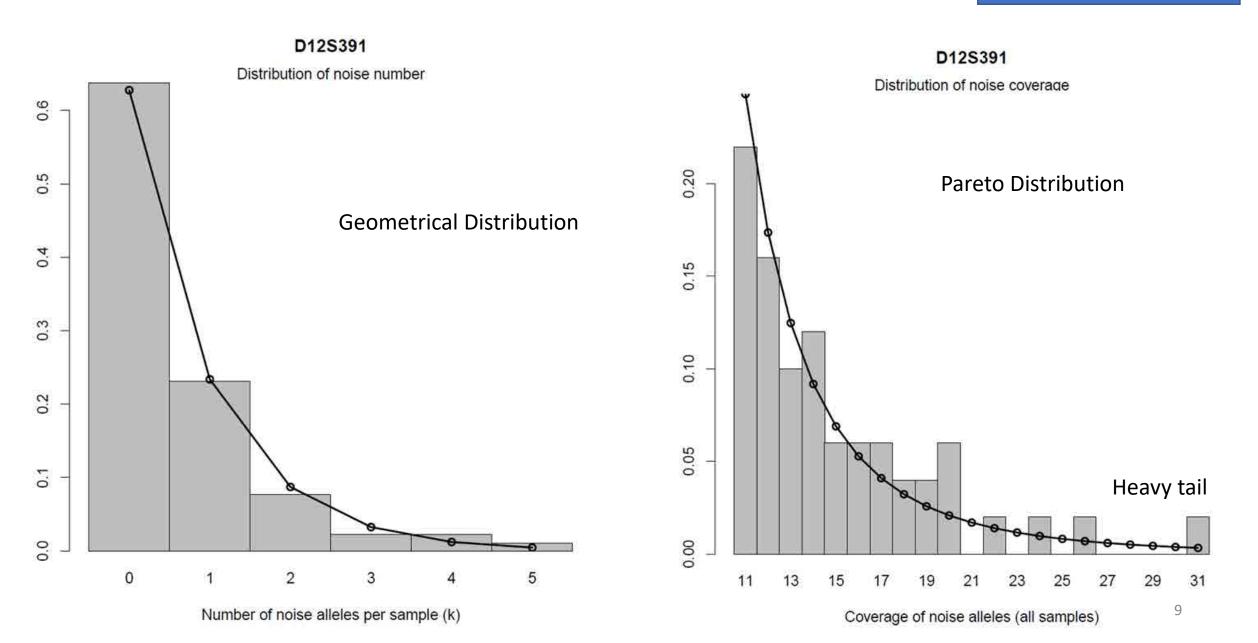


#### Modeling stutter proportions with block lengths




# Expected stutter proportions can be fitted using beta-regression models




Part of calibration step

#### Inference of locus specific amplification efficiency



#### The "Noise model"

#### Part of calibration step



#### The MPSproto model(s) for read depths (coverage)

• Model 1: The GA model: Extending the EuroForMix model

**Gamma**(shape = 
$$A * \omega^{-2}$$
, scale =  $\mu \omega^{2}$ )  $\mu$ =P.H.expectation  $\omega$ =P.H.variability

where A is a LSAE parameter

• Model 2: The NB model: The model as described by Vilsen et al (2016)

**Negative – Binomial**(mu =  $A * \mu$ , size =  $\mu/(\mu\omega^2 - 1)$ )

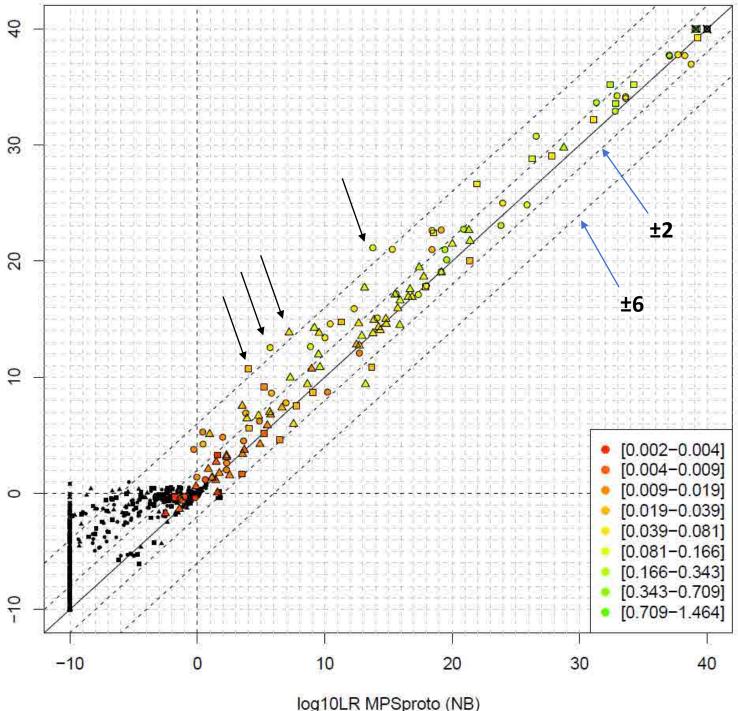
 $\mu$ =P.H.expectation  $\omega$ =P.H.variability

• MPSproto **optimizes** the parameters  $\mu, \omega$  per hypothesis

# An LR-comparison between EuroForMix and MPSproto models (GA vs NB vs EFM)

Revisiting the 2-4 person mixtures from paper

Based on the ForenSeq kit


Research paper Forensic Science International: Genetics 48 (2020) 102319

An examination of STR nomenclatures, filters and models for MPS mixture interpretation

Øyvind Bleka<sup>a,\*</sup>, Rebecca Just<sup>b,d</sup>, Jennifer Le<sup>b</sup>, Peter Gill<sup>a,c</sup>

AT=11 reads for MPSproto AT=30 reads for EuroForMix

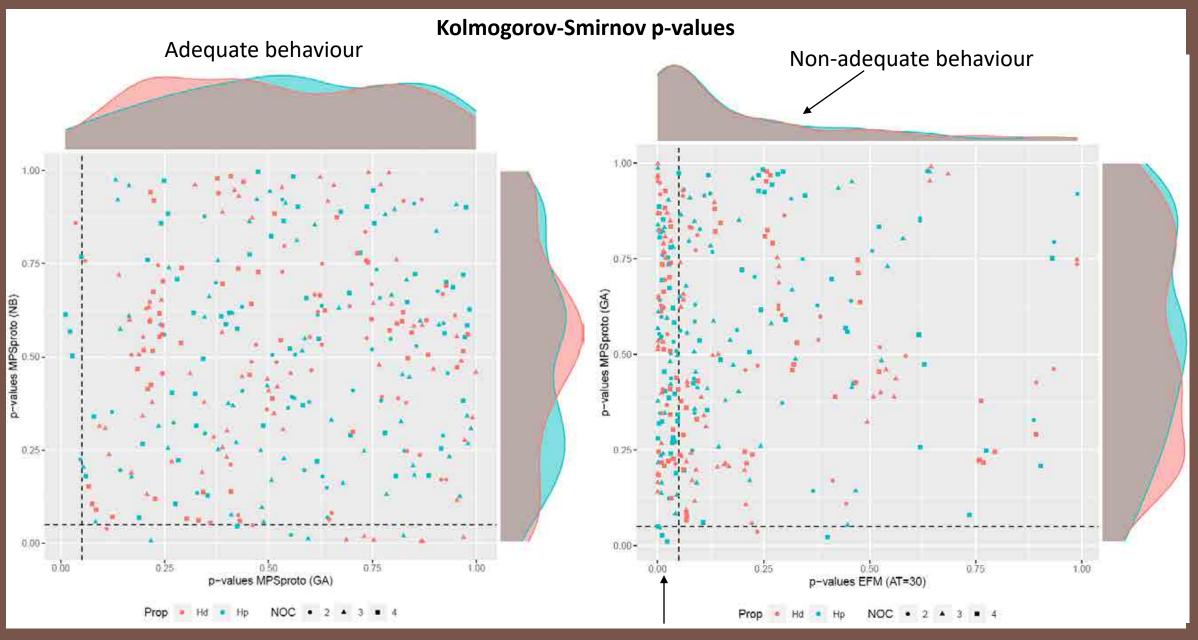




#### **MPSproto: GA vs NB**

- Quite similar performance
- GA obtained higher LRs (both for Hp true and Hd true)
- Some few situations with more than log10LR=6 in difference.
- Could be explained by situations with dropouts where GA penalized less than NB
- Both models were adequate

12




log10LR EFM (AT=30)

og10LR MPSproto (GA)

#### MPSproto (GA) vs EFM

- GA obtained considerably higher LRs than EFM
- Many situations with more than log10LR=6 in difference.
- Could be explained by situations where alleles of POI fell below AT=30 threshold used for EFM
- Lowering AT for EFM gave smaller differences (AT=20)
  - The use of a low AT leads to a less adequate model for EFM



### Conclusion

- MPSproto is an important contribution to the interpretation of MPS-STR profiles since the analytical threshold (AT) can be reduced
  - This is important for increased sensitivity
  - Can be used for both mixtures and non-mixtures
- Utilizes the "bracket format" to enhance the STR-stutter model
- The MPSproto models were adequate for the read depths when using AT=11, whereas the EuroForMix model was not using AT=30 or lower (most of the times)
- The two models of MPSproto behaved similarly overall, but different for some comparisons
  - ≻Gamma model more robust to drop-outs (lead to higher dropout probabilities)
  - > This also leads to higher LR for non-contributors
- Implemented as the R-package MPSproto
  - Details available at <u>https://github.com/oyvble/MPSproto</u>

# Part II: Why the current use of thresholds limits usefulness of MPS

• The paper of Jager et al. outlines an interpretation method that is based on two thresholds, which will be discussed next



Research paper

Developmental validation of the MiSeq FGx Forensic Genomics System for Targeted Next Generation Sequencing in Forensic DNA Casework and Database Laboratories



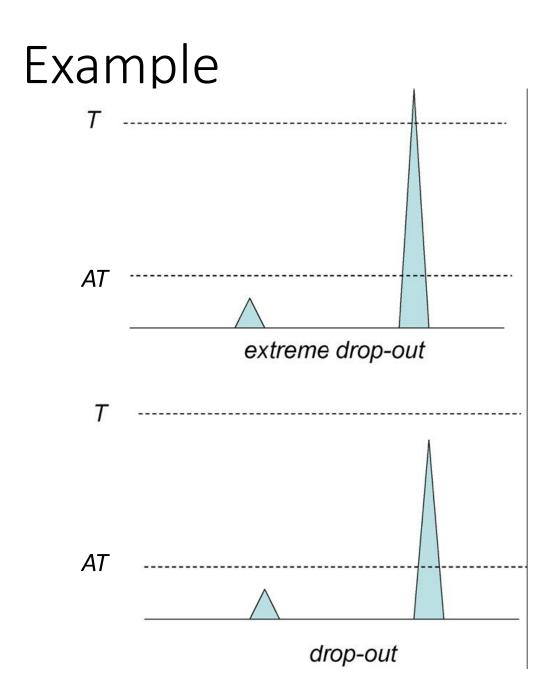
Anne C. Jäger, Michelle L. Alvarez, Carey P. Davis, Ernesto Guzmán, Yonmee Han, Lisa Way, Paulina Walichiewicz, David Silva, Nguyen Pham, Glorianna Caves, Jocelyne Bruand, Felix Schlesinger, Stephanie J.K. Pond, Joe Varlaro, Kathryn M. Stephens , Cydne L. Holt<sup>\*</sup>

Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA

## Threshold based interpretation guidelines

- Two thresholds used: Analytical Threshold (AT) and Interpretation Threshold (IT)
- AT and IT values are determined for a locus by multiplying the analysis parameter percentage value (from table) by the sum of read counts
- In cases of low coverage, a minimum coverage of 650 reads was used for the locus in determination of the threshold values.
  - Common parameter percentage value are AT=1.5% and IT=4.5%
  - So this is a minimum AT=10 and minimum HT=30
- Default stutter filter percentages for autosomal STR, Y-STR, and X-STR markers are documented and range from 7.5% (D2S441, D4S2408, PentaD) to 50% (DYS481).

#### Thresholds from Jager et al

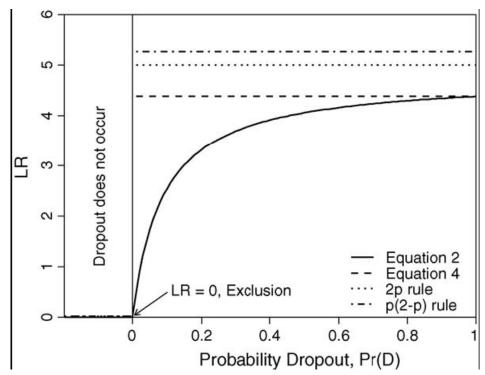

| Loci      | % Stutter | % Analytical | % Interpretation |
|-----------|-----------|--------------|------------------|
| DYS19     | < 15      | > 1.5        | > 4.5            |
| DYS385a-b | < 20      | > 1.5        | > 4.5            |
| DYF387S1  | < 20      | > 1.5        | > 4.5            |
| DYS389I   | < 20      | > 1.5        | > 4.5            |
| DYS389II  | < 35      | > 5          | > 15             |
| DYS390    | < 15      | > 1.5        | > 4.5            |
| DYS391    | < 20      | > 1.5        | > 4.5            |
| DYS392    | < 30      | > 1.5        | > 4.5            |
| DYS437    | < 45      | > 1.5        | > 4.5            |
| DYS438    | < 15      | > 1.5        | > 4.5            |
| DYS439    | < 15      | > 1.5        | > 4.5            |
| DYS448    | < 15      | > 3.3        | > 10             |
| DYS460    | < 15      | > 1.5        | > 4.5            |
| DYS481    | < 50      | > 1.5        | > 4.5            |
| DYS505    | < 15      | > 1.5        | > 4.5            |
| DYS522    | < 15      | > 1.5        | > 4.5            |
| DYS533    | < 15      | > 1.5        | > 4.5            |
| DYS549    | < 22      | > 1.5        | > 4.5            |
| DYS570    | < 22      | > 1.5        | > 4.5            |
| DYS576    | < 15      | > 1.5        | > 4.5            |
| DYS6121   | < 35      | > 1.5        | > 4.5            |
| DYS635    | < 15      | > 3.3        | > 10             |
| DYS643    | < 20      | > 1.5        | > 4.5            |
| Y-GATA-H4 | < 35      | > 1.5        | > 4.5            |
|           |           |              |                  |

#### Rule based interpretation from Jager et al

- If a single autosomal allele was greater than the interpretation threshold (IT), it was called as a homozygote e.g., (12,12)
- whereas if reads for a single allele were detected between the AT and IT, then was designated as an "Ambiguous Genotype" (e.g., (13,\*)), to account for possible non-detection of a sister allele.
- In cases where the highest signal (read counts) was less than the AT an allele was not called.
- But this raises issues about how to interpret in particular what LR to apply
- However, exactly the same issues have been addressed in relation to CE based applications

Ten years ago: consequences of threshold based interpretation were outlined

- Although the rules are designed to be 'conservative' this is not always the case
- Application of filters for stutters will also remove 'true' alleles, which can be anti-conservative

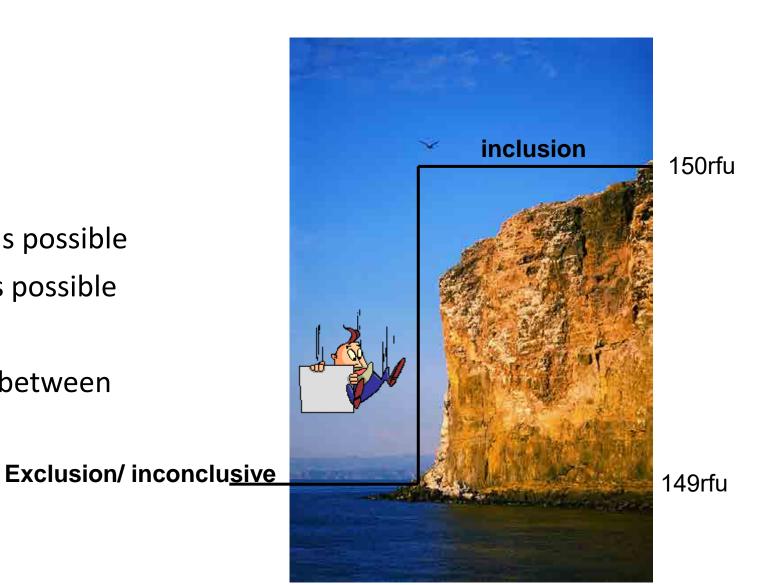



- T is the stochastic threshold used to signify PrD≈0
- It is designed to capture the event S=ab C=aa.
- If allele<T then it is given the F designation</li>
- If allele>T it is designated as a homozygote
- The threshold won't capture all events (unless set to infinity)
- If it's too high then too many samples are rejected to make it feasible
- So all thresholds will be subject to some error
- How much error can be tolerated
- Who decides this?

#### The 2p rule

- Suppose S=ab and C=aa and a>T
- This cannot be viewed as neutral evidence

(Buckleton) – can be very anticonservative




### Thresholds

- Falling off the cliff
- E.g. if we have a

Rule that states:

- 150rfu no dropout is possible
- V. 149rfu dropout is possible
- There is nothing in between



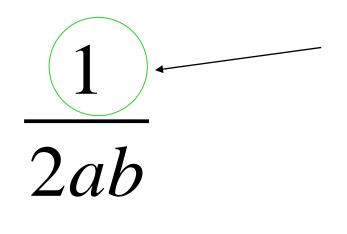
#### In reality it's a gentle ride downhill



Probability of Drop-out ——

#### What does this mean?

- It is very difficult to define the meaning of the following words:
- match, inclusion, exclusion, inconclusive
- This is because the context of the words carries a meaning that is definitive
- We always encounter the 'threshold dilemma'


| included | inconclusive       | exclusion |
|----------|--------------------|-----------|
| match    | Cannot be excluded | Non-match |

#### The underlying model is continuous

- Thresholds are difficult to apply and cannot be used in a definitive way unless associated with an estimate of (acceptable) risk.
- It is tempting to use the 'inconclusive' category and to use statements like ' the suspect cannot be excluded'.
- But this kind of statement may be prosecution biased especially if a proper analysis favours the defence hypothesis.
- Therefore, it is not possible to demonstrate that such guidelines are always more conservative, simply by increasing the number of inconclusive calls.

### A different calculation is needed

- If the profile is unambiguous (ie matches suspect then the numerator =1
- If the profile is ambiguous (ie does not match suspect completely) then the numerator is less than one
- i.e. we are used to calculating



The bottom line: If this is less than one then the strength of evidence decreases

AND

If there is any uncertainty about The prosecution hypothesis then This <u>must</u> be less than one (not neutral)

# Removing thresholds and filters by using continuous models

- Continuous models model both numerator and denominator
- Modelling stutters and noise greatly facilitates interpretation of evidence, not only for mixtures, but also for non-mixtures too!
- Interpretation is much more robust because we do not remove information.
- We get rid of ad-hoc guidelines that waste information and can be greatly anticonservative
- The threshold of 11 reads used by MPS-proto, universally applied, is a considerable improvement, which will greatly increase the number of cases that can be reported
- MPS-STRs are much more complex than CE based interpretation, primarily because of the modelling of multiple stutter-types that need to be taken into account.

#### Further developments: EFMrep

forenore occure manufating oracico of (2025) fosti f



#### EFMrep: An extension of EuroForMix for improved combination of STR DNA mixture profiles

Øyvind Bleka<sup>a,\*</sup>, Lourdes Prieto<sup>b,c</sup>, Peter Gill<sup>a,d</sup>

<sup>\*</sup> Forensic Genetics Research Group, Oslo University Hospital, Oslo, Norway

<sup>&</sup>lt;sup>b</sup> Instituto de Ciencias Forenses, Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain

<sup>&</sup>lt;sup>e</sup> Comisaría General de Policía Científica, Laboratorio de ADN, Madrid, Spain

<sup>&</sup>lt;sup>d</sup> Department of Forensic Medicine, University of Oslo, Oslo, Norway

#### EFMrep

- Enables combination of STR DNA mixture samples from different multiplexes by allowing different model parameters to be assigned to each DNA profile in the analysis
- Also allows related individuals to be specified
- Enables combination of profiles from the same or different extracts







# Combining mRNA and DNA tests in sexual assault cases





Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsigen

Transfer, persistence and recovery of DNA and mRNA vaginal mucosa markers after intimate and social contact with Bayesian network analysis for activity level reporting

Helen Johannessen<sup>a,\*</sup>, Peter Gill<sup>a,b</sup>, Gnanagowry Shanthan<sup>b</sup>, Ane Elida Fonneløp<sup>b</sup>

\* Department of Forensic Medicine, University of Oslo, Norway

<sup>b</sup> Department of Forensic Sciences, Oslo University Hospital, Norway

### The problem

- In many cases of sexual assault, the source of the body fluid is often in question especially if there is some evidence of potential social contact between victim and the suspect
- As an example, recall the case R v Weller in the appeal court of England and Wales

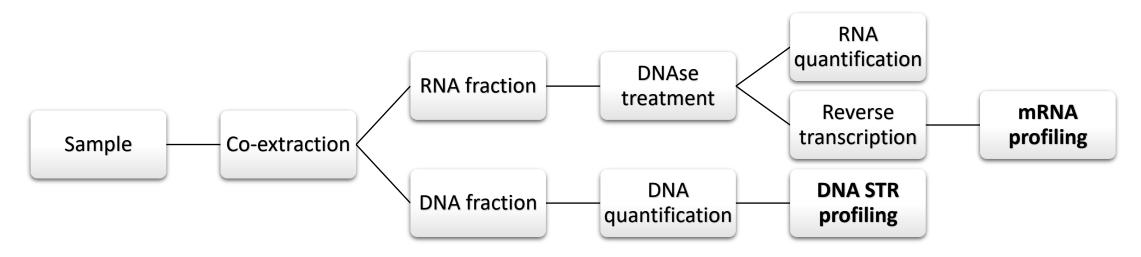
#### R v Weller

- The case circumstances
  - The victim claimed that the defendant had sexually assaulted her by digital penetration
  - The defendant claimed only social contact occurred when he helped her to bed after she became intoxicated at a party. He touched her hair
- The evidence
  - DNA mixture underneath the fingernails of the left hand of the suspect where he was the major contributor and the victim was a minor contributor
  - Sub-source inference was uncontested
- Activity level propositions
  - Either the suspect sexually assaulted the victim by digital penetration
  - Or he only had social contact with her, helping her to bed and touching her hair

#### Activity level in R v Weller

- Clearly, under the prosecution proposition digital penetration occurred, hence the origin of the DNA would be from vaginal mucosa
- Under the defence proposition, the DNA came from skin cells
- Note that no test for vaginal mucosa was carried out
- In court it was argued that the high levels of victim DNA was more likely to arise from sexual assault rather than from social contact.
- The conviction was upheld

# mRNA markers for vaginal mucosa (VM)


- Most common mRNA markers are:
  - Mucin 4 (MUC4)
  - Human beta-defensin (HBD1)
  - Myozenin (MYOZ1)
  - Cytochrome P450,
  - Family 2 Subfamily B Polypeptide 7 Pseudogene 1 (CYP2B7P1)
- MUC4 and the HBD1 markers are less specific as they often cross react with other body fluids, especially saliva and nasal mucosa
- MYOZ1 and CYP2B7P1 are more specific
- But there is no specific (confirmatory) test
- To assign whether VM was present/absent the NFI method (Lindenburgh et al. was followed) where >50% of markers must be observed to be classed as present

#### The experimental design

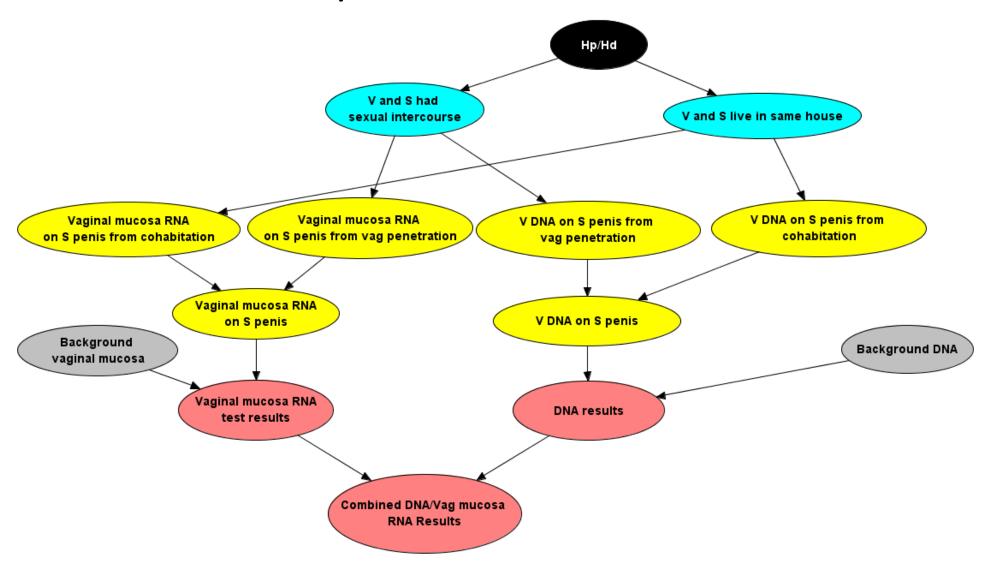
- Twenty four participants (12 couples) volunteered
- DNA reference samples collected from each
- Fingernail and penile swabs taken at five different time points post intimate contact
- Boxershorts worn by the male were also collected both before and after intimate contact
- Non-intimate samples were collected from same locations to monitor prevalence and background

#### Sample processing

- Tips of cotton swabs were extrace
- Boxershorts sampled with mini-tape
- Samples co-extracted with QIAamp DNA mini kit (QIAGEN) and mirVANA<sup>™</sup> miRNA isolation kit (invitrogen by Thermo Fisher Scientific).
- Quantification with Powerquant<sup>R</sup> and amplified by Powerplex Fusion 6C aiming for 1ng input of DNA



# Sub source propositions


- $H_p$ : The DNA is from the person of interest (POI)
- $H_d$ : The DNA is from an unknown individual, unrelated to POI
- The donor was conditioned under both propositions as per the standard procedure in case work
- EuroForMix was used to calculate subsource LRs, and mixture proportions (Mx) for the individual contributors were used to calculate the RFU contribution for the POI which is adjusted by a factor (dl) to compensate the effect of dilution (otherwise the values would be too low)

$$\overline{RFU}_{POI} = M_X \times \frac{RFU_{tot}}{m} \times d_l$$

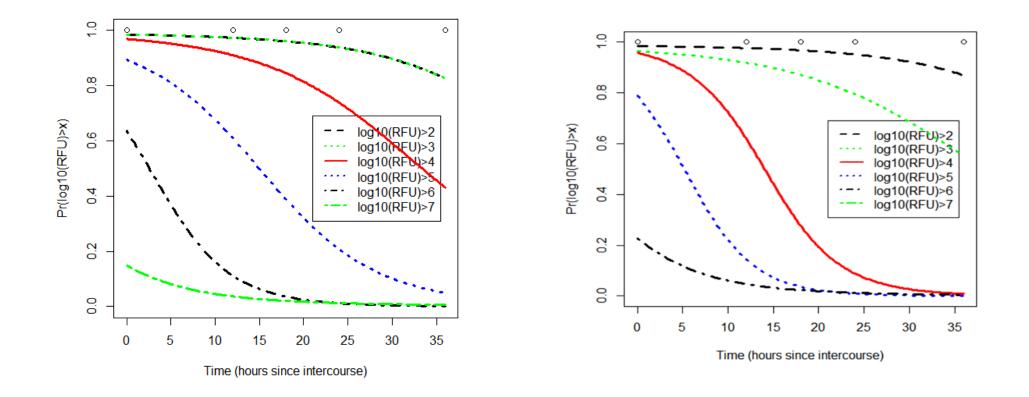
# Activity level

- Case circumstances simulated are generic and representative of majority of casework for this kind of offence
- 1) A victim claims to be sexually assaulted by a suspect and alleges that vaginal penetration occurred.
- 2) The victim and the suspect have had previous non-intimate contact. They may co-habit or share facilities in an apartment, for example.
- 3) The suspect denies the allegations stating that he only had social contact with the victim.
- 4) There is no allegation that the assault was committed by an unknown individual

#### Bayesian network

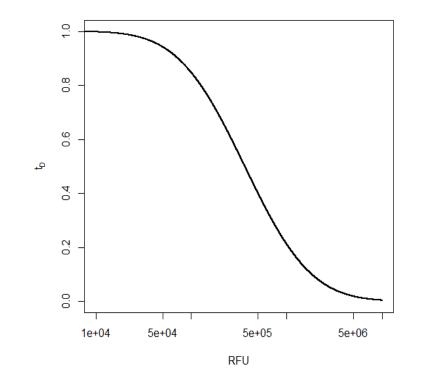


## What is different about this BN?


- Note that we do not carry out a specific source level evaluation
- i.e. we do not calculate the LR that evaluates the strength of evidence if vaginal fluid is/is not present
- Rather, we ask a different question at activity level:
  - What is the probability of the combined findings if Hp/Hd are true?
- We argue that this approach is better because there is no requirement to ask the court to make a definitive decision about the presence/ absence of vaginal mucosa before we move to the activity level
- Also, we are not so concerned by the necessity to provide RNA systems that are completely body fluid specific, because the efficacy of the system is reflected by value of the activity level LR itself.

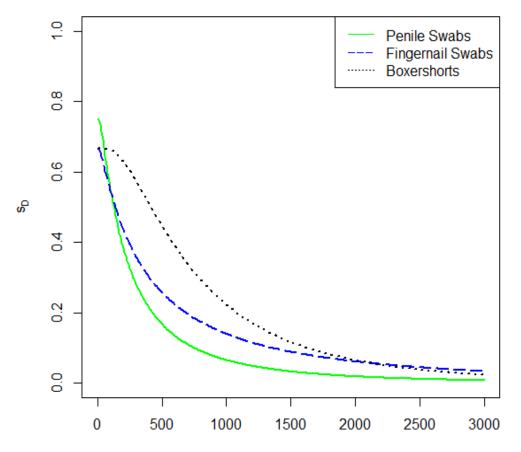
## Background and prevalent body fluid markers

- In order to assess probability of evidence if social contact occurred, it is necessary to have information about the prevalence of VM from known individuals and the levels of background i.e. from unknown individuals
- Whereas we can distinguish between known and unknown DNA contributors, we cannot do the same for body fluids, hence we have to use the same probability for both
- From observations of penile swabs, where <u>no</u> sexual activity occurred, this probability was assigned as 1/23


# Probability of direct transfer given time since intercourse

• Logistic regressions of a) penile swabs (left), b) fingernails swabs (right). Time since intercourse vs  $Pr(log10(\overline{RFU}_{POI}) > x)$ , showing probability of DNA transfer, persistence and recovery for a range of threshold values x.

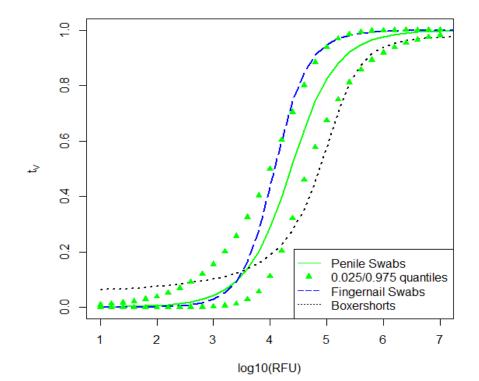



## Boxer shorts direct transfer

• Not dependent upon time



## Results for indirect transfer (social activity)


• Also no time dependency with this model



RFU

### Vaginal mucosa results – direct transfer

- Presence/absence of VM was scored using the (former) NFI method
- Note that the best indicator variable was log10(RFU) rather than Time since intercourse, hence we only use the former



## Bayesian network - case example

Forensic examination of the victim and the suspect was performed:

- No semen or DNA "matching" the suspect was detected in the intimate samples collected from the victim.
- DNA "matching" the victim was detected on the penile swab, fingernail swab and boxershorts collected from the suspect.

#### Two sets of hypothetical findings (A and B)

- A: Samples collected 15 h after alleged offence; Positive test for vaginal mucosa; The  $log_{10}\overline{RFU}_{POI} = 5,4,5$  for penile swab, fingernail swab and boxershorts respectively.
- **B**: Samples collected 25 h after alleged offence; Negative test for vaginal mucosa; The  $log_{10}\overline{RFU}_{POI} = 4,3,5$  for penile swab, fingernail swab and boxershorts respectively.

#### Activity-related propositions

- $H_p$ : the suspect had vaginal intercourse with the victim
- $H_d$ : the suspect and the victim only had social interaction via cohabitation

# BN case example (3)



|   |      | Penile swabs                 |                               | Fingernail swabs                     |                               | Boxershorts                  |                               |
|---|------|------------------------------|-------------------------------|--------------------------------------|-------------------------------|------------------------------|-------------------------------|
|   | Time | <b>Log10 LR</b><br>DNA+/Vag+ | <b>Log</b> 10 LR<br>DNA+/Vag- | <b>Log</b> 10 <b>LR</b><br>DNA+/Vag+ | <b>Log</b> 10 LR<br>DNA+/Vag- | <b>Log10 LR</b><br>DNA+/Vag+ | <b>Log</b> 10 LR<br>DNA+/Vag- |
| А | 15 h | 8                            | 7                             | 3                                    | 2                             | 11                           | 9                             |
| В | 25 h | 4                            | 3                             | 0.7                                  | 0.8                           | 11                           | 9                             |

A (Time = 15 h): mRNA vag. mucosa POS,  $\log_{10} \overline{RFU}_{POI} = 5,4,5$  for penile swabs, fingernail swab and boxershorts resp. > LR (log10) = 8, 3, 11.

B (Time = 25 h): mRNA vag. mucosa NEG,  $log_{10}\overline{RFU}_{POI} = 4,3,5$  for penile swabs, fingernail swab and boxershorts resp. **LR (log10) = 3, 0.8, 9**.

# Key findings

- There is much more information in the DNA result rather than the VM result (which adds very little), but improved VM methods will certainly result in improved LRs. Also, we currently have limited information about background/prevalent body fluid markers which will affect the outcome
- Boxer shorts provide a good source of evidence, especially when the offence is examined more than a day afterwards
- The BN framework provided here does not require a formal assessment at source level i.e. the absence of a positive VM test does not prevent assessment at activity level

#### Back to R v. Weller

- There has been some criticism of this case, since there was no attempt to analyse vaginal mucosa, which some argued was essential
- However, we have shown that the detection (or not) of VM has a small impact upon the LR compared to the DNA result
- In conclusion, the thinking was sound, and we now provide a method to calculate the activity level LR for such cases

## Summary

- Observed higher persistence of DNA compared to mRNA
- Strong association between the  $\overline{RFU}_{POI}$  values and positive / negative vaginal mucosa test
- The DNA quant ( $\overline{RFU}_{POI}$ ) has a bigger impact on the resulting LR than the mRNA vaginal mucosa test
- Boxershorts can provide a good source of DNA evidence (not time dependent)

## Thank you for your attention

Forensic Science International: Genetics 60 (2022) 102750



Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsigen

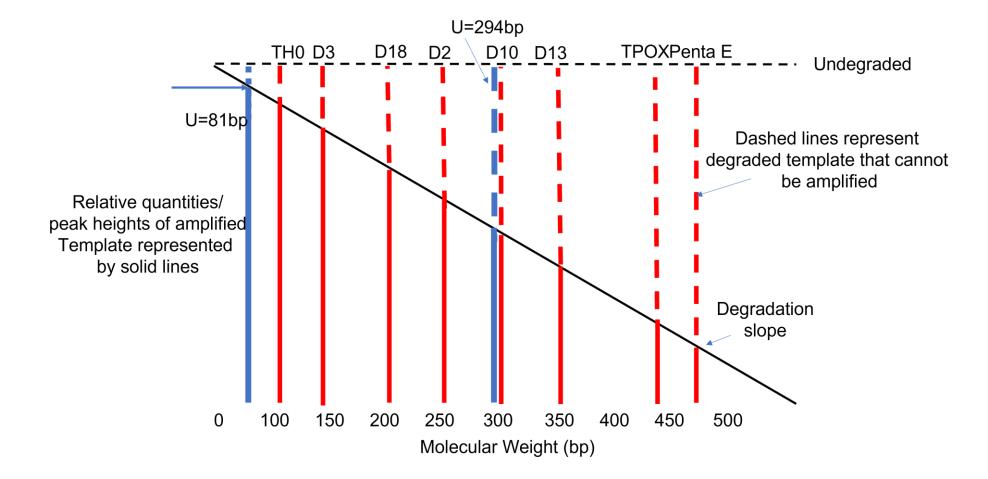
Transfer, persistence and recovery of DNA and mRNA vaginal mucosa markers after intimate and social contact with Bayesian network analysis for activity level reporting

Helen Johannessen<sup>a,\*</sup>, Peter Gill<sup>a,b</sup>, Gnanagowry Shanthan<sup>b</sup>, Ane Elida Fonneløp<sup>b</sup>

<sup>a</sup> Department of Forensic Medicine, University of Oslo, Norway <sup>b</sup> Department of Forensic Sciences, Oslo University Hospital, Norway

# Limitations of qPCR and how to improve quantitation of DNA

Peter Gill

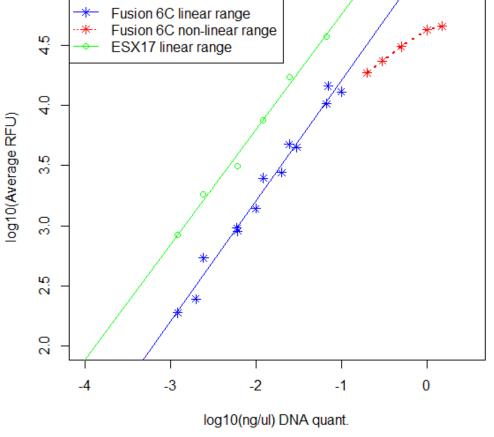

## Motivation

- qPCR methods are in routine use
- How accurate are they?
- Example illustrates the use of the Promega Powerquant test, but all of qPCR methods follow the same idea
- Powerquant is advertised as a multicopy copy test. Target is not disclosed but it is not based upon STRs currently used in multiplexes.
- Number of copies may be variable per haploid genome (e.g. Plexor HY)
- Two types of targets:
  - Short target of 81bp
  - Long target of 214bp

## Quantification method

- The short 81bp fragment is used to quantify and the long 214bp fragment is used to indicate whether degradation is present
- This works fine when the samples are pristine, but what happens if there is degradation?

#### qPCR with degraded material

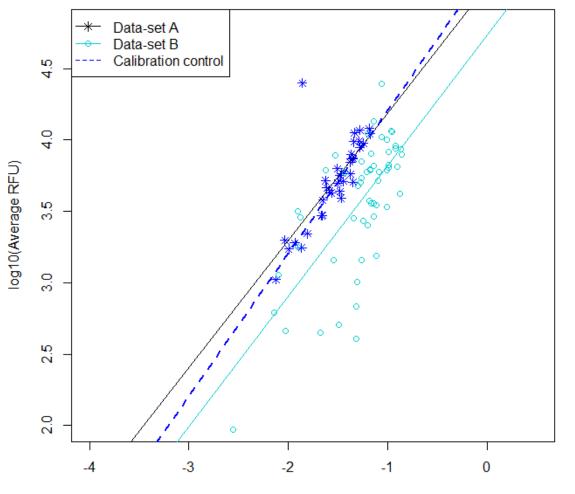



The amount of DNA represented by an STR multiplex is always over-estimated

An alternative method that uses the average RFU recovery of the multiplex

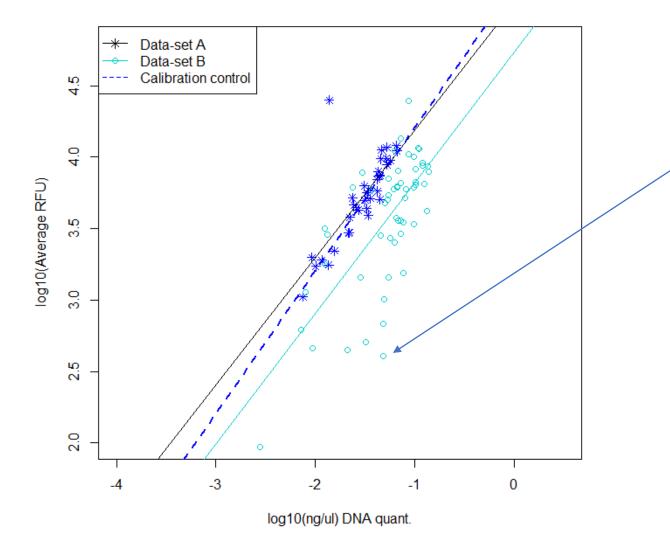
- Plot the average RFU recovery per locus for known quantities of control (undegraded) DNA Log log plots are linear and the regression coefficient=1
- Hence the relationship of quant vs. ave RFU is very easy to establish from the regression intercept coefficient (a)

$$Q = \frac{\overline{RFU}}{a}.$$




#### Calibration plots: Easy to generate

The quant value is from the  $Q_{81}$  Powerquant fragment


# A comparison of two experiments where DNA is degraded

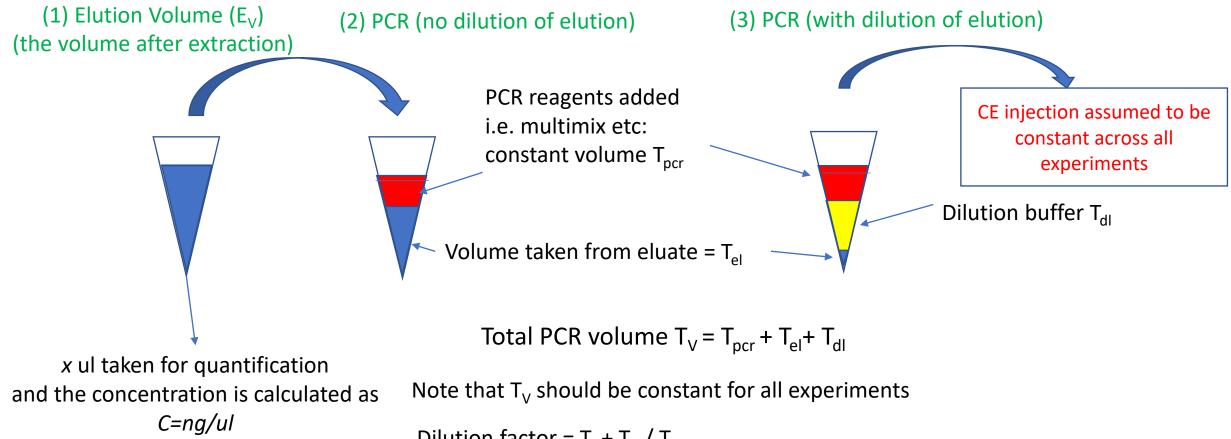
- So now we plot the data for degraded DNA – note the spread of data
- Set A: Fusion 6C 158 samples of vaginal mucosa and epithelial cells
- Set B: Fusion 6C 118 samples of epithelial cells from necks of simulated 'victim' assaults
- Plot log Powerplex Quant values vs log ave RFU values
- Interpret relative to the calibration control line



log10(ng/ul) DNA quant.

#### A closer look




According to Powerquant, the DNA quantity is 0.06ng/ul

But, the RFU estimate is much lower at 0.002ng/ul

The RFU method is based on the amount of amplifiable DNA present in the sample, rather than the total DNA >81 base pairs

qPCR will always underestimate the DNA quant and this can be as much as two orders of magnitude

## Calculation of dilution factor



Dilution factor =  $T_{el} + T_{dl} / T_{el}$ 

## RFU based measurement

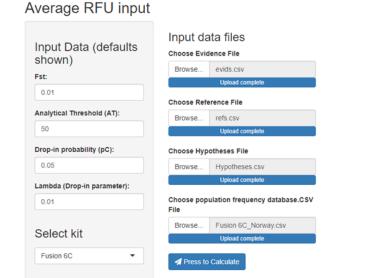
- Quantitative measurement based upon the mean RFU per locus
- Calculated by summing the RFU values across the DNA profile and dividing by the number of loci (n)
- We only take account of the contribution of the POI, hence for mixtures it is necessary to calculate the mixture proportion (M<sub>x</sub>) using probabilistic genotyping software

$$RFU_{POI} = M_x \times \frac{RFU_{tot}}{n} \times d_l$$

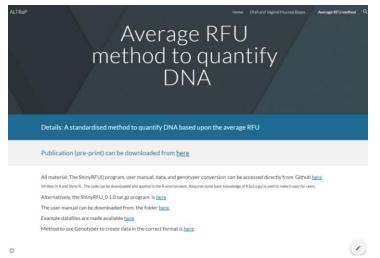
Where  $d_l$  is a dilution factor (if the sample is diluted before loading then the RFU<sub>POI</sub> must be adjusted accordingly)

• This means that we generate virtual RFU values (not the observed values)

The quantity of amplifiable (degraded) DNA can only be estimated from RFU values


• To calculate the amount of amplifiable DNA, the calibration coefficient (a) is required, along with the elution volume ( $E_V$ )




- This formula gives the <u>total</u> amount of DNA recovered, i.e. we compensate for different elution volumes and dilution factors
- Then we calculate the quantity of DNA attributed to a POI by multiplying  $Q_{tot} \ge M_{xPOI}$
- Where M<sub>x</sub> is the mixture proportion from probabilistic genotyping

# Automation of the calculations

- It is quite time consuming to carry out the necessary calculations, hence software is preferable.
- We have developed a 'Shiny' application called ShinyRFU()
- This program takes basic information and calculates average RFU values along with Mx values (based on EuroForMix), which are plugged into another spreadsheet that contains the dilution factor information



https://sites.google.com/view/altrap/average-rfu-method





bioRxiv posts many COVID19-related papers. A reminder: they have not been formally peer-reviewed and should not guide health-related behavior or be reported in the press as conclusive.

New Results

A Follow this preprint

Limitations of qPCR to estimate DNA quantity: An RFU method to facilitate inter-laboratory comparisons for activity level, and general applicability

Peter Gill, Øyvind Bleka, Ane Elida Fonneløp doi: https://doi.org/10.1101/2022.05.23.493102

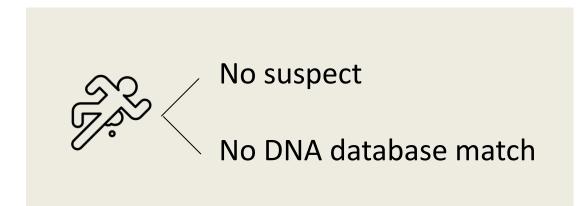
This article is a preprint and has not been certified by peer review [what does this mean?].

# Summary

- qPCR greatly overestimates DNA quant values for degraded DNA and can only be used as a rough indication of quantity where the purpose is to provide a prior indication of how much sample to load on CE
- If we want an accurate measurement of amplifiable DNA present, then this is obtained from the RFU measurements of the multiplex used
- Calibration is needed easily carried out with c. 10 samples
- Method utilises probabilistic genotpying to estimate proportions of DNA recovery for specific contributors
- Can be used for:
  - Findings given activity level propositions
  - Rapid DNA
  - Direct PCR
- Programmed solutions to simplify the method

EDNAP/ENFSI Meetings Lisbon, Portugal Sep 27-30 2022

#### **Forensic DNA Phenotyping - VISAGE and INFER**




VISAGE

Dr. Walther Parson assoc. Prof. Institute of Legal Medicine, Medical University of Innsbruck, Austria adj. Prof. Forensic Science Program, Penn State University, PA, USA walther.parson@i-med.ac.at

#### Forensic DNA Phenotyping

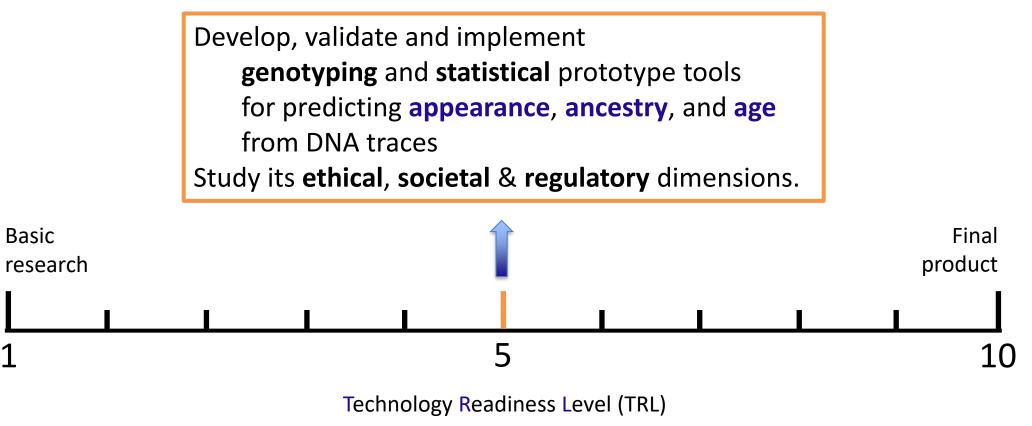
**Predictive** analysis of externally visible traits (**appearance**), bio-geographic **ancestry** and **age** from the DNA of an unknown sample



#### We have:

Extracted DNA DNA quants STR profile Amelogenin Single source/ mixture

#### Aim: provide investigative leads to reduce the pool of possible suspects




This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740580.



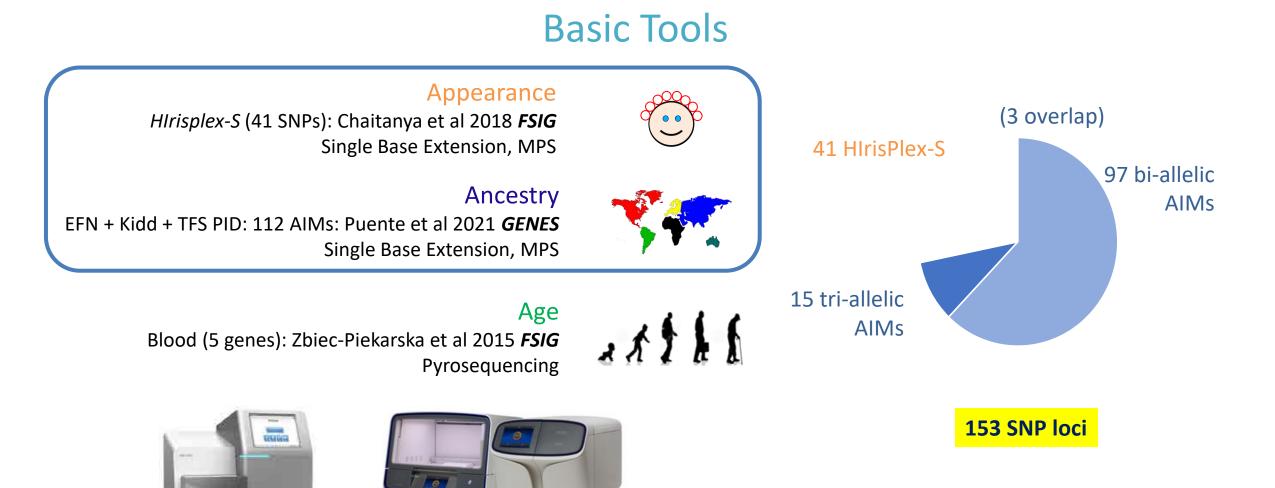
#### VISAGE (VISual Attributes Through GEnomics)

We responded to a call of the **EU Horizon 2020** Work Program Secure Societies (SEC), Sub call: Fight against crime and terrorism, Forensics techniques on: a) trace qualification, and b) broadened use of DNA, TRL = 5.





#### VISAGE Working Packages (2017 – 2022)


- WP1 MANAGEMENT
- WP2 MARKER DISCOVERY
- ✓ WP3 PROTOTYPE ANALYSIS TOOL DEVELOPMENT AND VALIDATION
  - WP4 STATISTICAL PREDICTION MODELLING AND SOFTWARE DEVELOPMENT
  - WP5 ETHICAL, SOCIETAL AND REGULATORY DIMENSION MAPPING
  - WP6 IMPLEMENTATION OF PROTOTYPE TOOLS IN RELEVANT ENVIRONMENT WP7 EDUCATION AND TRAINING

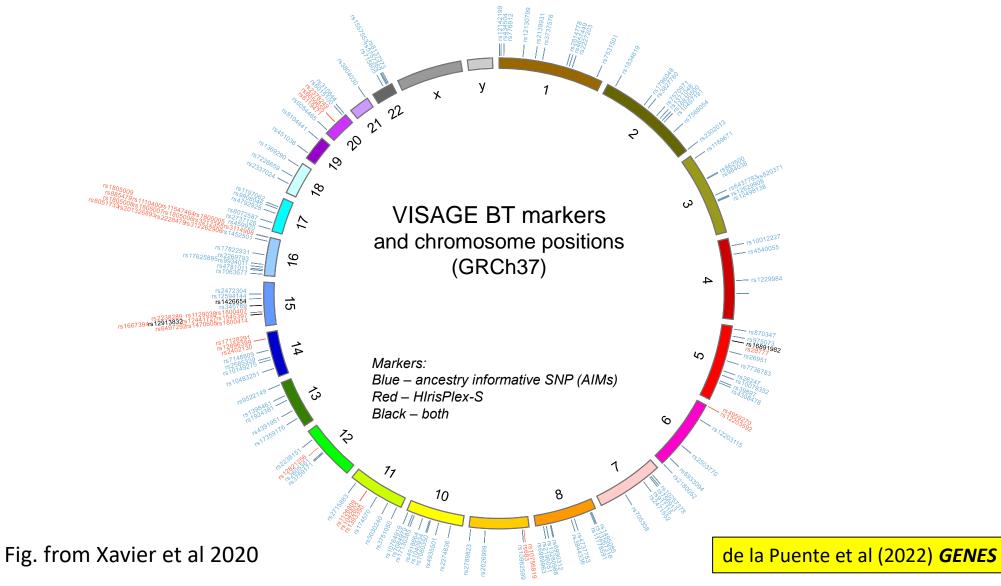




#### Marker Discovery for Basic Prototype Tools

Appearance (M. Kayser & Team), Ancestry (C. Phillips & Team), Age (W. Branicki & Team)






This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740580.

NOM VISAGE

#### Marker Discovery for Predicting Appearance and Ancestry

Appearance (M. Kayser & Team), Ancestry (C. Phillips & Team)





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740580.

VISAGE

#### Development and Validation of Molecular Genetic Prototype Tools

W. Parson, C. Xavier, A. Heidegger, L. Palencia Madrid & Team

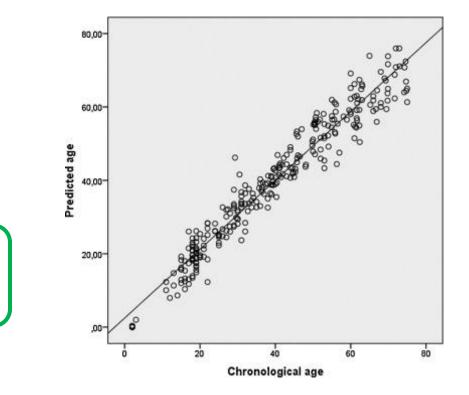
#### VISAGE Basic Tools to predict Appearance and Ancestry



AmpliSeq/Ion S5

VISAGE

Palencia-Madrid et al (2020) GENES PowerSeq/MiSeq FGx


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740580.



ForenSeq/MiSeq FGx

#### Marker selection for Basic AGE Prototype Tools

W. Parson, A. Heidegger, C. Xavier & Team



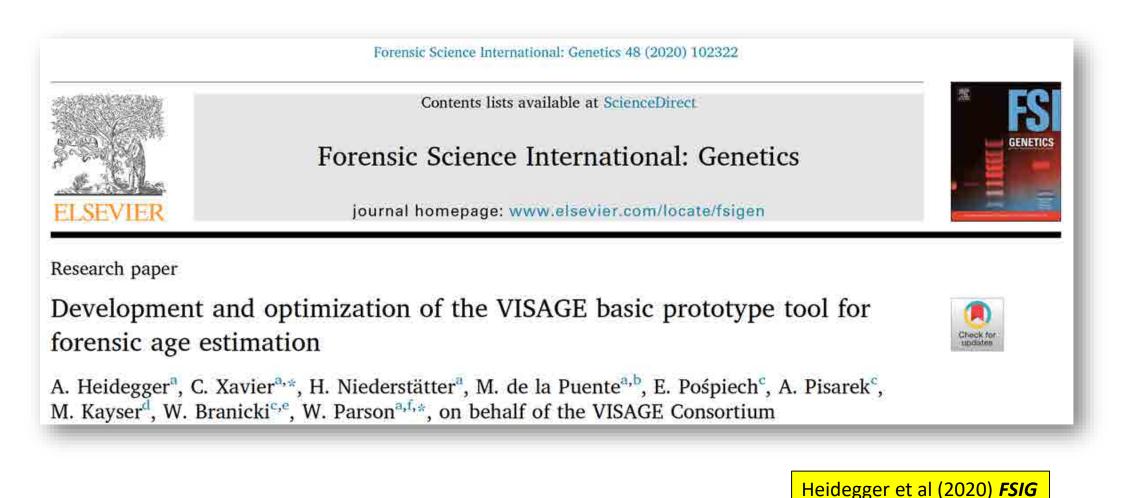


#### Appearance

HIrisplex-S (41 SNPs): Chaitanya et al 2018 **FSIG** Single Base Extension, MPS

#### Ancestry

EFN + Kidd + TFS PID: 112 AIMs: Puente et al 2021 *GENES* Single Base Extension, MPS


# \*\*\*\*

Age Blood (5 genes): Zbiec-Piekarska et al 2015 *FSIG* Pyrosequencing



#### **Development of Prototype Tool for Age Prediction**

#### VISAGE Basic Tools for Age Prediction in Blood





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740580.



### Marker Discovery for Enhanced Prototype Tools

Appearance (M. Kayser & Team), Ancestry (C. Phillips & Team), Age (W. Branicki & Team)



**Basic Tools** 

#### Ancestry 112 AIMs: Puente et al 2022 *GENES*



#### Age Blood: Zbiec-Piekarska et al 2015 FSIG

### Enhanced Tools Appearance

Chaitanya et al 2018 FSIG: Hirisplex-S

Peng et al 2019 JID: eyebrow color

Kukla-Bartoszek et al 2019 FSIG: freckles

Pośpiech et al 2018 **FSIG**: head hair shape

Chen et al in press: head hair loss in men

#### Ancestry

X-, Y-, aAIMs: subcont. ancestry; Manuscript submitted

Age

Blood/saliva/bone: Wozniak et al 2021 **AGING** Semen: Pisarek et al 2021 **AGING** 





# Development of VISAGE Enhanced Tool for App/Anc Prediction

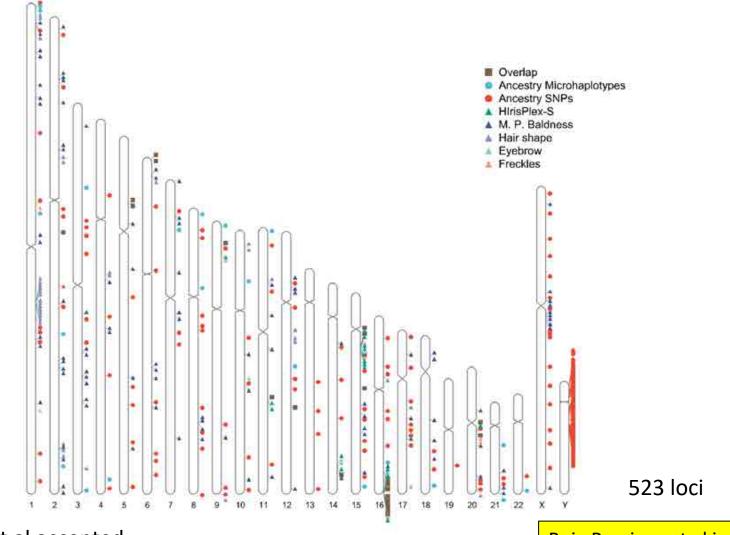



Fig. from Xavier et al accepted

Ruiz-Raminez et al in submission





# VISAGE Enhanced Tool for Age Prediction in Blood/Buccal cells/Bone

www.aging-us.com

AGING 2021, Vol. 13, Advance

**Research Paper** 

# Development of the VISAGE enhanced tool and statistical models for epigenetic age estimation in blood, buccal cells and bones

Anna Woźniak<sup>1,\*</sup>, Antonia Heidegger<sup>2,\*</sup>, Danuta Piniewska-Róg<sup>3,\*</sup>, Ewelina Pośpiech<sup>4</sup>, Catarina Xavier<sup>2</sup>, Aleksandra Pisarek<sup>4</sup>, Ewa Kartasińska<sup>1</sup>, Michał Boroń<sup>1</sup>, Ana Freire-Aradas<sup>5</sup>, Marta Wojtas<sup>3</sup>, Maria de la Puente<sup>2,5</sup>, Harald Niederstätter<sup>2</sup>, Rafał Płoski<sup>6</sup>, Magdalena Spólnicka<sup>1</sup>, Manfred Kayser<sup>7</sup>, Christopher Phillips<sup>5</sup>, Walther Parson<sup>2,8</sup>, Wojciech Branicki<sup>1,4</sup>, VISAGE Consortium

Correspondence to: Wojciech Branicki, Walther Parson; email: wojciech.branicki@uj.edu.pl, walther.parson@i-med.ac.atKeywords: DNA methylation, bisulfite amplicon MPS, epigenetic age prediction tool, age prediction in blood and buccal cells,age prediction in bonesReceived: January 10, 2021Accepted: February 16, 2021Published:





### VISAGE Enhanced Tool for Age Prediction in Blood/Buccal cells/Bone

| Tissue | <b>KLF14</b> ª<br>Chr 7 | <b>TRIM59</b> ª<br>Chr 5 | MIR29B2CHG <sup>a</sup><br>Chr 1 | <b>FHL2</b> ª<br>Chr 2 | ELOVL2 <sup>b</sup><br>Chr 6 | <b>EDARADD</b> ⁵<br>Chr 1 | <b>ASPA</b> ¢<br>Chr 17 | <b>PDE4C</b><br>Chr 19 |
|--------|-------------------------|--------------------------|----------------------------------|------------------------|------------------------------|---------------------------|-------------------------|------------------------|
| Size   | 128bp                   | 141bp                    | 146bp                            | 167bp                  | 267bp                        | 193bp                     | 108bp                   | 215bp                  |
| Blood  | $\checkmark$            | $\checkmark$             | $\checkmark$                     | $\checkmark$           | $\checkmark$                 |                           |                         | $\checkmark$           |
| Buccal | $\checkmark$            |                          | $\checkmark$                     |                        | $\checkmark$                 | $\checkmark$              |                         | $\checkmark$           |
| Bone   | $\checkmark$            |                          |                                  |                        | $\checkmark\checkmark$       |                           | $\checkmark$            | $\checkmark\checkmark$ |

<sup>a</sup>Zbiec-Piekarska et al (2015) *FSIG*<sup>b</sup>Bekaert et al (2015) *Electrophoresis*<sup>c</sup>Wozniak, Heidegger et al (2021) *Aging*

Wozniak, Heidegger et al (2021) **Aging** MiSeq FGx





### VISAGE Enhanced Tool for Age Prediction in Semen



Development and inter-laboratory validation of the VISAGE enhanced tool for age estimation from semen using quantitative DNA methylation analysis

A. Heidegger<sup>a</sup>, A. Pisarek<sup>b</sup>, M. de la Puente<sup>a,c</sup>, H. Niederstätter<sup>a</sup>, E. Pośpiech<sup>b</sup>, A. Woźniak<sup>d</sup>, N. Schury<sup>c</sup>, M. Unterländer<sup>c</sup>, M. Sidstedt<sup>f</sup>, K. Junker<sup>f</sup>, M. Ventayol Garcia<sup>k</sup>, FX Laurent<sup>h</sup>, A. Ulus<sup>h</sup>, J. Vannier<sup>h</sup>, I. Bastisch<sup>c</sup>, J. Hedman<sup>f,i</sup>, T. Sijen<sup>g,j</sup>, W. Branicki<sup>b,d</sup>, C. Xavier<sup>a,\*</sup>, W. Parson<sup>a,k,\*\*</sup>, on behalf of the VISAGE Consortium

0.3 Norm. read depth 0.1 0.0 PPP2R2C NOX4/FOLH1B TUBB3 PALM TTC7B TBX4 GALR2 LOC401324 SH2B FITM ARHGEF S EXO Candidate CpG





The VISAGE Consortium

Home

Summary

Objectives

Partners

Scientific Advisory Board

Ethics and Societal Impact Advisory Board

Work Packages

**Objectives accomplished** 

FAQ

Scientific Publications

Reports



#### VISIBLE ATTRIBUTES THROUGH GENOMICS

0

#### About the VISAGE Consortium.

#### https://www.visage-h2020.eu





#### **Objectives accomplished**

The overall aim of VISAGE is/was to broaden the forensic use of DNA towards constructing composite sketches of unknown perpetrators from as many biological traces and sources and as fast as possible within current legal frameworks and ethical guidelines. Throughout its project time 2017-2021, the VISAGE Consortium has successfully addressed and fully accomplished its six objectives, as summarized below. The below mentioned references and reports can be found with their respective links to the open-access publications on the Scientific Publications and Reports parts of the VISAGE website.

Objective 1: Allocate previous and establish new DNA predictors for as detailed as possible information on appearance, age and ancestry.

Objective 1 was successfully addressed by work in workpackage 2 (WP2) led by Erasmus MC for appearance, USC for ancestry, and JU for age. In the early phase of the project, previously established DNA markers for appearance for 3 traits, ancestry for 5 continental regions (in part with newly established markers within VISAGE: De la Puente et al. 2021), and age from blood-derived DNA were ascertained, and delivered to MUI for developing the prototype VISAGE Basic labtools for appearance, ancestry and age in WP3. In parallel, new DNA markers were successfully discovered within the project via different approaches for i) additional six appearance traits as we described in several scientific publications (Xiong et al. 2019, Peng et al. 2019, Liu et al. 2019, Kukla-Bartoszeka et al. 2019, Chen et al. submitted) including one trait from earlier work of some VISAGE partners prior to VISAGE (Pospiech et al. 2018), ii) ancestry based on 7 continental regions (Phillips et al. in preparation) together with paternal ancestry from multiple regions, and iii) age from DNA of somatic tissues (Wozniak et al. 2021; Piniewska-Rog et al. 2021) as well as age from DNA of semen (Pisarek et al. 2021, Heidegger et al. 2021). These newly established DNA predictors for appearance, ancestry, and age, except those for two traits, and together with the previously established DNA predictors for the three appearance traits used in the prototype VISAGE Basic tool, were all delivered to MUI for developing the prototype VISAGE Enhanced labtools for appearance, ancestry and age in WP3. Staistical prediction modelling was done together with WP4 and the established prediction models were included in the statistical framework and prototype software developed in WP4. Objective 1 was fully accomplished within the project time.

Objective 2: Develop and forensically validate prototype tool(s) based on massively parallel sequencing (MPS) for simultaneously analysis of the identified DNA predictors of appearance, age and ancestry suitable for trace DNA.

#### https://www.visage-h2020.eu





#### **Scientific Publications**

**Review / Opinion articles** 

- Schneider PM, Prainsack B, Kayser M. The use of Forensic DNA Phenotyping in predicting appearance and biogeographic ancestry. Deutsches Arzteblatt International 2019;116:873-880.
- Vidaki A and Kayser M. Recent progress, methods and perspectives in forensic epigenetics. <u>Forensic Science International</u>: <u>Genetics 2018;37:180-195</u>.
- Parson W. Age estimation with DNA: from forensic DNA fingerprinting to forensic (epi)genomics: a mini-review. <u>Gerontology</u>. 2018;64(4):326-332.
- Vidaki A and Kayser M. From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence. <u>Genome Biol.</u> 2017;18:238.

**Original research articles** 

- Gabrielle Samuel and Barbara Prainsack (2021). Shifting Ethical Boundaries in Forensic Use of DNA. <u>Jahrbuch f
  ür Wissenschaft und</u> Ethik 24/1: 155-172.
- Heidegger A, Pisarek A, de la Puente M, Niederstätter H, Pospiech E, Wozniak A, Schury N, Unterländer M, Sidstedt M, Junker K, Ventayol Garcia M, Lauren FX, Ulus A, Vannier J, Bastisch I, Hedman J, Sijen T, Branicki W, Xavier C, Parson W on behalf of the VISAGE Consortium. Development and inter-laboratory validation of the VISAGE enhanced tool for age estimation from semen using quantitative DNA methylation analysis. <u>Forensic Science International: Genetics. 2021, 56: 102596</u>
- de la Puente M, Ruiz-Ramírez J, Ambroa-Conde A, Xavier C, Pardo-Seco J, Álvarez-Dios J, Freire-Aradas A, Mosquera-Miguel A, Gross TE, Cheung EYY, Branicki W, Nothnagel M, Parson W, Schneider PM, Kayser M, Carracedo Á, Lareu MV, Phillips C, on behalf of the VISAGE Consortium. Development and evaluation of the ancestry informative marker panel of the VISAGE Basic Tool. <u>Genes.</u> 2021, 12(8):1284
- Pisarek A, Pośpiech E, Heidegger A, Xavier C, Papież A, Piniewska-Róg D, Kalamara V, Potabattula R, Bochenek M, Sikora-Polaczek M, Macur A, Woźniak A, Janeczko J, Phillips C, Haaf T, Polańska J, Parson W, Kayser M, Branicki W on behalf of the VISAGE Consortium. Epigenetic age prediction in semen marker selection and model development. <u>Aging. 2021, 13(5):19145-19164</u>
- Piniewska-Róg D, Heidegger A, Pośpiech E, Xavier C, Pisarek A, Jarosz A, Wozniak A, Wojtas M, Phillips C, Kayser M, Parson W,
  Branicki W on behalf of the VISAGE Consortium. Impact of excessive alcohol abuse on age prediction using the VISAGE enhanced

#### https://www.visage-h2020.eu





### Reports

Report: Report on Three International Expert Symposia Disseminating the Results of the VISAGE Project (2021)

Report: Regulatory landscape of forensic DNA phenotyping in Europe (2018).

Deliverable\_5.2: Societal, ethical, and regulatory dimensions of forensic DNA phenotyping.

Report: Recommendations to address the ethical and societal challenges of FDP.

#### https://www.visage-h2020.eu





# INFER - Introduction of forensic genomic tools for estimating Appearance, Ancestry and Age



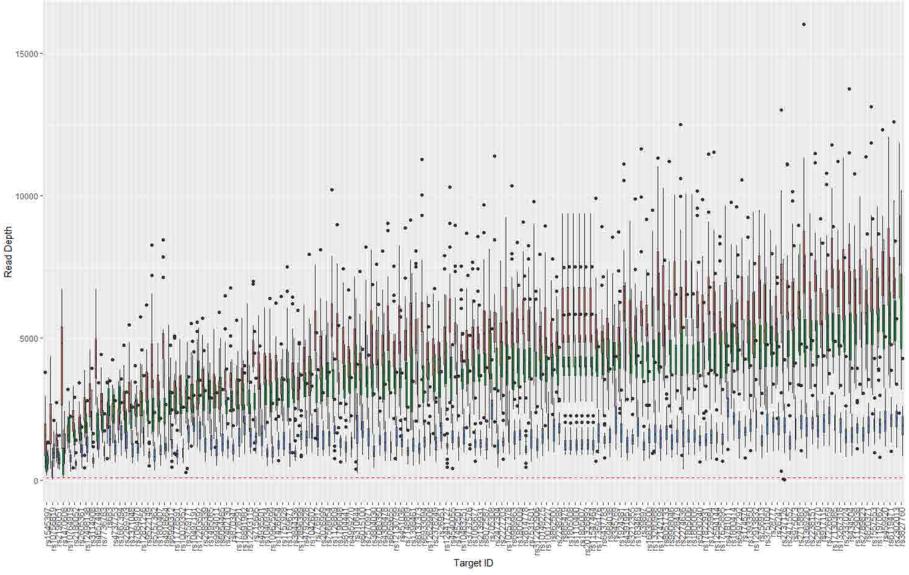
INFER Meeting Innsbruck Jan 2020

Evaluation, Validation and Implementation of Forensic DNA Phenotyping Tools

Larger sample-set including blood, buccal, saliva and semen samples

Non-European samples

**Casework samples** 

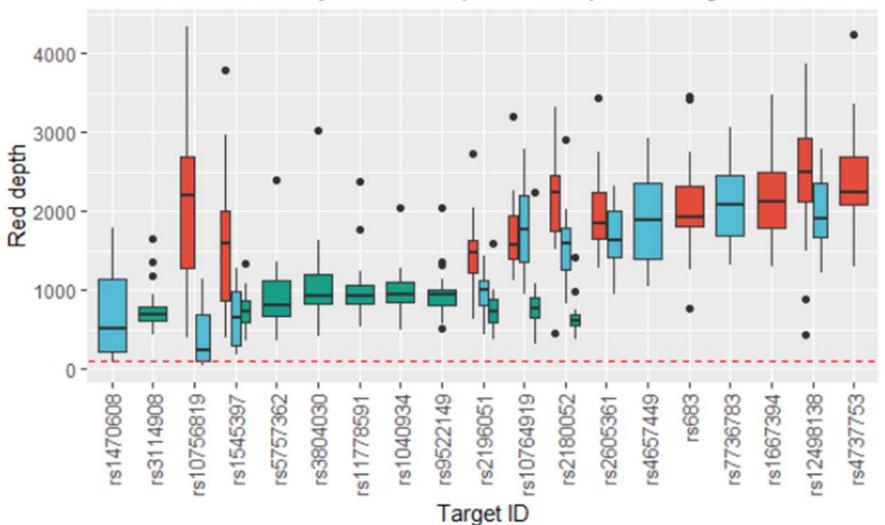



This project has received funding from the European Union under grant agreement No IZ25-5793-2019-40



# **INFER** - Predicting App/Anc with VISAGE BT

Read Depth - Concordance Study

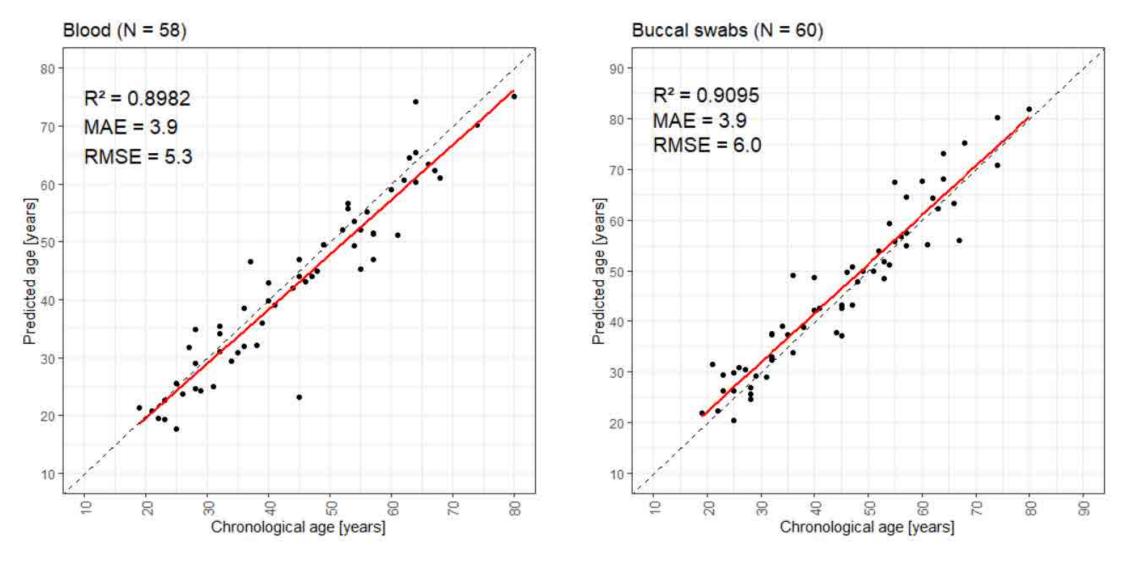





This project has received funding from the European Union under grant agreement No IZ25-5793-2019-40

cc Lena Ewers, GMI 🔪

# **INFER** - Predicting App/Anc with VISAGE BT



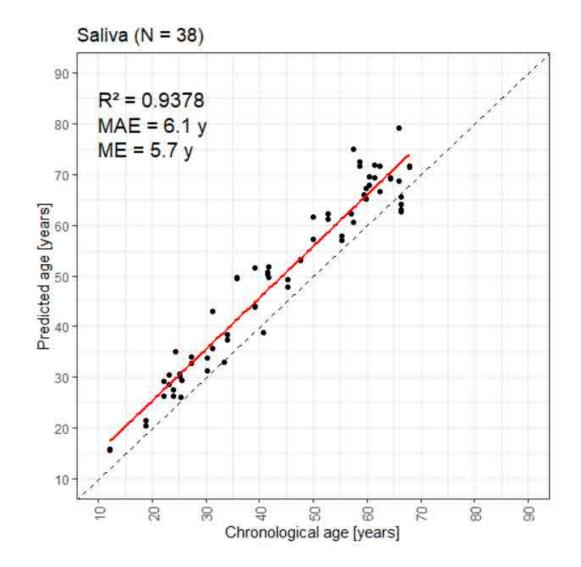

#### Concordance Study - Read depth of low performing marker

 $\langle Q \rangle$ 

cc Lena Ewers, GMI

# **INFER - Predicting AGE with VISAGE ET Somatic**




**INFER**; 3 labs; DNA input 20 ng; ~60 samples/flow cell



This project has received funding from the European Union under grant agreement No IZ25-5793-2019-40 cc Antonia Heidegger, GMI



# **INFER - Predicting AGE with VISAGE ET Somatic**



#### **INFER**; DNA input 50 ng; ~60 samples/flow cell

This project has received funding from the European Union under grant agreement No IZ25-5793-2019-40 cc Antonia Heidegger, GMI



#### Centres and investigators of the VISAGE Consortium

VISAGE

- Erasmus University Medical Center Rotterdam (Netherlands): Manfred Kayser, Vivian Kalamara, Arwin Ralf, Athina Vidaki
- Jagiellonian University (Poland): Wojciech Branicki, Ewelina Pośpiech, Aleksandra Pisarek
- Universidade de Santiago de Compostela (Spain) : Ángel Carracedo, Maria Victoria Lareu, Christopher Phillips, Ana Freire-Aradas, Ana Mosquera-Miguel, María de la Puente
- Medizinische Universität Innsbruck (Austria): Catarina Xavier, Antonia Heidegger, Leire Palencia-Madrid, Harald Niederstätter, Georg Ausserer Staubmann, Diana Daum, Anna Fürst, Walther Parson
- Universität zu Köln (Germany): Michael Nothnagel, Maria-Alexandra Katsara, Tarek Khellaf
- King's College London (United Kingdom): Barbara Prainsack, Gabrielle Samuel
- Klinikum der Universität zu Köln (Germany): Peter M. Schneider, Theresa E. Gross, Jan Fleckhaus
- Bundeskriminalamt (Germany): Ingo Bastisch, Nathalie Schury, Jens Teodoridis, Martina Unterländer
- Institut National De Police Scientifique (France): François-Xavier Laurent, Caroline Bouakaze, Yann Chantrel, Anna Delest, Clémence Hollard, Ayhan Ulus, Julien Vannier
- Netherlands Forensic Institute (Netherlands): Titia Sijen, Kris van der Gaag, Marina Ventayol-Garcia
- National Forensic Centre, Swedish Police Authority (Sweden): Johannes Hedman, Klara Junker, Maja Sidstedt
- Metropolitan Police Service, London (United Kingdom): Shazia Khan, Carole E. Ames, Andrew Revoir
- Centralne Laboratorium Kryminalistyczne Policji (Poland): Magdalena Spólnicka, Ewa Kartasinska, Anna Woźniak



#### Centres and investigators of the INFER Consortium

- BLKA Munich: Thorsten Hadrys, Angelika Fürst, Jakob Niewöhner, Lisa Marinelli, Diana Jakob,
- **BKA Wiesbaden:** Ingo Bastisch, Iris Buckel, Natalie Schneewind
- **LKA-BW:** Alexander Eberhard, Susanne Uhl, Susanne Schwarz
- Medizinische Universität Innsbruck (Austria): Antonia Heidegger, Lena Ewers, Charlotte Sutter, Walther Parson

#### Acknowledgements

- Charlotte Sutter (Innsbruck)
- Anna Olivieri, Vincenzo Agostini (Pavia)



