

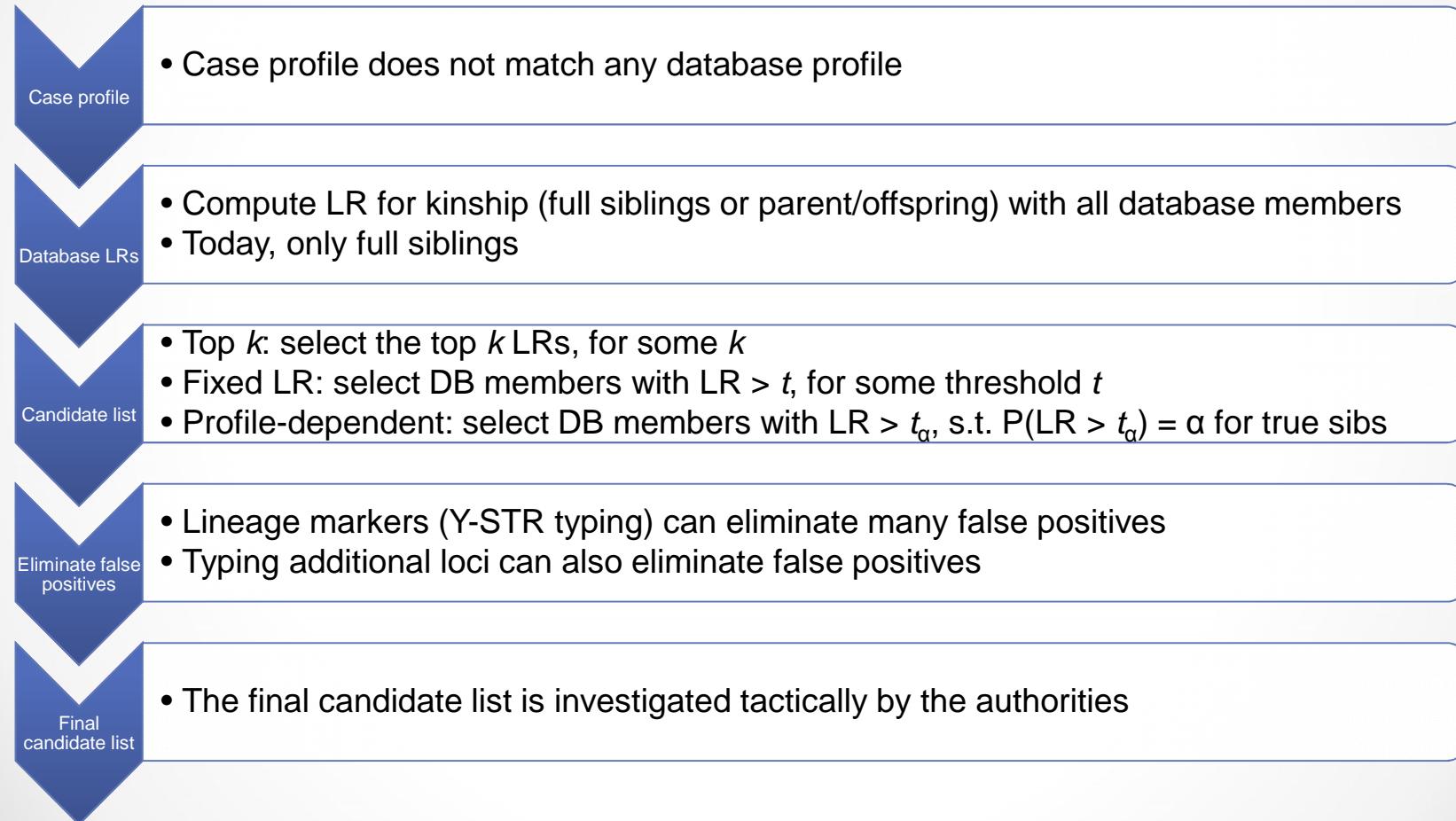
Optimal strategies for familial searching

Maarten Kruijver¹, Ronald Meester¹, Klaas Slooten^{1,2}

1) VU University, Amsterdam

2) Netherlands Forensic Institute, The Hague

30 May, 2014


Overview

Familial searching is the process of looking for close relatives of an offender in a DNA database

- The familial searching process
- Generating the candidate list
- Simulation studies
- Conclusions
- Questions

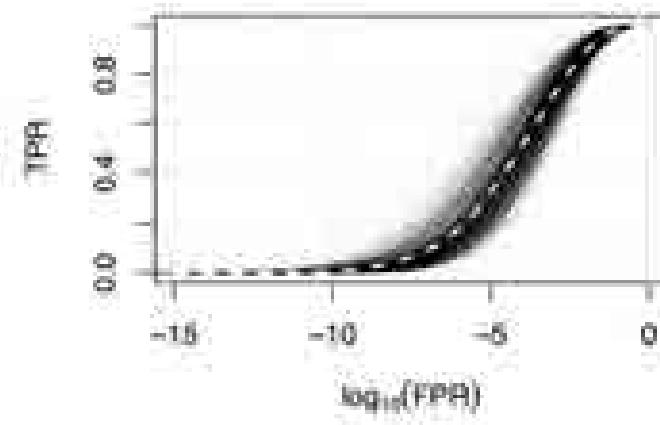
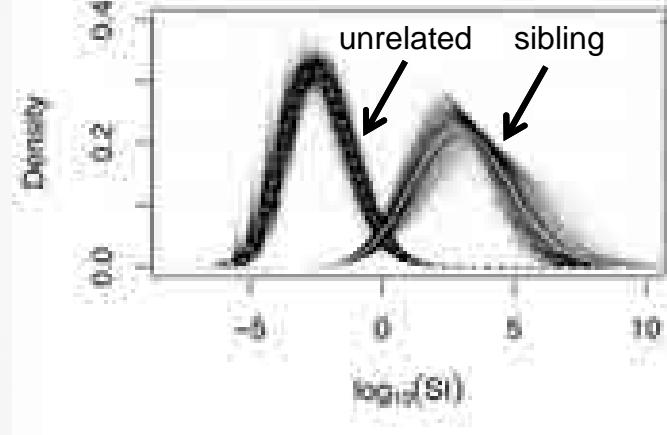
- Optimal strategies for familial searching

The familial searching process

- Optimal strategies for familial searching

Generating the candidate list

- Trade-off between workload (eliminating false positives) and probability of detection (PoD)



Workload and PoD per case are driven by:

- Case profile (rare alleles or common alleles?);
- Search strategy and tuning parameters (k , t , α);
- Database size (N).

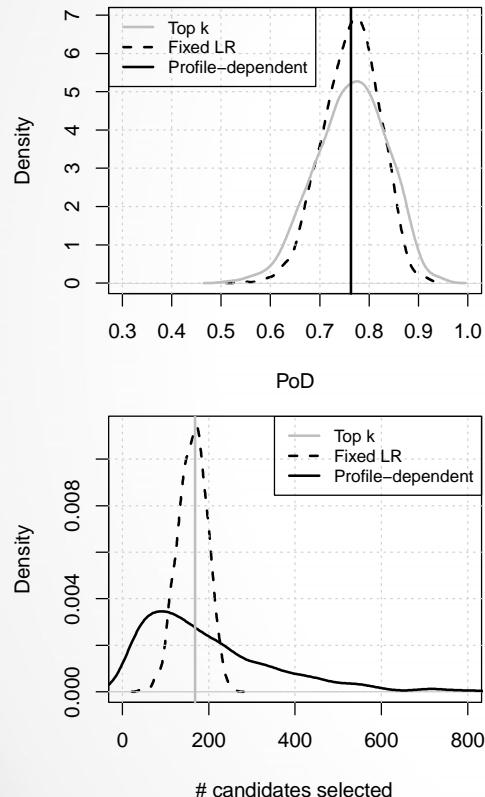
- Optimal strategies for familial searching

Case profile


- For 1,000 simulated SGMplus profiles, the SI-distribution is obtained with respect to a true full sibling and an unrelated person

- Distribution differs a lot between case profiles. Large effect on TPR and FPR.
- Variation is caused by rarity of the profile. Profiles with rare alleles are especially amenable to familial searching.
- Effect on search strategies is investigated next

- Optimal strategies for familial searching


Simulation: top k strategy (1,000 profiles)

- Large variation in PoD for fixed k
- Increasing k gives quickly diminishing returns in terms of PoD
- Using 15 instead of 10 loci makes it possible to increase DB size \sim 10 times, while retaining the PoD

- Optimal strategies for familial searching

The fixed-LR strategy is optimal

- Fixed-LR strategy is most efficient in the long-run: lowest FPR for given TPR
- How many more false positives with top k or profile-dependent threshold?
- Take top 168 strategy as point of reference in fixed DB ($N=100,000$). Tuning parameters (t, α) such that the average PoD coincides with top 168
- Fixing workload is cheap; fixing PoD is not

- Optimal strategies for familial searching

Conclusions

- Workload and PoD per case depend on case profile
- A fixed-LR threshold is optimal in the long run
- Fixing workload is cheap; fixing PoD not
- Results are easily reproduced using the R-package DNAprofiles, freely available from CRAN

Questions?

- Optimal strategies for familial searching

Familial Searching on Complex Mixtures

Athens, ESWG of the ISFG

30 May 2014

Klaas Slooten
Netherlands Forensic Institute /
VU University Amsterdam

28 May 2014

Familial Searching

When we do not find a trace donor in a database, we look for his relatives instead.

For a single source trace, this means that we evaluate the LR for hypotheses

- Hp: database member is related to trace donor
- Hd: database member is unrelated to trace donor

For a given type of relatedness. In practice, only parent-child and sibling relationships are considered. LR's are called PI and SI respectively.

Legislation

Familial Searching is carried out regularly in the following jurisdictions:

- UK
- California
- New Zealand
- The Netherlands

Dutch database: almost 200,000 profiles.

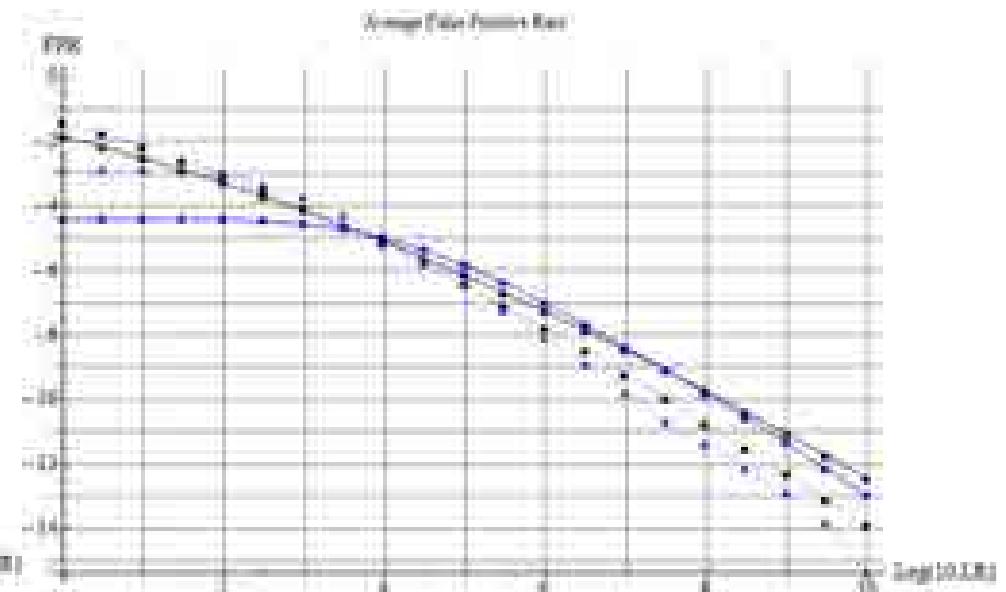
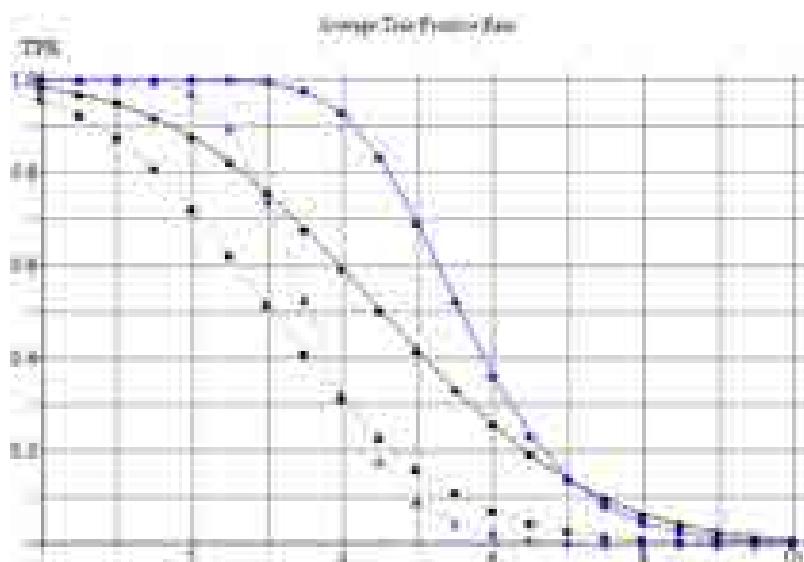
Oldest half of them typed with SGMPlus (10 loci) and the remainder typed with NGM (=SGMPlus + 5 other loci)

Feasibility of a FS

Can be expressed in several ways:

1. Probability for a relative to rank in the top-n for various n
2. Probability for a relative to exceed a LR-threshold (True positive rate)
3. Probability for an unrelated individual to exceed a LR-threshold (False Positive Rate)

Ranking is illustrative but depends on the database size.

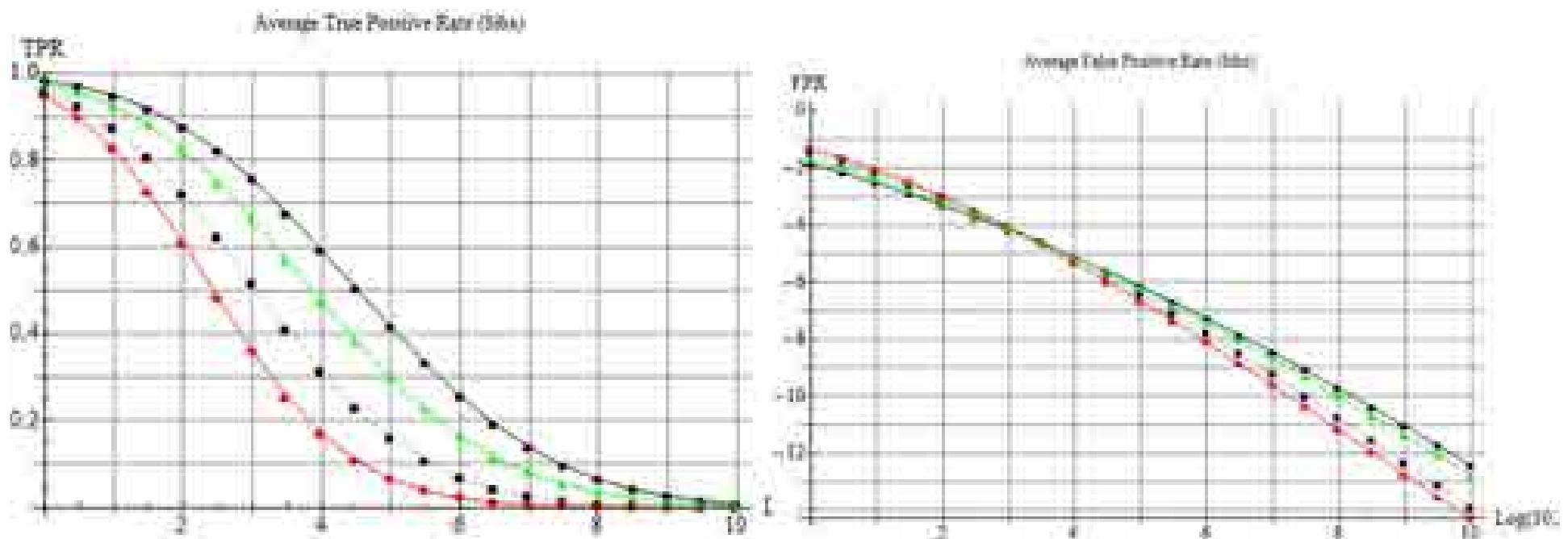


TPR and FPR can be used to choose a strategy, for any database.

Moreover, it is known that selecting candidate relatives is most efficient when this is done with a LR threshold.

Best scenario: single source full profile

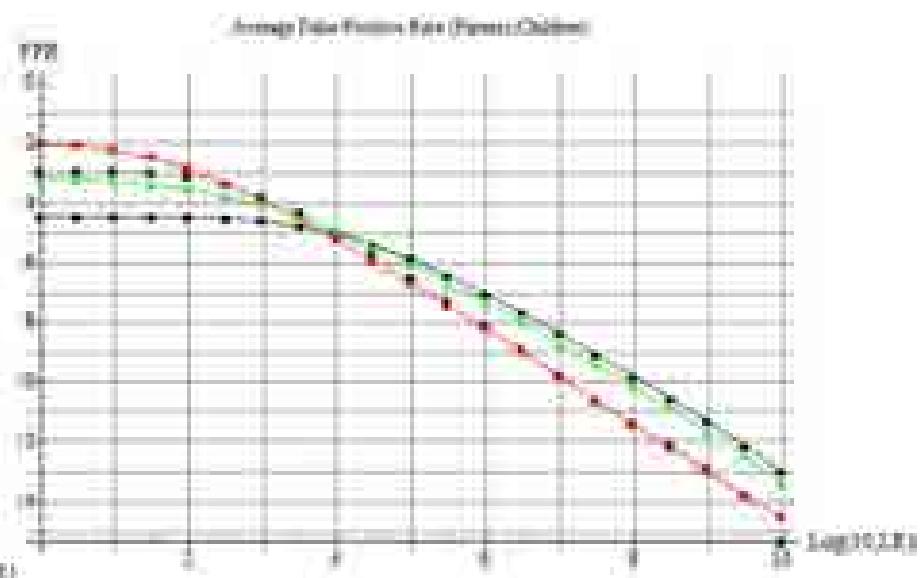
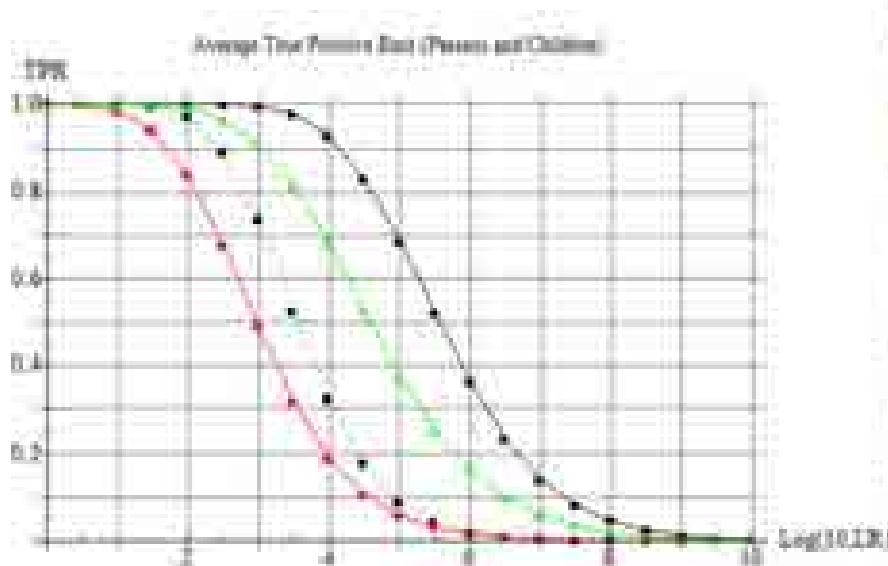
In this case, FPR and TPR for sibs are as follows, on 10 and 15 loci:

Mixtures?


In a mixture, the profile of the PoI is mixed up with others.
Is it still feasible to find relatives of the donors?

Chung, Fung, Hu (2010) and Chung, Fung (2013) considered FS on 2p-mixtures ("victim"+"offender") in the absence of dropout and with the victim profile known.

In that case, the offender profile can be deduced on some loci, and restricted to a few possibilities on the others, and it turns out that a FS is still quite effective.

TPR and FPR, 15 loci, sibs, mixtures no dropout

TPR and FPR, 15 loci, parents and children

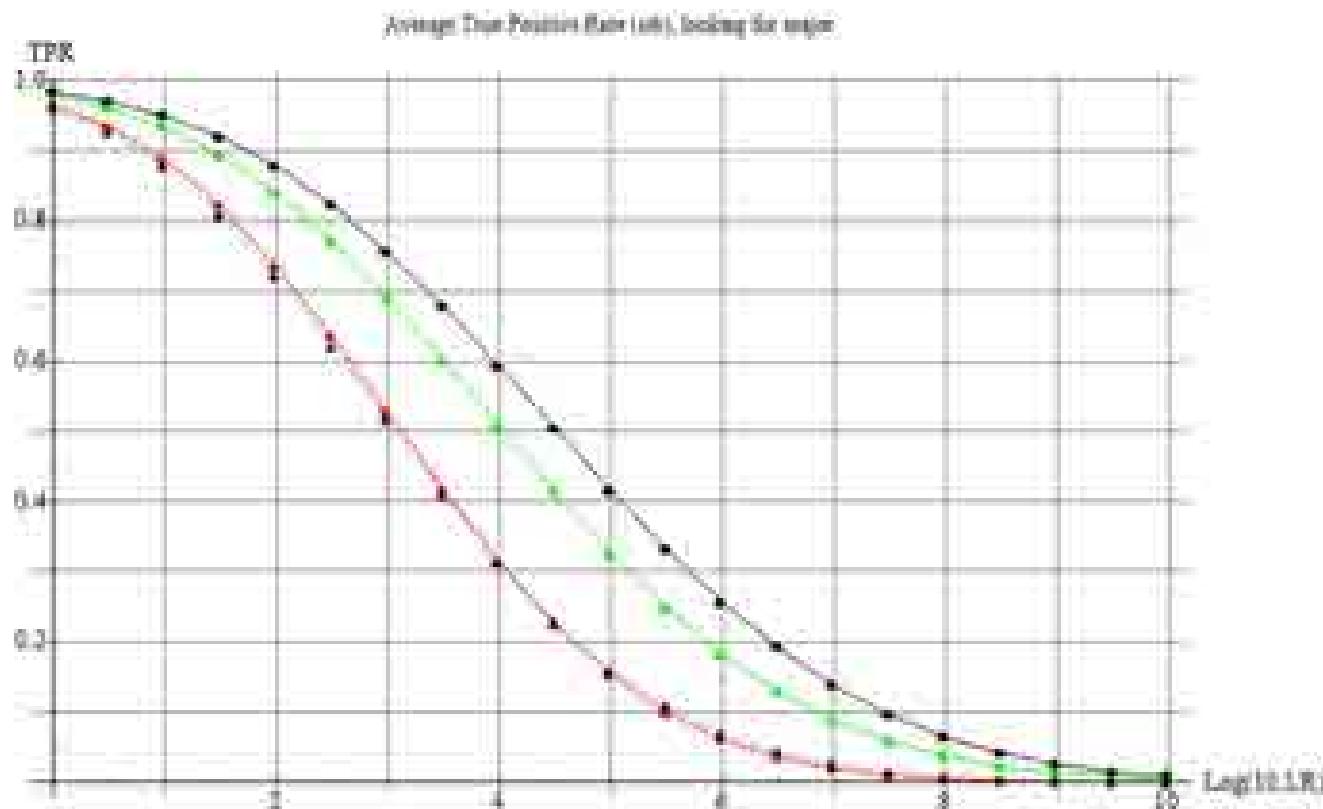
Black: full: single source NGM, dotted: ss SGMPlus
Green: Victim Known, Red: No donor known

Results 2p with allelic dropout

We have written a program, called MixKin, for calculations with mixtures and relatedness, taking dropout and drop-in into account.

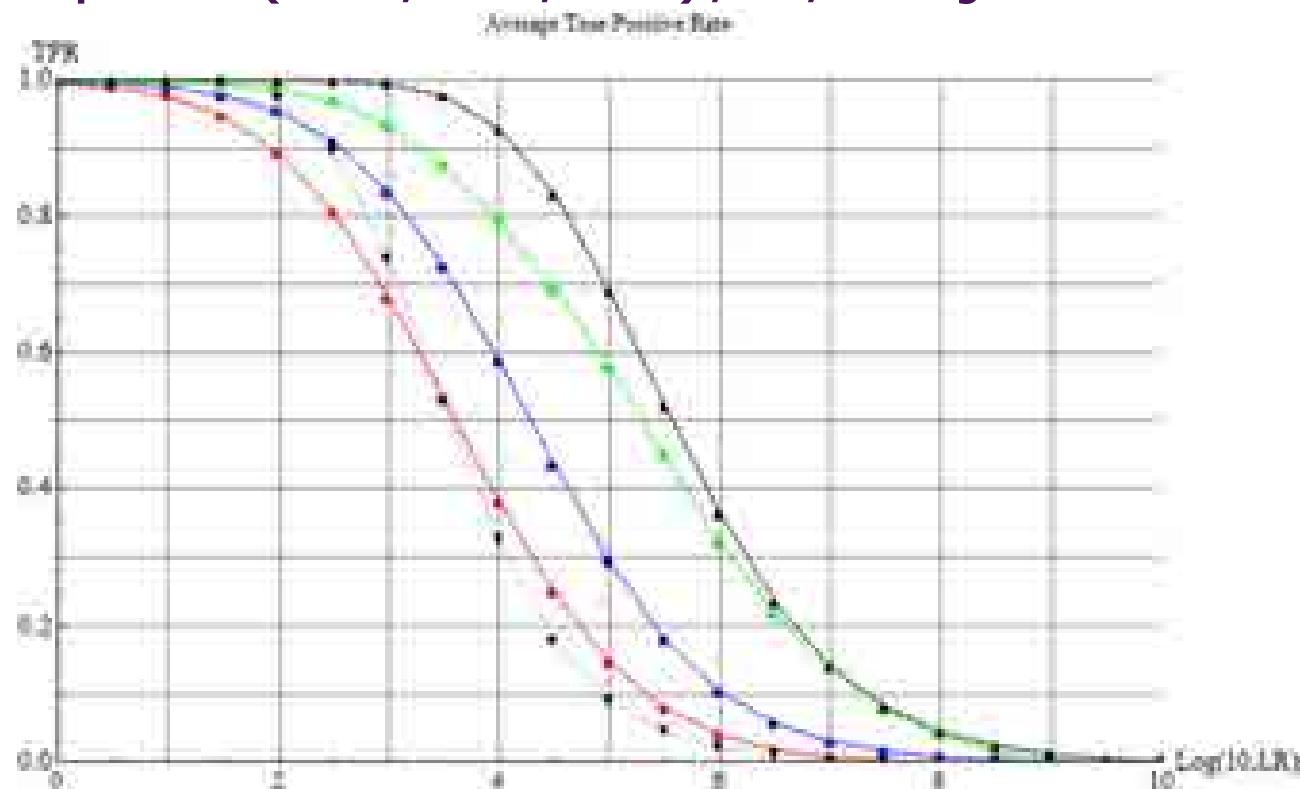
Dropout probabilities can be chosen per contributor to the mixture.

Eg


Hp: brother of PoI with dropout d1 and random person with dropout d2 are the contributors

Hd: random persons with dropout d1 and d2.

Or conditioned on a “victim”. We’ll show results for sibs and NGM, 2p and 3p. Assume three replicates for the mixture.


Different dropout: (0.05, 0.3) look for major

Black: full: single source NGM, dotted: ss SGMPlus; Green: Victim Known, Red: No donor known. (FPR almost same for all)

3p dropout (0.1,0.4,0.7), PI, major donor

Black: ss NGM (full) ss SGMPlus (dotted)
Red: three unknowns, blue: 0.4 donor known, green: 0.4 and 0.7
donors known

Conclusions

- Familial Searching is regularly done on single source traces using 10 loci, but not on mixtures
- However, NGM on mixtures can often outperform SGMplus on single source traces
- So there is no reason not to carry out a Familial Search on mixtures
- Mixtures with dropout can perform better than mixtures without! At least if one uses replicates of the mixture. In that case, a mixture with donors with different dropout can be deconvoluted more easily than one without dropout, or with equal dropout.
- Even 3p mixtures are not hopeless, especially with one or two donors known.
- Questions? K.slooten@nfi.minvenj.nl

DEVELOPMENT OF AN IN-HOUSE DNA PROFILE DATABASING/MATCHING SOFTWARE SUITE

HUSEYIN SEVAY

**Department of Information Systems Engineering
Near East University, Nicosia, Cyprus**

OVERVIEW

- About ...
- Problem
- Goals and Motivation
- Tools and Advantages
- Proposed Software Architecture
- Current status
- Conclusions

ABOUT ...

- Cyprus has a missing persons project (MPP)
- Expertise in DNA forensic analysis will continue to be increasingly important in years to come in Cyprus, well beyond the MPP
- Collaboration with Turkish Cypriot DNA Lab (TCDL) in conducting academic research
- Main theme:
 - Local capacity building
 - Contribution to our communities in Cyprus
 - Sharing our experiences

WHAT IS OUT THERE

- A wide variety of both commercial and public-domain software packages for DNA
 - Profile databasing
 - Searching (paternity, kinship, familial, direct)
 - Workflow management/laboratory information management
 - ... other related tasks

SOFTWARE PACKAGES

- DNA-View, Qualitype® Abetter LIMS, Qualitype GeneProof®2, GeneMapper® ID/X, Converge™ (DNA Workflow, Direct Match, Familial Match, Kinship and Paternity), Familias, FamLink/X, GenePop, Arlequin, PowerStats
- ... etc ...

PROBLEM

- For small-scale labs, commercial software could be *cost-prohibitive*
- Different labs/projects have different needs
- Different software packages, different interfaces, different learning curves
- Data format conversion is a big hassle
- Not everyone is a programming expert
- Error-prone manual handling of data

GOALS

- To develop a web-based, secure, user-friendly all-in-one software suite
- Automate main DNA profile databasing and matching tasks for a small lab
- Minimize human error
- Handle Y-STR, autosomal STR, mtDNA data, and other systems in the future
- **Leverage new technologies**
 - Programming languages, DB systems, etc.

MOTIVATION

- Response to local needs such as the CMP project and/or TCDL in Cyprus
- Need for databasing, FRS profiles for multiple systems (Y-STR, mtDNA, autosomal), familial search with skeletal/dental data vs FRS data, population statistics, etc.
- Free/open source spirit
- Platform independence

PYTHON

Wikipedia says:

- Conceived in late 1980s
- Started to be implemented late 1989
- Python 2.0 release: October 2000
- Python 3.0 release: December 2008

WHAT PYTHON OFFERS

- High-level type-free programming
- High-level built-in data structures
 - Lists, tuples, dictionaries
- Lots and lots of libraries
 - csv, xlwt/xlrd, ConfigParser, email, PyQt, SymPy, PIL, HTTPLib2, Matplotlib, ReportLab, NumPy, SciPy, etc.

FROM SCHEME TO PYTHON

WISDOM AND WONDER

SCIENCE AND ART

[Home](#) [About Me](#) [Hacks](#) [Archive](#)

Why MIT switched from Scheme to Python

Costanza asked Sussman why MIT had switched away from Scheme for their introductory programming course, 6.001. This was a gem. He said that the reason that happened was because engineering in 1980 was not what it was in the mid-90s or in 2000. In 1980, good programmers spent a lot of time thinking, and then produced spare code that they thought should work. Code ran close to the metal, even Scheme — it was understandable all the way down. Like a resistor, where you could read the bands and know the power rating and the tolerance and the resistance and $V=IR$ and that's all there was to know. 6.001 had been conceived to teach engineers how to take small parts that they understood entirely and use simple techniques to compose them into larger things that do what you want.

But programming now isn't so much like that, said Sussman. Nowadays you muck around with incomprehensible or nonexistent man pages for software you don't know who wrote. You have to do basic science on your libraries to see how they work, trying out different inputs and seeing how the code reacts. This is a fundamentally different job, and it needed a different course.

So the good thing about the new 6.001 was that it was robot-centered — you had to program a little robot to move around. And robots are not like resistors, behaving according to ideal functions. Wheels slip, the environment changes, etc — you have to build in robustness to the system, in a different way than the one SICP discusses.

And why Python, then? Well, said Sussman, it probably just had a library already implemented for the robotics interface, that was all.

(via [wingolog](#))

This was written by Grant. Posted on Tuesday, March 24, 2009, at 12:29. Filed under [Link](#). Tagged [Learning](#), [philosophy](#), [Programming](#), [Python](#), [Scheme](#), [Teaching](#). Bookmark the [permalink](#). Follow comments here with the [RSS feed](#). [Post a comment](#) or leave a [trackback](#).

MongoDB

Wikipedia says:

- Development began in 2007
- Became a stand-alone product in 2009
- Production ready since March 2010

WHAT MongoDB OFFERS

- Open source, *document-oriented* No-SQL DB
- No tables and rows as in SQL – No relations!
- Instead schema-free documents in Binary JavaScript Object Notation (**BSON**)
- No special DB language to *create, read, update, and delete* (CRUD)
- Instead a programmatic approach (function calls) to CRUD
- Powerful scale-up and replication features

AUTOBAHN

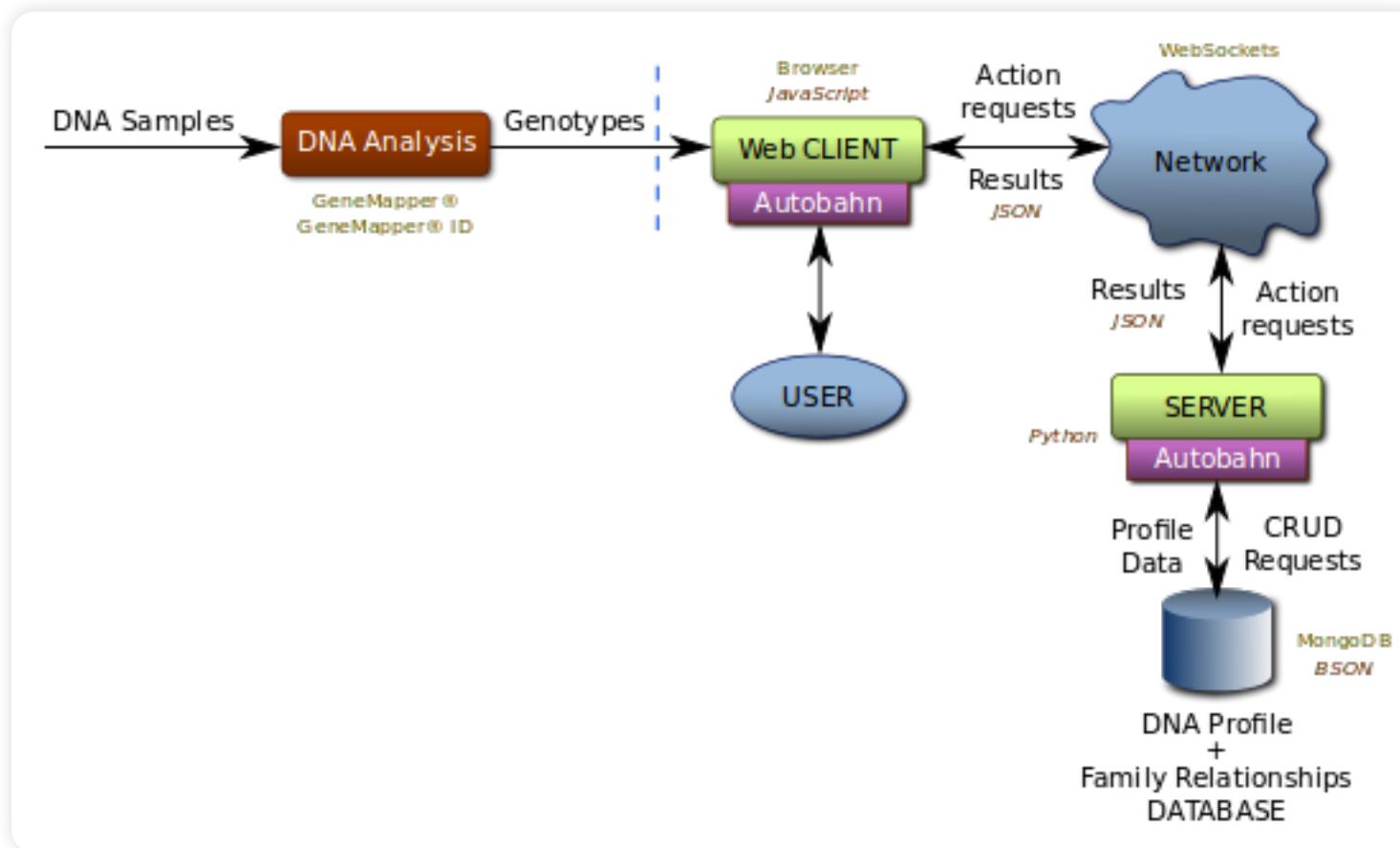
- Open-source real-time framework
- Provides implementations of the **WebSocket** protocol and Web Application Messaging Protocol (**WAMP**)
- WebSockets allow bidirectional real-time messaging on the Web
- WAMP provides *asynchronous* Remote Procedure Calls and Publish & Subscribe on top of WebSocket protocol

ADVANTAGES 1/2

- STR & mtDNA data is symbolic
- Mapping: locus → maternal/paternal alleles
- JavaScript objects, Python dictionaries, and JSON/BSON data format are compatible
- An example:

```
{  
  D21S11: ["25", "34.2"],  
  CSF1P0: ["8", "9"],  
  FGA:    ["20", "22"],  
}
```

JavaScript


```
{  
  "D21S11": ["25", "34.2"],  
  "CSF1P0": ["8", "9"],  
  "FGA":    ["20", "22"],  
}
```

Python

ADVANTAGES 2/2

- Can implement symbolic math (SymPy)
- MongoDB server-executed custom JavaScript query capability makes direct partial matches possible
 - 70%, 80%, 100%, etc.

PROPOSED ARCHITECTURE

CURRENT STATUS

- A proof of concept for proposed architecture
- Direct percentage match system
- Computation of allele frequencies/key statistical parameters of forensic interest
- Automatic computation of k-values, F/Θ ...
- Investigation of a symbolic computation model for DNA search statistics (SymPy)

CONCLUSIONS

- Critical for small-scaled labs to have an all-in-one solution
- Web offers great potential for visualization
- Working progress ...
- Leveraging of new technologies for current and future needs
- Creation of a cost-effective solution

ACKNOWLEDGMENTS

- Dr Cemal Gürkan, TCDL
- Salim Jibrin, MSc student

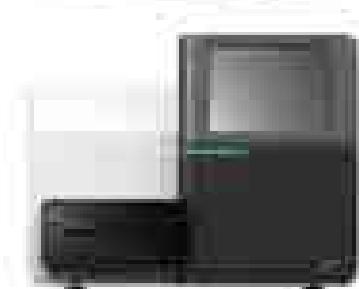
THANKS

hsevay@gmail.com

STR sequencing on second generation sequencing platforms

Eszter Rockenbauer, MSc, PhD

Section of Forensic Genetics
Department of Forensic Medicine
Faculty of Health and Medical Sciences
University of Copenhagen
Denmark

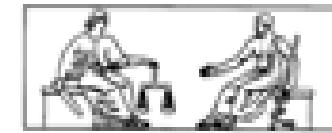


SGS in Copenhagen

GS Junior 454 Sequencing system (2009)

- mtDNA sequencing
- STR sequencing

MiSeq (2013)


- mtDNA sequencing
- miRNA
- X chromosome haplogroups etc ...
- Illumina SGS Forensic kit >200 markers

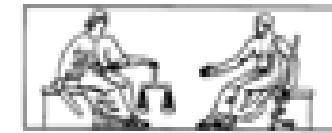
Ion PGM™ (2013)

- Ion Torrent™ HID SNP assay (169plex)
- Ion Torrent™ STR 10plex assay

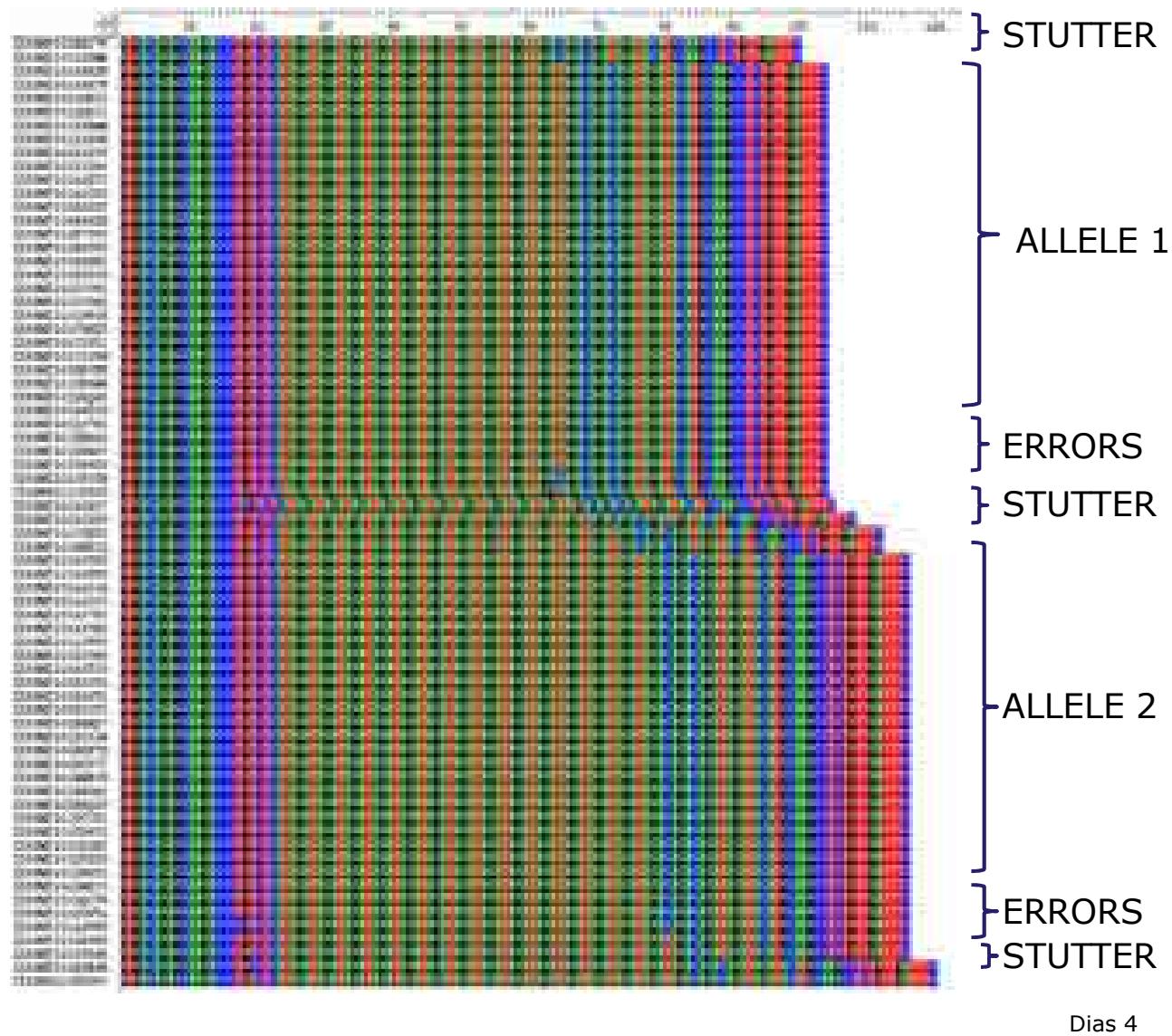
STR sequencing using SGS

Strategy on the GS Junior*

- Amplicon sequencing with Multiplex IDentifiers (MIDs) in the PCR primer sequence
- Quantify and pool amplicons into a library
- emPCR and sequencing


Data analysis

- Filter by MID
- Filter by STR
- At least one primer binding region must be present
- Both STR ends must be present
- Trim the reads according to flanking sequence
- Alignment in BioEdit (Ibis Biosciences)



*Fordyce et al., Biotechniques 51 (2011) 127-133

STR sequencing using SGS

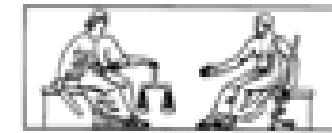
STR sequencing using SGS

SGS based allele frequency database

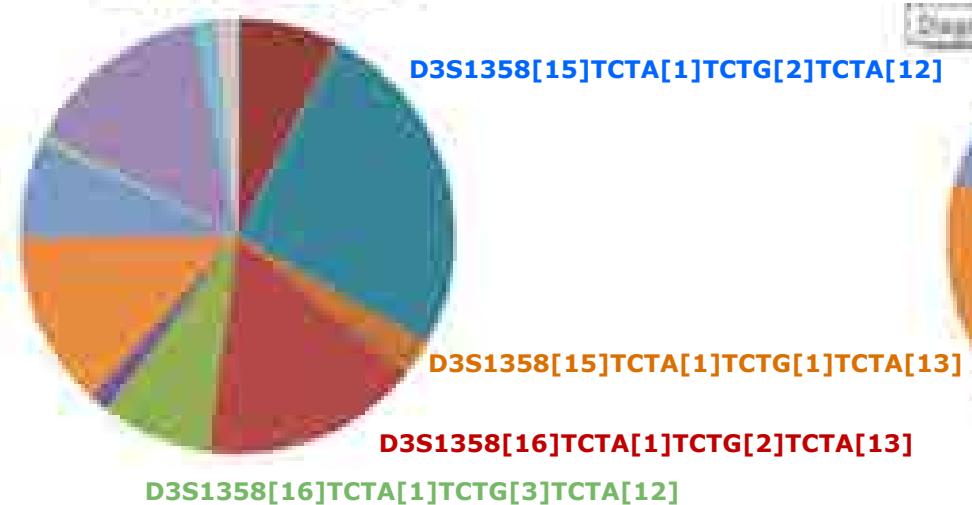
- 394 sequenced alleles in unrelated Danes*
- 256 sequenced alleles in unrelated Somalis
- D3S1358, D12S391, D21S11

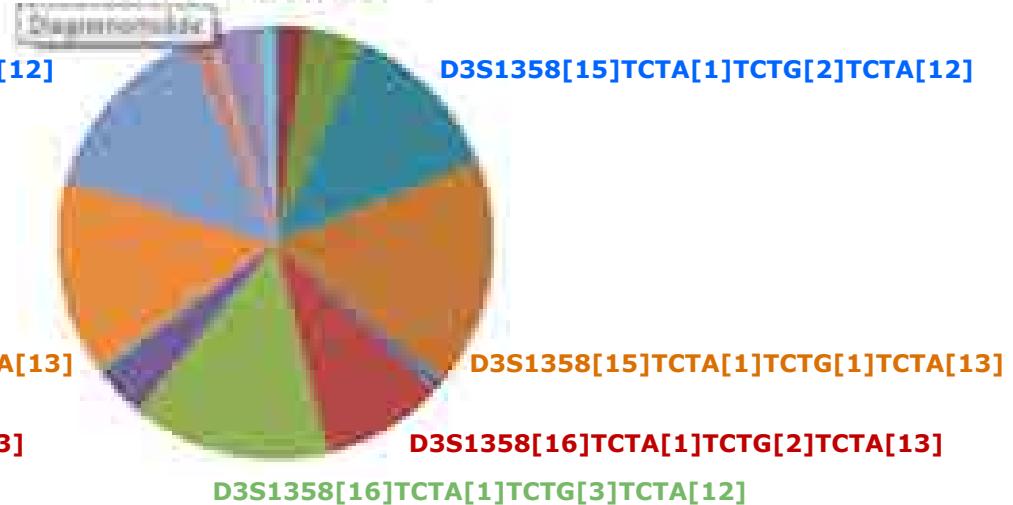
No. of alleles in total

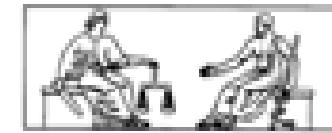
	PCR-CE	SGS
D3S1358	9	20
D12S391	19	69
D21S11	17	49
Total	45	138


No. of alleles only seen in one group

	Danes	Somalis
D21S11	4	3
D12S391	30	16
D3S1358	15	20
Total	49	39


*Gelardi, Rockenbauer et al., in press


STR sequencing using SGS



Danes D3S1358

Somalis D3S1358

STR sequencing using SGS

- STR loci: D3S1358, D12S391, D21S11

Forensic statistics – Danes*

	PCR-CE	SGS
Power of discrimination	0.9999	0.999995
Paternity exclusion power	97.1	99.2
PI (trio)	59.2	415.0
PI (duo)	16.1	82.4

Forensic statistics - Somalis

	PCR-CE	SGS
Power of discrimination	0.9997	0.999998
Paternity exclusion power	94.0	99.6
PI (trio)	41.1	544.0
PI (duo)	12.4	103.0

*Gelardi, Rockenbauer et al., in press

STR sequencing using SGS

STR nomenclature*

- New guidelines are needed
- Locus name used in forensic genetics
- Length of repeat/length of repeat unit
- Sequence details
- Polymorphisms in the flanking region (SNPs and indels)

D12S391[21]AGAT[11]AGAC[9]AGAT[1]

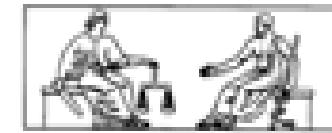
D12S391[21]AGAT[11]AGAC[10]

D12S391[21]AGAT[12]AGAC[8]AGAT[1]

D12S391[21]AGAT[12]AGAC[9]

D12S391[21]AGAT[13]AGAC[7]AGAT[1]

D12S391[21]AGAT[13]AGAC[8]


D12S391[21]AGAT[13]GGAC[1]AGAC[7]

D12S391[21]AGAT[14]AGAC[6]AGAT[1]

D12S391[21]AG**GT**[1]AGAT[12]AGAC[9]

STR sequencing using the Ion PGM

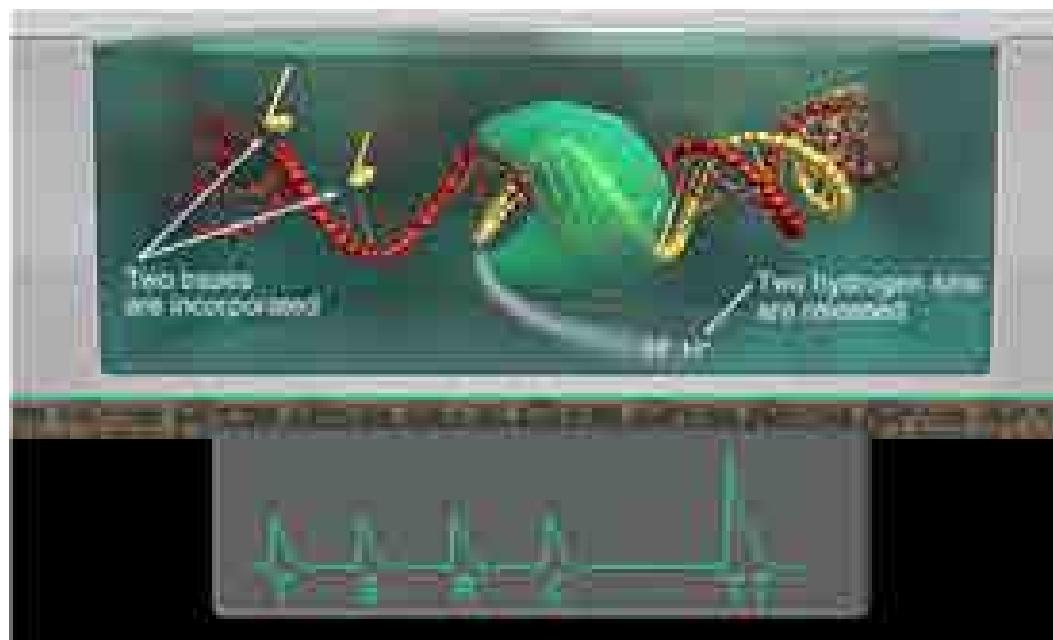
Ion Torrent™ STR 10plex assay

- 10plex STR kit with forensic core STRs designed for the Ion PGM
- Based on the CODIS system
 - AMEL
 - CSF1PO
 - D16S539
 - D3S1358
 - D5S818
 - D7S820
 - D8S1179
 - TH01
 - TPOX
 - VWA

Concordance study (10 Danes)*

- Complete concordance with AmpFISTR® IDFL Plus PCR Amplification Kit

*Fordyce et al., in prep.



STR sequencing using the Ion PGM

The Ion Torrent STR 10plex

- Amplification with multiplex PCR
- Amplicon sizes 70-170 bp
- Ligation of barcoded adaptors
- Quantification, emPCR and sequencing*

*Semi-conductor technology (Rothberg et al. 2011)

Dias 10

STR sequencing using the Ion PGM

Data analysis with the Torrent Suite v4.0.2 software

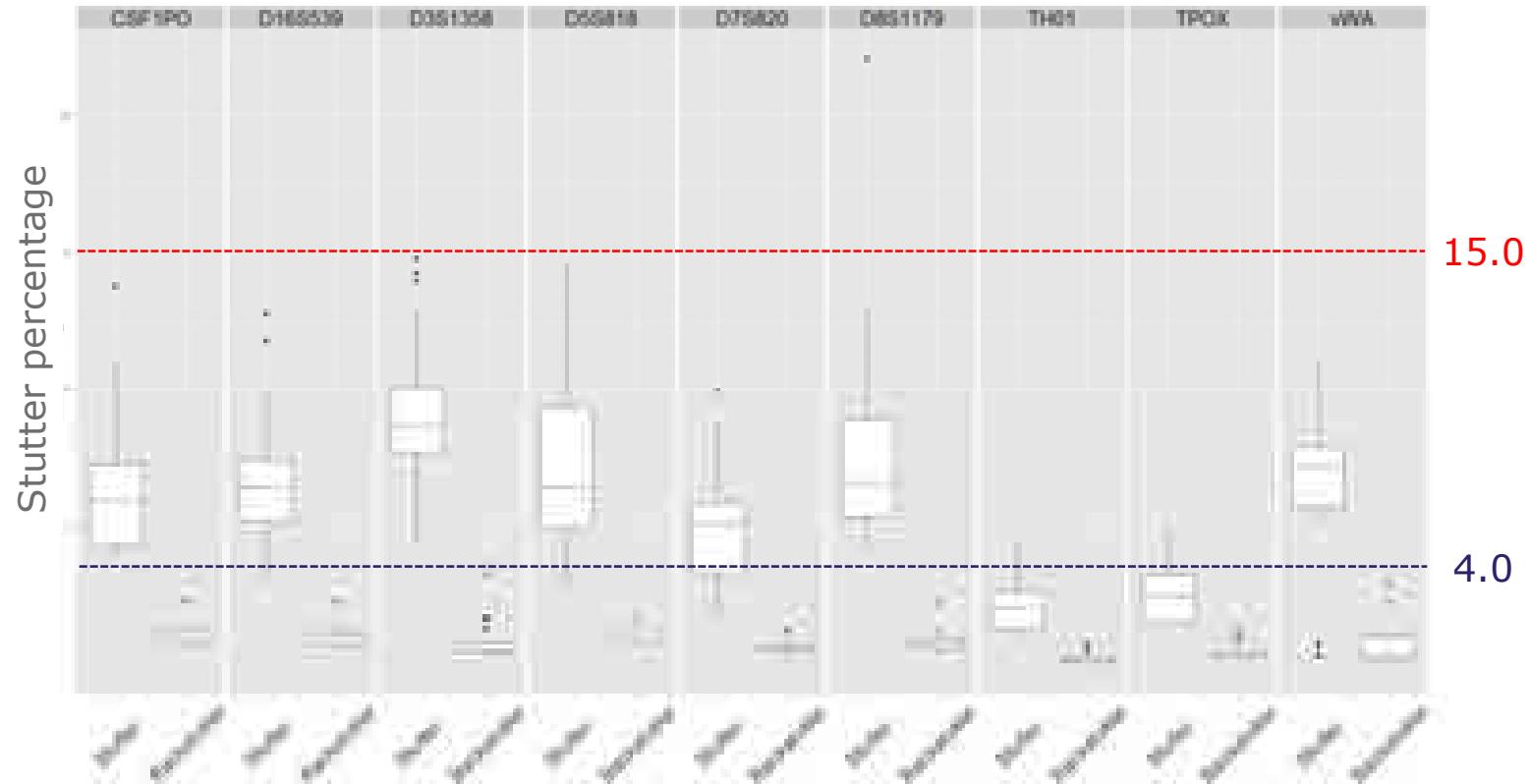
HID_STR_Genotyper plugin:

- Profile summary with allele calls
- Coverage plots
- Locus data (only STR sequence!)

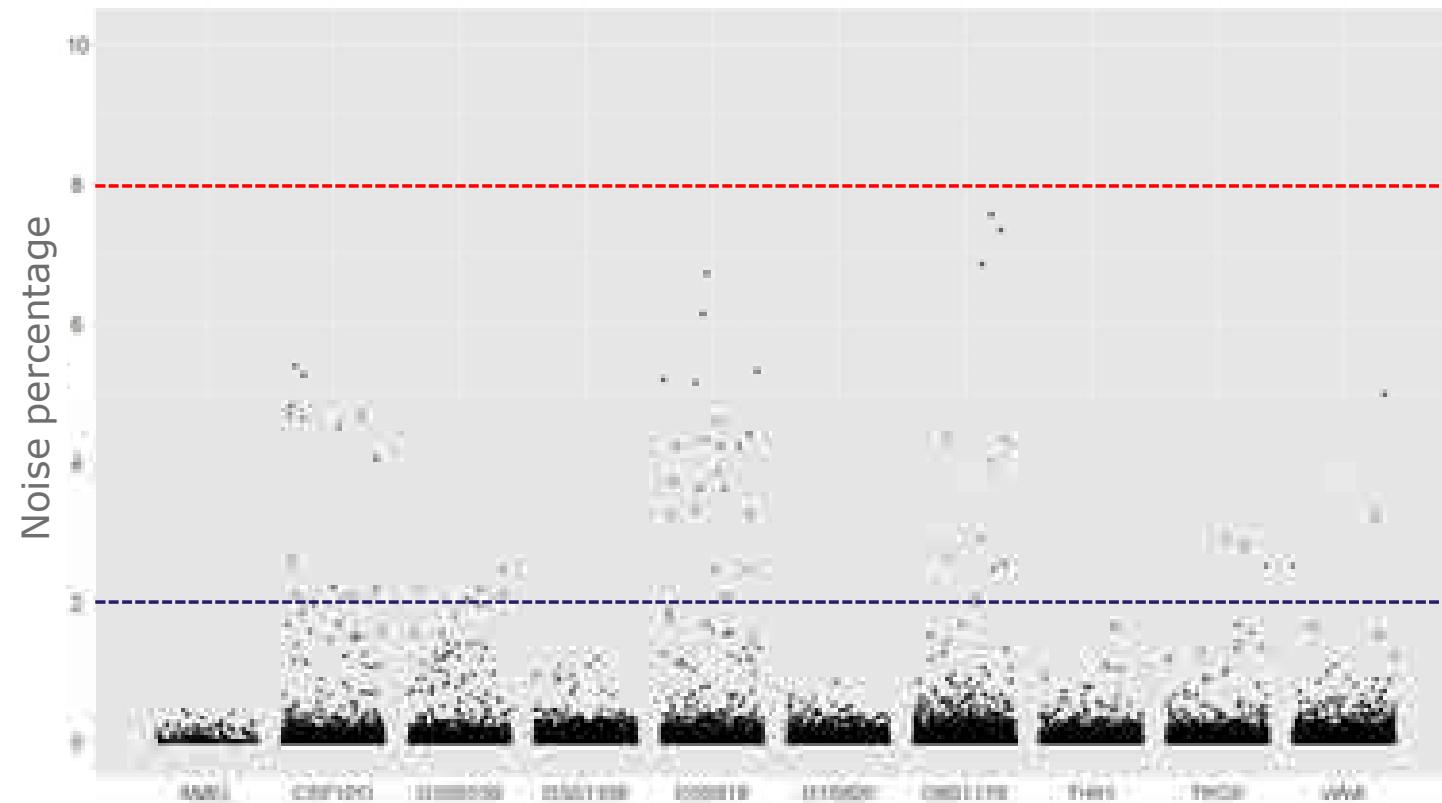
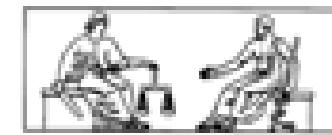
Flanking sequences

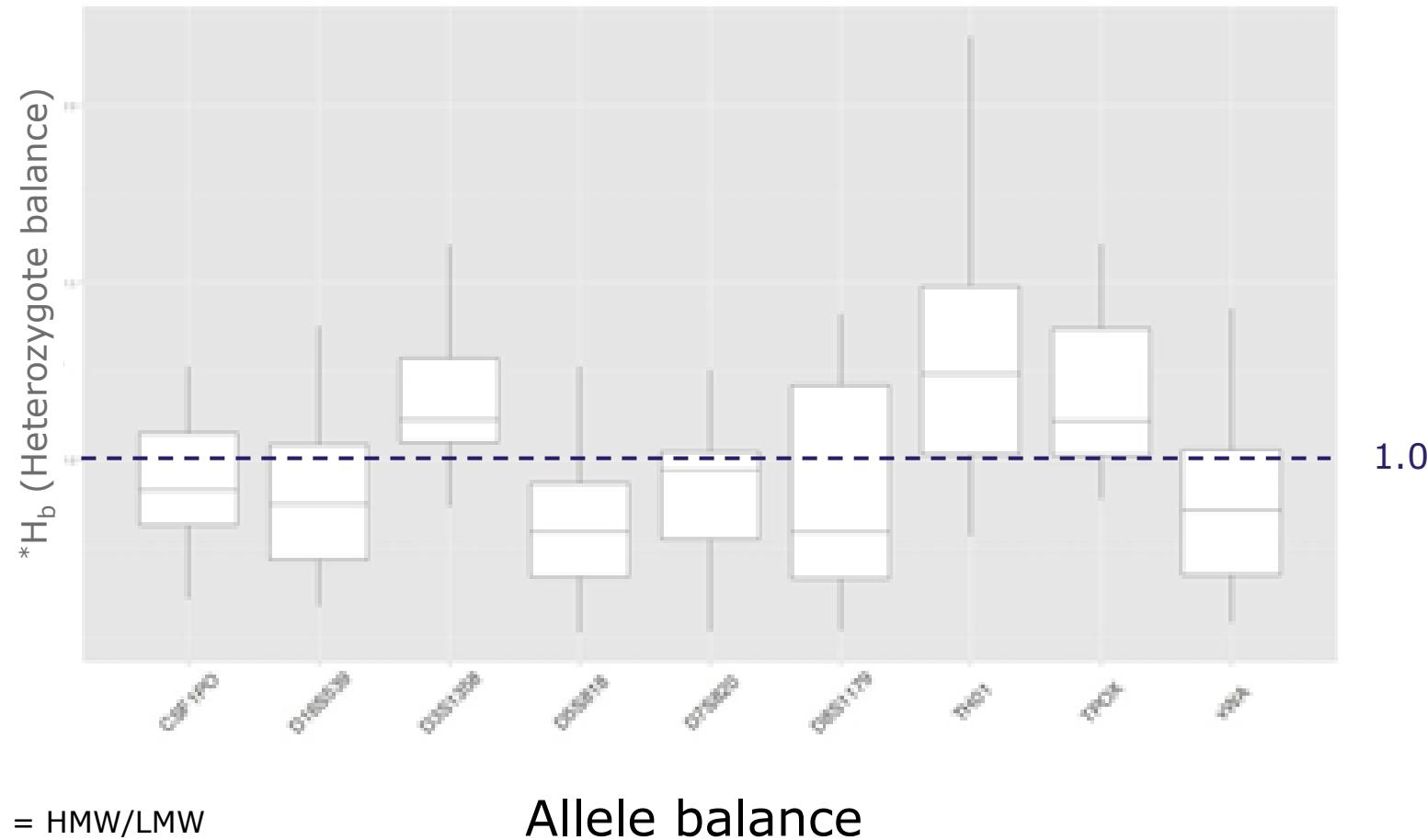
- Available from raw data (BAM-files)

Exportable text files with additional data


- Genotype file and histograms

*Fordyce et al., in prep.



STR sequencing using the Ion PGM

STR sequencing using the Ion PGM

STR sequencing using the Ion PGM

$$*H_b = \text{HMW/LMW}$$

Allele balance

Acknowledgements

Professor and Director of the Institute:
Niels Morling

Postdoc:
Sarah Fordyce

Forensic geneticists:
Claus Børsting
Helle S. Mogensen
Lena Poulsen

Students:
Chiara Gelardi
Johanna Manninen
Sigrun Dalsgaard


Thank you for your attention

Evaluation of genetic testing using NGS of sudden cardiac death genes in sudden unexplained deaths

Henrik Grèen

Associate Professor in Pharmacogenetics
Department of Forensic Genetics and
Forensic Toxicology
National Board of Forensic Medicine
Sweden

Genetics in Sudden Unexpected Deaths

Using standard forensic autopsy routines it is often difficult to determine the causes of Sudden Cardiac Deaths (excluding coronary artery diseases).

In some cases no structural abnormalities can be detected: “autopsy negative” or “sudden unexplained death” (SUD).

Macroscopically and/or microscopically visible myocardial abnormalities can be seen in some cases

Studies have shown that sudden unexplained death to a high extent is caused by genetic cardiac disorders^{1,2}

1 Wisten, A., et al., Mutation analysis of cases of sudden unexplained death, 15 years after death: prompt genetic evaluation after resuscitation can save future lives. *Resuscitation*, 2012. 83(10): p. 1229-34.

2 Skinner, J.R., et al., Prospective, population-based long QT molecular autopsy study of postmortem negative sudden death in 1 to 40 year olds. *Heart rhythm : the official journal of the Heart Rhythm Society*, 2011. 8(3): p. 412-9.

Genetics in Sudden Cardiac Deaths – Our approach

Screening of multiple genes linked to SCD associated diseases.

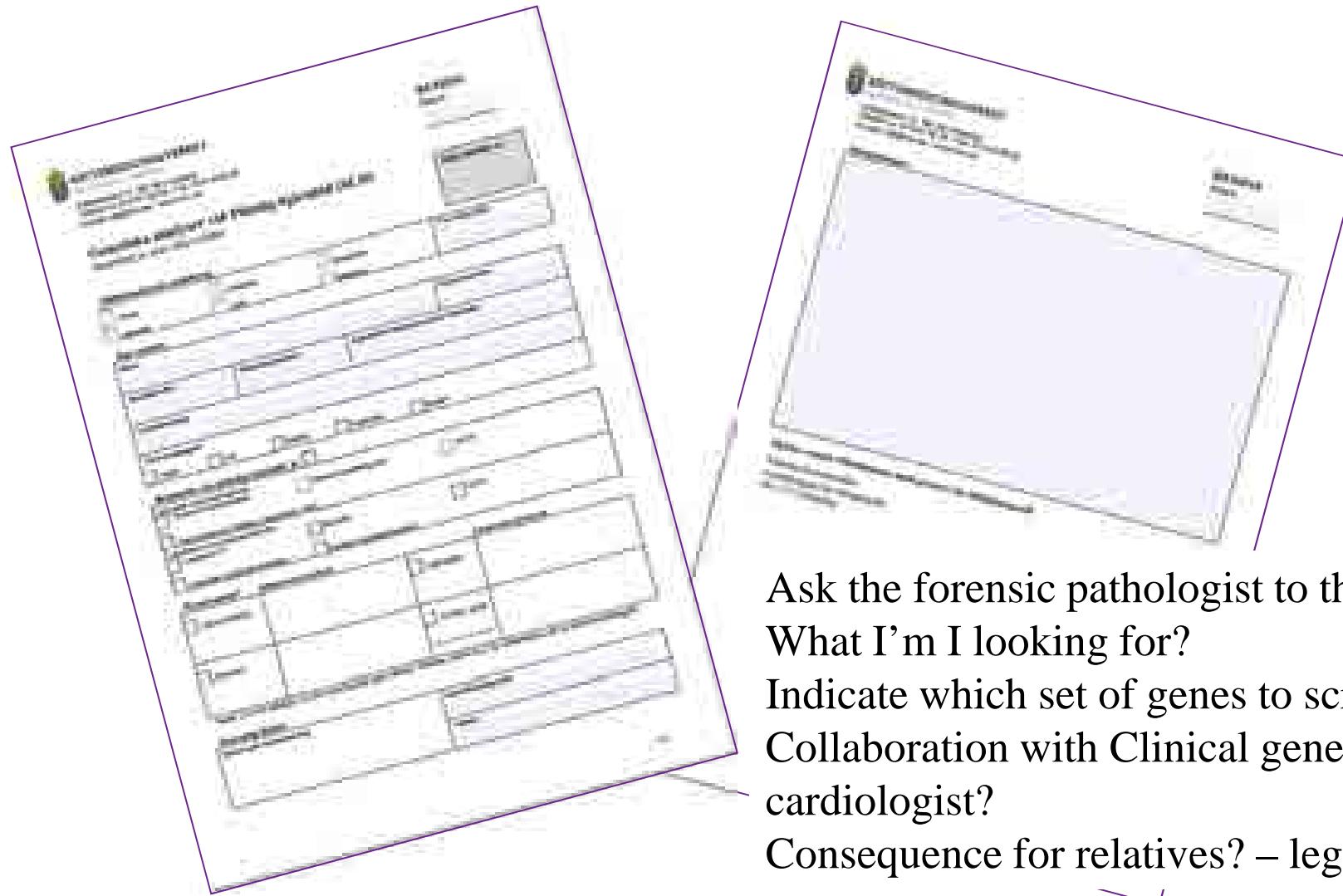
Large panel for several diseases / syndromes

Limit the bioinformatics to the genes of the specific sample

Prediction of genetic variants.

How can we help the forensic pathologist?

How do we interpret new variants?


Large gene panel for forensic use

Analyzed by several certified labs in the world for and literature references for disease associated genes

Genes divided into:
High and low priority genes

Long QT Syndrome	Short QT syndrome	Brugada syndrome	CPVT	Idiopathic Ventricular Fibrillation	Hypertrophic Cardiomyopathy	Dilated Cardiomyopathy	Marfan Syndrome/ Loeys-Dietz Syndrome/ Familial Thoracic Aortic Aneurysms and Dissections	ARVC	Familjär hyperkolesterol
AKAP9	CACNA1C	CACNA1C		CACNA1C	ACTC1	ABCC9	ACTA2	DES	APOb
ANK2	CACNA2D1	CACNB2	CASQ2	CACNA2D1	ACTN2	ACTC1	COL3A1	DSC2	LDLR
CACNA1C	CACNB2	GPD1L	KCNJ2	CACNB2	CAV3	ACTN2	COL5A1	DSG2	LDLRAP1
CAV3	KCNH2	KCNE3	RYR2	KCNJ8	CSRP3	ANKRD1	COL5A2	DSP	PCSK9
KCNE1	KCNJ2	SCN1B			FHL1	BAG3	FBN1	JUP	
KCNE2	KCNQ1	SCN3B			GLA	CSRP3	TGFBR1	PKP2	
KCNH2		SCN5A			LAMP2	DES	TGFBR2	RYR2	
KCNJ2					MYH6	DMD			TGFB3
KCNJ5					MYH7	DSG2			TMEM43
KCNQ1					MYL2	EMD			
SCN4B					MYL3	LDB3			
SCN5A					PLN	LMNA			
SNTA1					PRKAG2	MYBPC3			
					TCAP	MYH6			
					TNNC1	MYH7			
					TNNI3	NEXN			
					TNNI3	RBM20			
					TNNT2	SCN5A			
					TPM1	TAZ			
					TTN	TCAP			
					TTN	TMPO			
					VCL	TNNC1			
						TNNI3			
						TNNT2			
						TPM1			
						TTN			
						VCL			
					CACNA2D1	ANK2			
					ANKRD1	CAV3	FBN2	TTN	
					BAG3	DSC2	MYH11		
					LDB3	DSP	MYLK		
					MYBPC3	FHL1	SMAD3		
					MYLK2	FHL2			
					MYOZ2	GLA			
					NEXN	LAMP2			
					RYR2	MYL2			
					VCL	NEBL			
						PKP2			
						PLN			
						PRKAG2			
						TTR			

Referral

Ask the forensic pathologist to think of:
What I'm I looking for?
Indicate which set of genes to screen for.
Collaboration with Clinical geneticist/
cardiologist?
Consequence for relatives? – legislation?

Sample material, target enrichment and sequencing

- Blood from the heart, femoral vein (Forensic toxicology) or heart muscle
- QC prior to target enrichment
 - Nanodrop: 260/230 (>1.4), 260/280 (>1.7) – ratios
 - Tapestation: – “minor smearing” below 2.5 kb
 - Qubit for quantification
- HaloPlex target enrichment and amplification for sequence capture
- MiSeq for massive parallel sequencing using of sudden cardiac genes 10 bp flanking

MiSeq

4-6 samples multiplexed
MiSeq Reagent Kit v2, 300 cycles or
MiSeq Reagent Kit v3, 300 cycles
Cluster density 1000 000 - 1400 000 clusters/mm².

Bioinformatic pipeline

Variant classification

- >99% have a coverage of >20x
- Genetic variants with an allele freq <0.02 in dbSNP is checked for pathogenicity in dbSNP and the public domain of HGMD – Human Gene Mutation Database.
- Genetic variants with an allele freq <0.001 in dbSNP or exome variant server is determined for predicted pathogenicity using conservation, PROVEAN, SIFT, MutationTaster and recently also polyphen.
 - Only high priority genes!
- Splice and stop always reported - if not common or close to 3'-end (50 bp – depending on gene size).
 - Both high and low priority genes.

Results from the genotyping

We have gotten referrals from all six Dept of Forensic Medicine in Sweden. About 1 referral each week.

In total 41 referrals so far:

- 32 finished and 9 on-going.
- Age range 0-41 years.

Results (of the 32)

- 6 individuals with pathogenic variants
- 8 individuals with probably pathogenic variants (predicted)
- Including genes: LDB3, KCNH2, KCNQ1, TNNC1 and others
- Associated with Long QT, ARVC, HCM, etc

Conclusions

- NGS works excellently for screening for genetic variants. Even in "not too decomposed" material.
- Genetic information in SUD cases can be useful in getting a basis for considering SCD.

Acknowledgement

Anna Gréen and Cecilia Gunnarsson

Department of Clinical Genetics and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.

Jonny Kumlin and Henrik Gréen

Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.

Peter Krantz

Department of Clinical Sciences, Malmö, Lund University
Department of Forensic Medicine, Lund, Sweden

The forensic pathologists at the Departments of Forensic Medicine in Sweden!

www.rmv.se

Thank you for listening!

Population Genetics of 17 Y-STR Markers in Turkish Cypriots from Cyprus

Cemal Gürkan, Ph.D.

Turkish Cypriot DNA Laboratory (TCDL)

ISFG ESWG Meeting in Athens, May 30, 2014

Outline

- 1. Cyprus & Turkish Cypriots**
- 2. Committee on Missing Persons in Cyprus**
- 2. Turkish Cypriot DNA Laboratory**
- 3. Y-STR Genetics of Turkish Cypriots**
- 5. Acknowledgements**

Cyprus

- Third largest island in the Mediterranean Sea
- Situated at the crossroads of civilizations
- Earliest human activity dates back to 12,000 years ago
- Rich cultural heritage and ethnic composition:

Greek Cypriots, Turkish Cypriots, Maronites, Armenians & Latins

* Independent since 1960

* Divided since 1974

* Member of E.U. since 2004

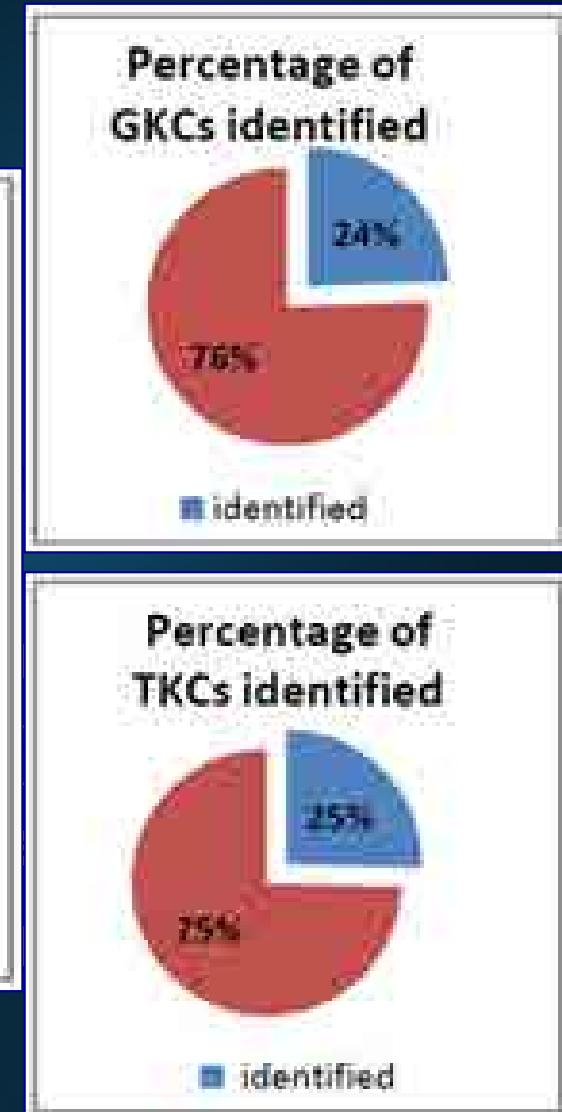
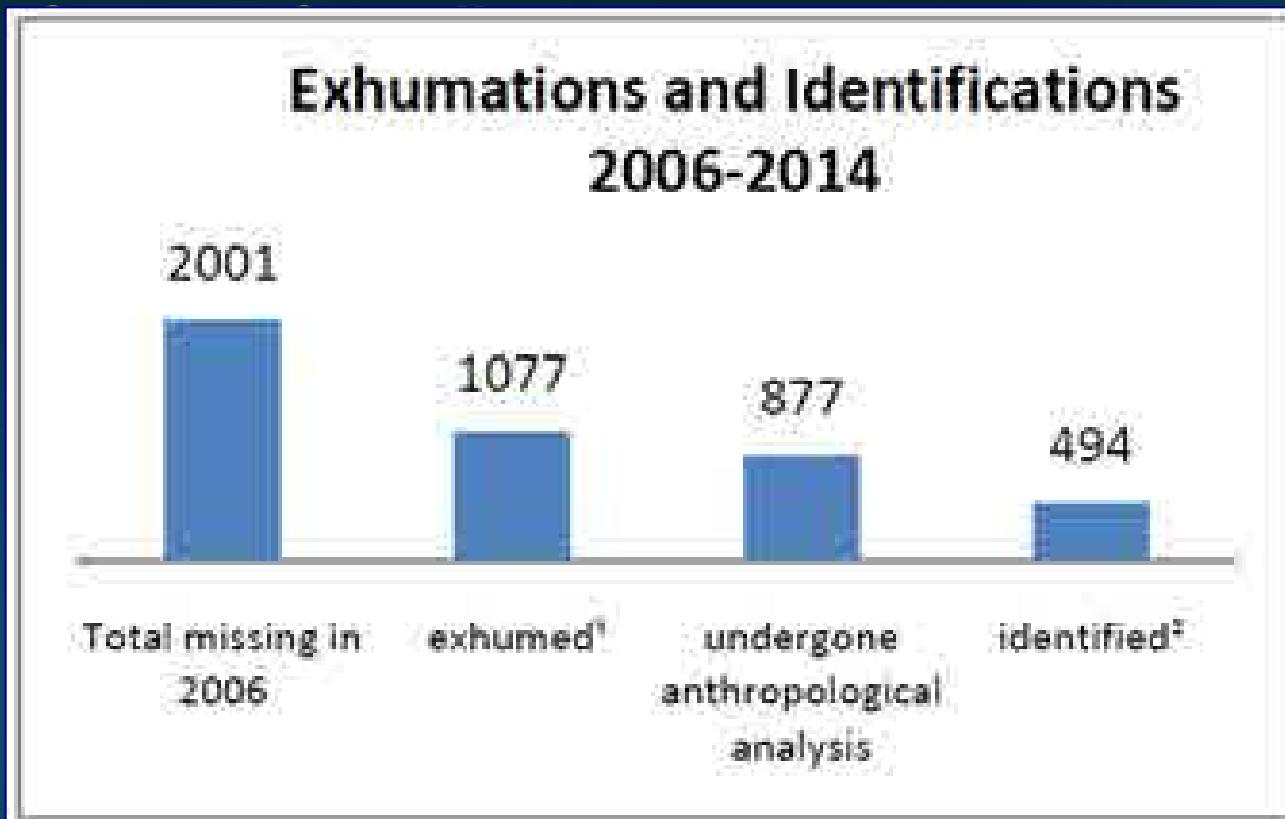
Turkish Cypriots

- First historical appearance upon Ottoman conquest of Cyprus (1571)
- Individuals trace their origins to:
 - (a) *Ottoman officers & soldiers stationed in Cyprus*
 - (b) *Settlers from around the Ottoman Empire*
 - (c) *Forced exiles from the Karaman region in Anatolia*
 - (d) *Converts from Greek Cypriots & Latins*
- *A combination of all with unknown actual proportions*
- Today, the second largest ethnic community on the island
- Traditionally lived all over the island
- Largely moved to/concentrated in North Cyprus since 1974
- 2006 census by the Turkish Cypriot authorities suggest:
 - (a) *de jure population: 256,644*
 - (b) *born in Cyprus: 148,542*
 - (c) *both parents born in Cyprus: 120,007*

Committee on Missing Persons (CMP) in Cyprus

- Established in 1981 as a bi-communal body
- 1 TC Member, 1 GC Member & 3rd member selected by ICRC & appointed by UN SG
- Recovery, identification & return to families the remains of Cypriots that went missing during the inter-communal fighting of 1963/1964 and the events of 1974

493 Turkish Cypriots & 1508 Greek Cypriots



<http://www.cmp-cyprus.org/>

The CMP Project & Current Contributors

Current Contributors:

- > **CMP Bi-communal Forensic Team**
(local archaeologists, anthropologists & geneticists)
- > **Turkish Cypriot DNA Laboratory (TCDL)**
(TC FRS DNA typing & TC pop studies)
- > **Greek Cypriot DNA Laboratory (CING LabFoG)**
(GC FRS DNA typing & GC pop studies)
- > **International Commission on Missing Persons (ICMP)**
(skeletal/dental DNA typing & matching w/ FRS data)

The CMP Project & Current Contributors

Figures taken from the CMP website (30 April 2014)

Turkish Cypriot DNA Laboratory (TCDL)

- Set up in late 2005 to contribute to the CMP Project
- Operates under the CMP Turkish Cypriot Member Office
- TC FRS Sample Bank of 1,100+ relatives
- All nSTR/ySTR profiling at TCDL since the summer of 2012
(Initial nSTR/ySTR/mtDNA analyses were @ CING LabFoG)
- Also responsible for conducting TC population studies
- TC Population Sample Bank of 600+ volunteers
~ 600/120,000 (~0.5% coverage of all TC's w/ Cypriot parents)

Turkish Cypriot Y-STR Population Study

-
1. Sample collection from 253 healthy, unrelated volunteers along with informed consent
 2. Volunteers aged 18 & above, with at least their father also born in Cyprus
(i.e., all are descendants from the pre-1974 TC population)
 3. Each Y-STR haplotype is assigned to a traditional geographic location in Cyprus

Turkish Cypriot Y-STR Population Study

*Findings recently published in
Forensic Science International: Genetics 10 (2014) e1-e3.*

Volume 10, Issue 1, January 2014, Pages 1–3
Contents lists available at ScienceDirect
Forensic Science International: Genetics
Journal homepage: www.elsevier.com/locate/fsigent

Forensic Population Genetics – Short Communication
Population genetics of 17 Y-STR markers in Turkish Cypriots from Cyprus^{a,b}

K. Terah^a, T. Zarlu^b, O. Bulbul^b, C. Gurkan^{a,*}

^aTurkish Cypriot DNA Laboratory, Committee on Missing Persons in Cyprus Turkish Cypriot Ministry of Justice, Nicosia, North Cyprus
^bInstitute of Forensic Sciences, Istanbul University, Istanbul, Turkey

First ever Y-STR dataset from Cyprus in the literature

Turkish Cypriot Y-STR Population Study

Major Findings - I: *TC haplotype / gene diversity*

1. Among 253 haplotypes (Ht's),
229 different Ht's (Discrimination Capacity, DC: 90.51%)
206 unique (81.42%), 22 in duplicate & 1 in triplicate
2. 7 out of the 22 Ht pairs in duplicate, 1 pair in the triplicate also
shared the same traditional geographic origin
(i.e. apparently not closely related, but shared paternal lineage)
3. Most common Ht (1.19%) never been reported before
(@YHRD, ~56,000 Ht's as of 22 August 2013)
4. Calculated haplotype diversity (HD) is 0.9992 (exc. Dys385a/b)
5. Calculated av. gene diversity (GD) is 0.6429 (exc. Dys385a/b)

Turkish Cypriot Y-STR Population Study

Major Findings - II: *Allelic variants observed*

1. No locus duplications/null alleles were observed
2. 43 allelic variants based on observed fragment sizes
 - (a) 25x **Dys458*.2** variants (*in ~10% of all Ht's*)
 - > *associated with the Y-haplogroup J1 (Middle East)*
 - > 8.2% in N. Greece, 16.8% in Cukurova, TR, 4.5% in Italy
 - (b) various other allelic variants @ 8 different loci
 - > 1 novel never reported before: **Dys438*9.4**
 - > 1 variant reported once before in Brasil: **Dys458*14.3**
 - > Both fully characterized by sequencing @ NIST

Allelic variants are powerful tools for pop genetics/forensics

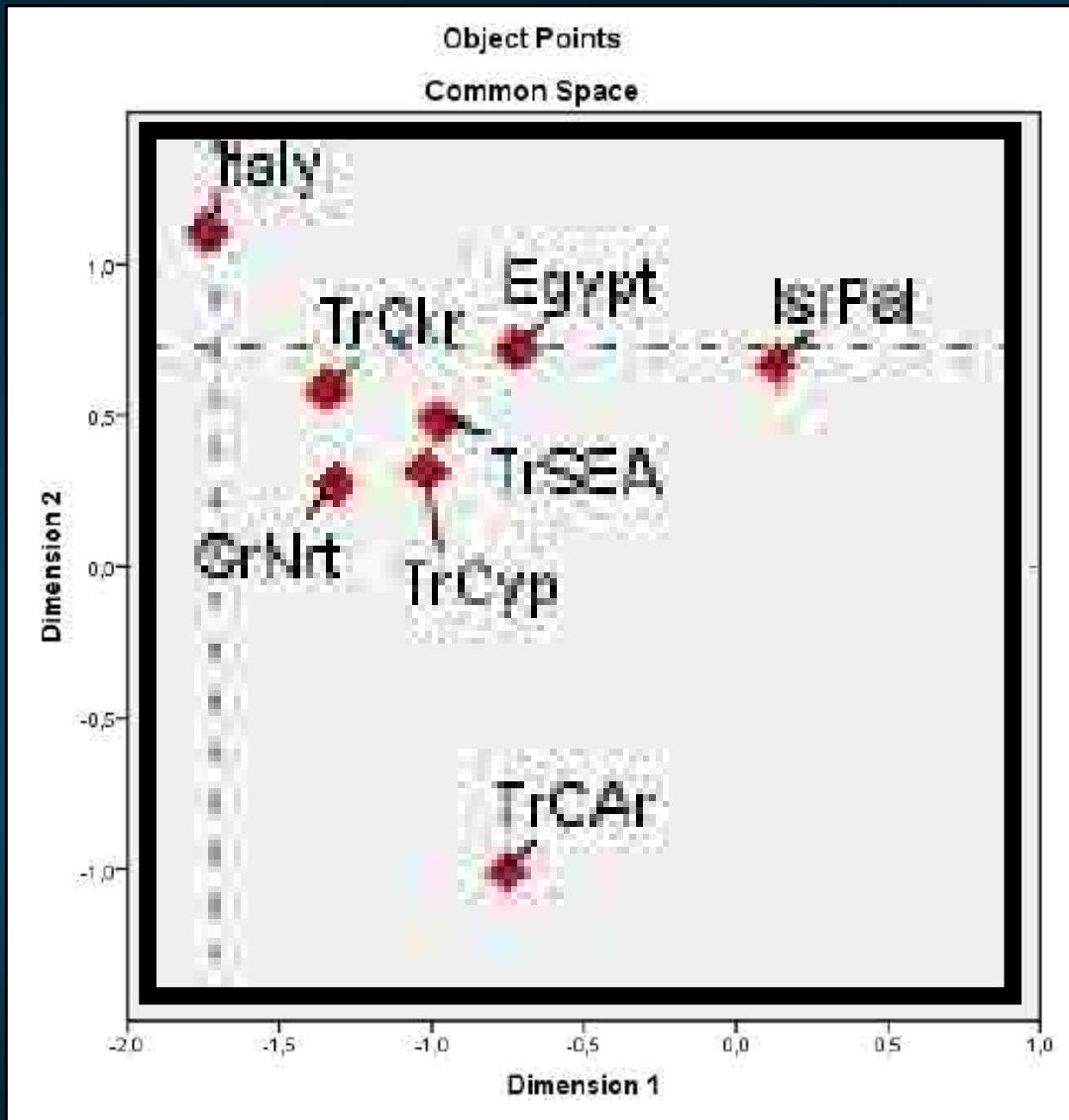
Turkish Cypriot Y-STR Population Study

Major Findings - III: AMOVA using YHRD online tool

Table S3. Pairwise genetic distance matrix based on the Φ_{ST} values between the Turkish Cypriot population and neighboring/distant populations

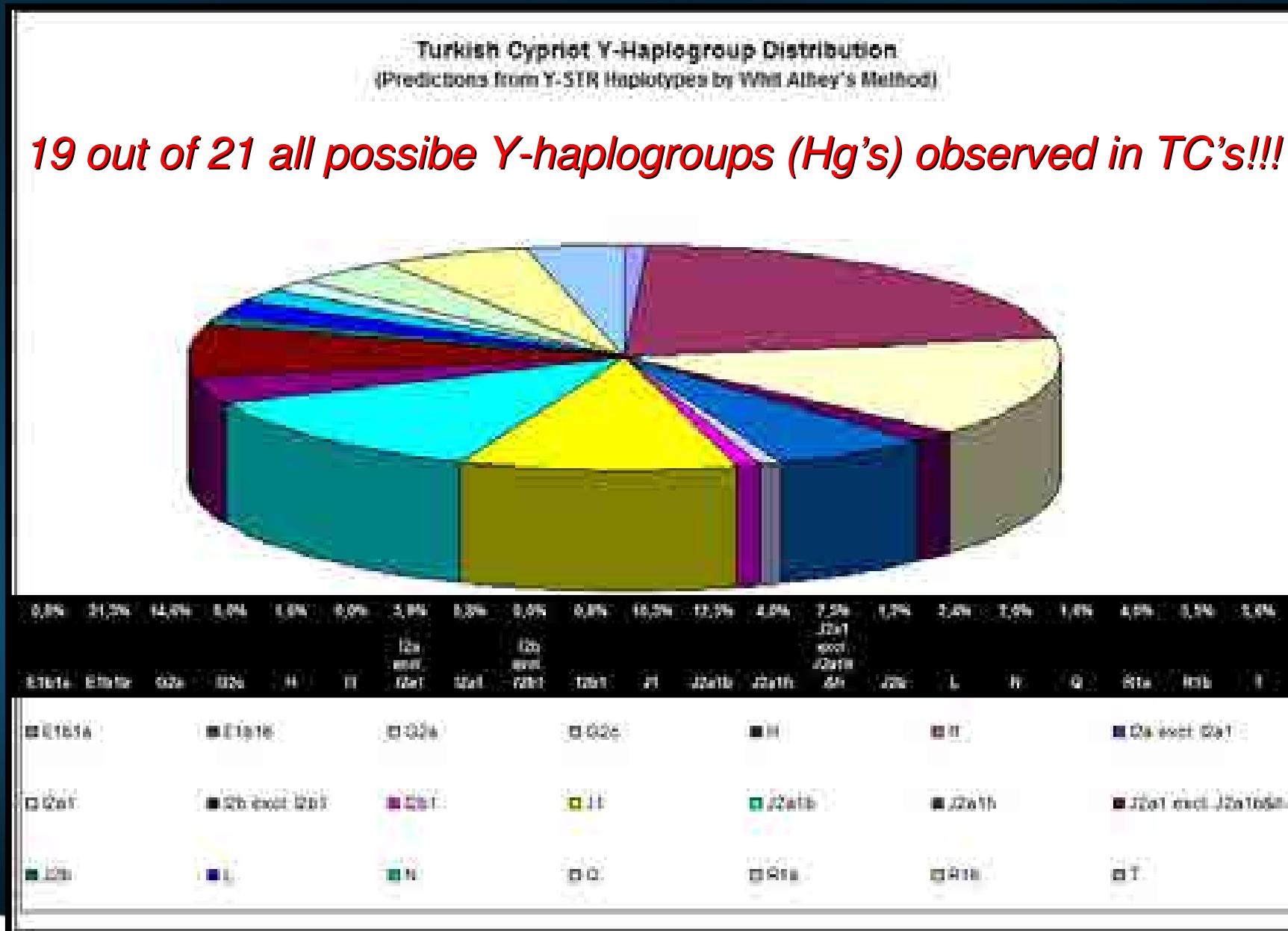
Population	AuAbo	TrCAR	PsArb	Lithu	GrNrt	TrSEA	TwPwn	TrCar	Egypt	Italy	TrCyp
AuAbo	-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TrCAR	0.2103	-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
PsArb	0.1527	0.1721	-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Lithu	0.1025	0.2860	0.2212	-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
GrNrt	0.1272	0.1033	0.1268	0.1399	-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TrSEA	0.0996	0.0477	0.0562	0.1180	0.0324	-	0.0000	0.1127	0.0704	0.0000	0.0776
TwPwn	0.3663	0.4990	0.4693	0.4621	0.4273	0.4382	-	0.0000	0.0000	0.0000	0.0000
TrCar	0.0702	0.0326	0.0897	0.0945	0.0255	0.0096	0.3735	-	0.0000	0.0000	0.0002
Egypt	0.1352	0.1438	0.0491	0.1566	0.0458	0.0246	0.4200	0.0441	-	0.0000	0.0000
Italy	0.0444	0.1686	0.1193	0.1186	0.0712	0.0514	0.3708	0.0277	0.0673	-	0.0000
TrCyp	0.1203	0.0492	0.0645	0.1507	0.0189	0.0064	0.4118	0.0150	0.0229	0.0044	-

P values are shown above and the Φ_{ST} values below the diagonal.


P values in bold and italics represent statistically insignificant differences before and after applying the Bonferroni correction, respectively.

The level of significance is $p<0.01$ and $p<0.00018$ before and after the Bonferroni correction, respectively.

Populations for comparisons largely selected based on the availability of similar datasets from nearby populations


Turkish Cypriot Y-STR Population Study

Major Findings - IV: 2-D MDS plot of AMOVA results

Follow-Up Studies on the Y-STR data

Y-haplogroup predictions based on the Y-STR data ($n = 253$)

ACKNOWLEDGEMENTS

1. ISFG ESWG Athens Meeting Organizers
2. TCDL staff (Dr. K. Terali & D. K. Demirdov)
3. T. Zorlu & O. Bulbul @ Istanbul Univ. Institute of Forensic Science
4. Carolyn R. Hill & Dr. Peter Vallone @ NIST for variant sequencing
5. YHRD for Y-STR Haplotyping Quality Assurance Exercise 2013
6. CMP Turkish Cypriot Member Office (Mrs. G. Plumer-Kucuk)

Network analysis for Y-STRs among ethnic minority groups in South America

Toshimichi Yamamoto, Hajime Araki, Masayoshi Sakuma, Yuuka Kawaguchi,
Yuuichi Kano, Tomoki Senda, Daiki Horiba

Dept. of Legal Med. And Bioethics, Nagoya University

Inaho Danjoh, Yukio Nakamura
BRG, RIKEN

“Sonoda-Tajima” collection

KIKKEN BIOBANKS & CELL BANK	
South American Cell Bank CELL BANK	
About BRC Type Request Contact Human IP cell lines (HPL) Mouse IP cell lines (MPL) Animal IP cell lines including primate transformed EBV lines and primary non-cell lines (NCL) Cell lines derived from human and other animals (HPL) EBV transformed B cell lines derived from Japanese patients (JPL) South American Collection - EBV transformed B cell lines derived from various human sources (SAC) Oncology Collection EBV transformed B cell lines and primary fibroblasts derived from 10 more individuals patients (OCL) Cord Blood Stem Cells (HCBT) Untransformed lines (UPL)	South American Cell Bank - EBV Transformed B cell lines derived from Mongoloid University Groups in South America (SAC) <p>We provide with B cell lines derived from various individuals around the world. In particular, this collection contains many cell lines derived from mongoloid majority living in South America. These B cell lines have been transformed by Epstein-Barr Virus. In addition to cell material itself, we provide with information relating to age, sex and living area of the individual who donated source cells.</p> <p>Migration of Prehistoric Human Lineages</p> <p>Dr. Toshi Toma (Aichi Cancer Center)</p> <p>Recipient Information:</p> <p>The RECIPIENT must obtain an approval of the Institutional Review Board or Institutional Ethical Committee prior to entering the AGREEMENT with the KIKKEN BRC, since this collection contains the cells derived from very minor populations. When the RECIPIENT orders the cells in this collection, the KIKKEN BRC urges the RECIPIENT to send the copy of the approval document by the Institutional Review Board or the Institutional Ethical Committee.</p>

“Sonoda-Tajima” collection

Totally more than 3,500 of blood samples from a variety of ethnic minorities across the world, especially about 2,500 samples from South America,

To study on phylogenetical classification of HTLV-I, and -II

They concluded that ancestors of the Amerind populations carried HTLV-I and -II into the South American continent from the Eurasian continent over 10,000 years ago, and that the indigenous South American populations could be divided into two major ethnic groups.

“Sonoda-Tajima” collection

Donation of the all of these blood samples to RBC in RIKEN, Japan

Unlinked Anonymization of all of these blood samples

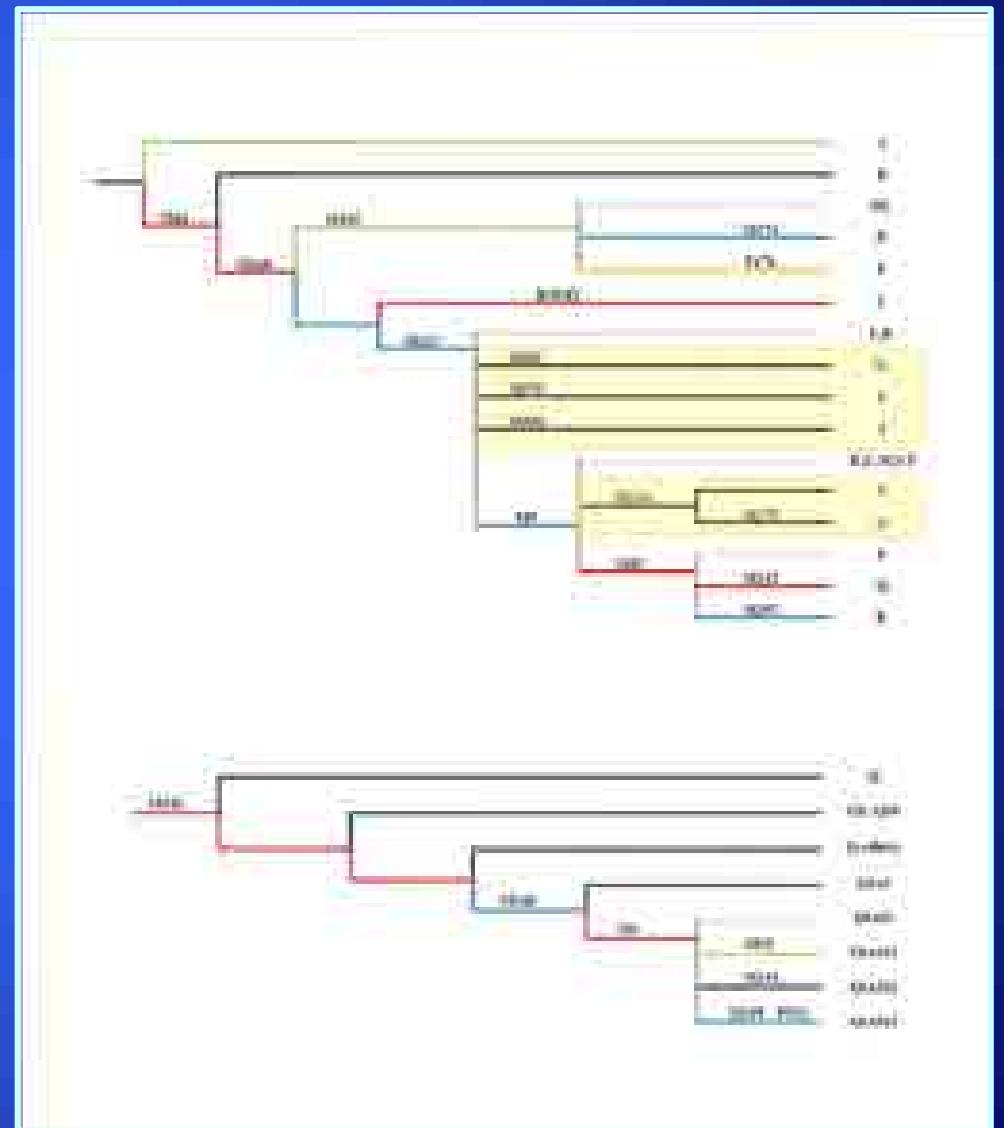
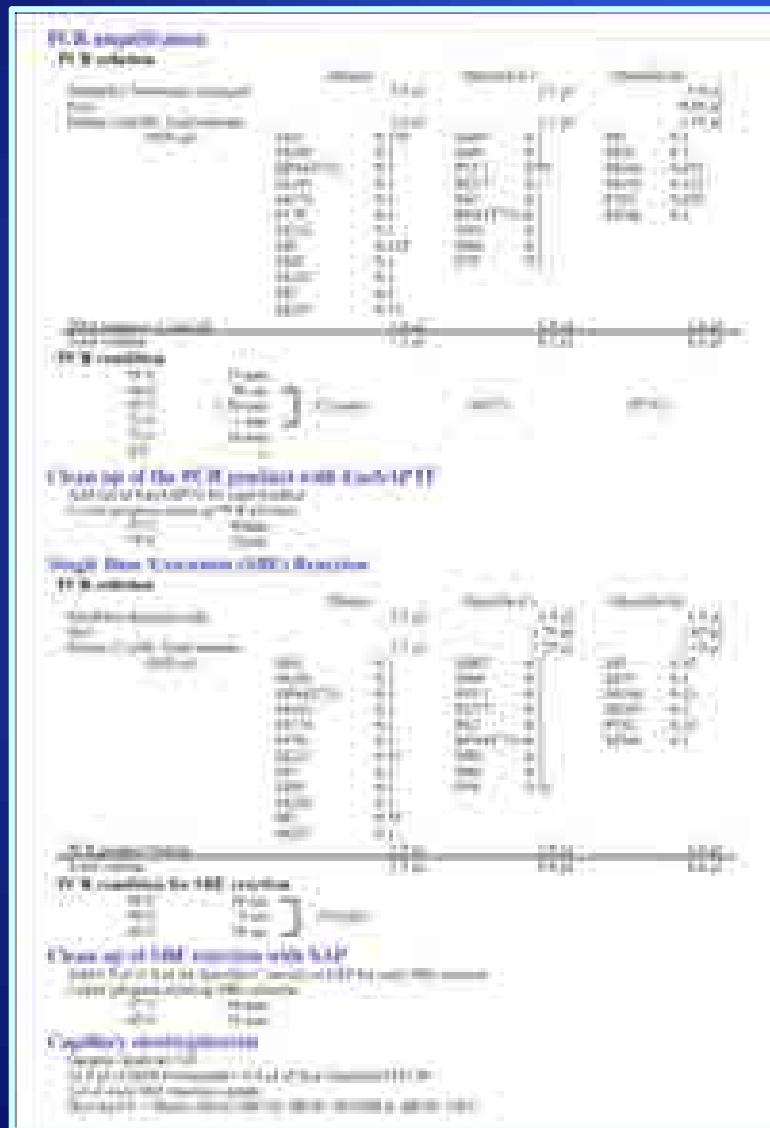
Except the information about

Age, Sex, Ethnicity, Collection site

**Establishment of the cell lines transformed by B-lymphoid cells using
the Epstein–Barr (EB) virus (B-LCLs)**

About 500 B-LCLs originated from South America

DNA extracted from first cultivated B-LCLs



DNA samples

Tribe	Nation	Tribe	Sample
No.		Name	(n)
1	Columbia	Wayuu	3
2		Guahibo	9
3		Ticuna	6
4		Matapi	1
5		Cumbal	4
6		Inga	4
7		Kamsa	3
8	Venezuela	Sanuma	14
9		Ye'Kuana	6
10		Piaroa	12
11	Ecuador	Canar	7
12		Saraguro	7
13	Peru	Aymara	8
14	Bolivia	Aymara	15
15		Chipaya	5
16		Quechua	15
17	Argentina	Puna	7
18		Chaco-Lengua	19
19		Chaco-Nivacle	8
20		Chaco-Sanapana	1
21	Chile	Huilliche	5
22		Mapuche	26
23		Atacama	14
	Missing etc.		5
	Total		204

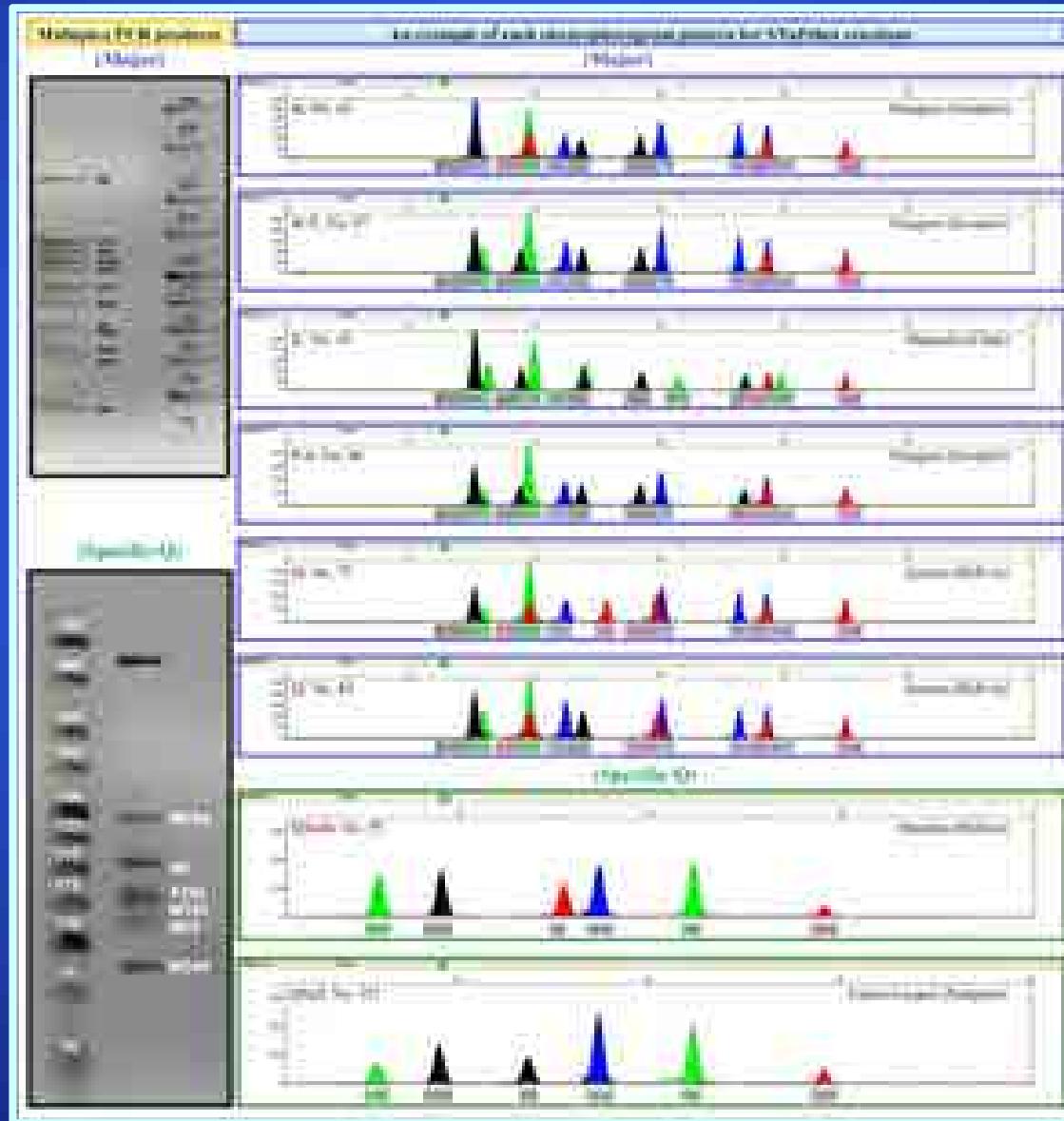
Y-haplogrouping

- Experimental procedure & Flow chart of haplogrouping) -

Y-haplogrouping

- Primers for multiplex PCR (Major & Specific-Q & -C) -

SNP	Branch	Forward Primer (5'-3')	bp	Reverse Primer (5'-3')	bp	Template (bp)	SNP	conc (μM)
Major								
M42	B-T	GAGGGAGATAACCTGTGTCAG	21	GCAAGTTAACGTACCCAGCTC	20	92	A/T	0.35
M168	C-T	TGTTTGCAGAGAGCTTGGAA	20	TGACTGTTCAAGTTATTCCACAAA	25	150	C/T	0.28
M213	F-T	GGCCATATAAAAACGAGCA	20	TGAATGGCAAATTGATTCCA	20	208	T/C	0.28
RPS4Y711	C	GATTTTGTGGGTGGTGGTC	20	TGGCCAGCCTCTTATCTCTC	20	217	C/T	0.28
M145	DE*	GCATACTTGCTCCACGACT	20	CCAGGAGCTCACAGTCACAA	20	173	G/A	0.28
M174	D	TTCTCCGTCAACAGAAAATG	21	ATGCAAAAGGAGAAGGACAAGA	22	186	T/C	0.28
P170	E	CCTCCTGTGCCCTTTCAAGA	20	ACAGCAGCAAGCAGGTCTT	20	243	G/A	0.28
M9	K-T	GCAGCATATAAAACTTCAGG	21	AAAACCTAACCTTGCTCAAGC	21	340	C/G	0.35
M45	P*	GAGAGAGGATATCAAAAATTGG	22	TAGCTTACAACACAAGGATT	21	229	G/A	0.28
M242	Q	TACGGCATAGAAAAGTTGTG	20	GAACAACTCTGAAGCGGTGG	20	133	C/T	0.28
M3	Q	AGGGCATCTTCATTTAGG	20	GTGGATTGCTTTGTAGTAGG	21	156	G/A	0.28
M207	R	CTATGGGCAAATGTAAGTC	20	TGAAGGAAAAGTGGAGTCTG	20	129	A/G	0.42
Specific-C								
M407	C3d	TACTGAAAAGTTGGGGACAGTC	21	GTGATAATCGCTTGTCTCTT	21	113	A/G	0.28
M48	C3c	TCCCTTCCACTCTTAGCTTGA	21	CAATGTAATGTTAGTATAAGGATG	25	123	A/G	0.56
P53.1	C3e	AGATGTCACCTTCCGTCTATG	21	TTACACTATGAACCAATCCCAC	22	155	T/C	0.14
M217	C3*	CTCCAAAATCCTCTCGTACAG	21	TGCTGTGGCTTTCATCAAATA	22	168	A/C	0.28
P62	C3f	TTGCCCTTCTTCAGAACCTCC	20	TAACAGCCCCACCAAGGAAG	20	194	-(T)/G	0.28
RPS4Y711	C	GATTTTGTGGGTGGTGGTC	20	TGGCCAGCCTCTTATCTCTC	20	217	C/T	0.56
M93	C3a	GAGGCAGGAGAACATCTCAA	21	CTGGCTAAAAAGATAATGGTG	22	244	C/T	0.28
M86	C3c	ATTGCTACATACATCTAAGGT	23	GCCACATTCCACGGGGTTC	19	250	T/G	0.28
P39	C3b	AAACCTGTCTCATGAAATAC	22	TTCTGTGAATTACAACCAGGCT	22	263	G/A	0.28
Specific-Q								
M3	Q	AGGGCATCTTCATTTAGG	20	GTGGATTGCTTTGTAGTAGG	21	156	G/A	0.29
M19	Q1a3a1	GTTGCTGGTTGTACGGGGT	20	CCACAAACTGTATGTAGAGAC	20	115	T/A	0.29
P292	Q1a3a3	ATTCCAGTCATGTAGGGTGG	21	ATGCCGTTGCCCTAGGTTAG	20	134	-(T)/G	0.22
M194	Q1a3a2	GCCTGGATGAGGAAGTGAG	19	ATACAGTCGTGCGCTTCTCG	20	128	T/C	0.22
M199	Q1a3a3	CCTGGTTGGATTCTGGTCTT	20	TGATTTCAGGATTGTAGTCIT	24	196	-(C)/G	0.37
M346	Q1a	CAGCCAAGAGGACAGTAAG	19	TATGTAGGAGGATATTCTCCA	22	89	G/C	0.29


Y-haplogrouping

- Primers for multiplex SNaP shot reaction (Major & Specific-Q & -C) -

SNP	Primer sequence (5' - 3') target specific sequence black, neutral sequence blue	Size (bp)	Orientation Typing	conc (µM)	In analysis: ancestral/derived
Major					
RPS4Y711	GGCAATAAACCTTGGATTTC	20	Forward	0.28	black/red
M207	ATGTAAGTCAGCAAGAAATTAA	23	Forward	0.09	blue/green
M45	TCTGACAAAGAAGGAGCTTTTGC	25	Reverse	0.28	black/red
M174	CTGACAAAGCACCCCTCACTTCTGACT	27	Reverse	0.09	green/blue
M3	GTGAAAGTCTGACAAACCTCTGGACTGA	30	Reverse	0.33	black/red
M213	AAGCTCTGACAAAGACTTAAACATCTCGTAC	32	Reverse	0.14	green/blue
M242	ACGTCGTGAAAGTCTGACAAAGTGAACAGGTGCT	35	Forward	0.09	black/red
P170	CGTCGTGAAAGTCTGACAAAGTCTGACAA	37	Forward	0.28	blue/green
M9	GGTGCCACGTGAAAGTCTGACAAAGTCTGACAA	43	Forward	0.28	black/blue
M42	TGCCACGTGAAAGTCTGACAAAGTCTGACAA	45	Forward	0.09	green/red
M145	CTAGGTGCCACGTGAAAGTCTGACAAAGTCTGACAA	47	Forward	0.09	blue/green
M168	AACTAGGTGCCACGTGAAAGTCTGACAAAGTCTGACAA	50	Forward	0.09	black/red
Specific-C					
RPS4Y711	GGCAATAAACCTTGGATTTC	20	Forward	0.27	black/red
M48	CAATTAGGATTAAGAACATATGAT	22	Forward	0.27	green/blue
P53.1	ACAAAGCAAACTGAACATATCTCC	25	Forward	0.09	red/black
M93	CTGACAAAAGCTGGTGTGACTTGG	27	Reverse	0.18	blue/green
M217	AGCTCTGACAAAGTCTGACAA	32	Reverse	0.18	red/blue
M407	CGTAAAGTCTGACAAAGTCTGACAA	37	Reverse	0.18	red/black
P39	GCCACGTGAAAGTCTGACAAAGTCTGACAA	40	Forward	0.14	blue/green
M86	GTGCCACGTGAAAGTCTGACAAAGTCTGACAA	45	Forward	0.18	red/blue
P62	TAGGTGCCACGTGAAAGTCTGACAAAGTCTGACAA	50	Forward	0.18	red/blue
Specific-Q					
P292	ATGAGAAATTGCTGACTTA	20	Reverse	0.14	green/black
M199	GAAATGTTAAATGGCTTACACTTG	25	Forward	0.18	black/blue
M3	GTGAAAGTCTGACAAACCTCTGGACTGA	30	Reverse	0.32	black/red
M346	CGTAAAGTCTGACAAAGCAAGAGGACAGTAAGA	35	Forward		blue/black
M19	GCCACGTGAAAGTCTGACAAAGACATCTGAAACCCAC	40	Reverse	0.09	green/red
M194	GCCACGTGAAAGTCTGACAAAGACATACAGGGAGTGTGTTTT	45	Forward	0.14	red/black

Y-haplogrouping

- Electropherogram patterns observed in this study (Major and Specific Q) -

Y-haplogrouping

- Allele-specific PCR -

Y-HG	marker	SNP ID	variation	PCR amplification			
				amplicon length	Anneling temp.	Primer	
						allele-specific	common
C	M130	rs35284970	C→T	108	63	GGCAATAAACCTTGGATTTC GGCAATAAACCTTGGATTCT	TGCAATTAGCCACTGCTC
D	M174	rs2032602	T→C	124	66	AATACCTTCTGGAGTGCCTC AATACCTTCTGGAGTGCCTT	GAAGGTCCTGGAGATGCAAA
F to J	G	rs2032636	G→T	154	50	AATCCAGTATCAACTGAGGG AATCCAGTATCAACTGAGGT	CACTAAACATCATGGTGTGA
						CAACCCACACTGAAAAAAAG CAACCCACACTGAAAAAAAT	CATATTCTGTGCATTATACAAAT
K to T	I	rs2032597	A→C	74	52	CAACCCACACTGAAAAAAAG CAACCCACACTGAAAAAAAT	CATATTCTGTGCATTATACAAAT
						ATTTGAAAGTAACCTGTGA ATTTGAAAGTAACCTGTGAC	TTTAAAATTACATCAGCTT
O	J	rs13447352	A→C	102	50	ATTTGAAAGTAACCTGTGA ATTTGAAAGTAACCTGTGAC	TTTAAAATTACATCAGCTT
						CACATGCCTTCTCACTTCTC CACATGCCTTCTCACTTCTC	TGTCCAATGCTGAAAGTAAG
N	M214	rs2032674	T→C	130	61	GACACTGTCTGAAAACAACG GACACTGTCTGAAAACAACA	AATATATGCCTGTAAAGCATC
						ACGTTAAGACCAATGCCAAG ACGTTAAGACCAATGCCAAA	GTAATTGGCATCCCTTTAACT
Q	M242	rs8179021	C→T	216	66	AAGTCAAGCAAGAAATTAA AAGTCAAGCAAGAAATTAG	TTTTTATTCTAGGCTGTTCT
						TGAAAAAAGTTGGGTGACACA TGAAAAAAGTTGGGTGACACC	CCATTGGAATTAAAGTGGCTT
C1	M8	rs3899	G→T	129	60	ATAACTTGGACTGGGTTCA ATAACTTGGACTGGGTTCAT	TGAATGTACCTTAGACCATCC
						ATAACTTGGACTGGGTTCA ATAACTTGGACTGGGTTCAT	TGAATGTACCTTAGACCATCC

PCR condition

95 °C

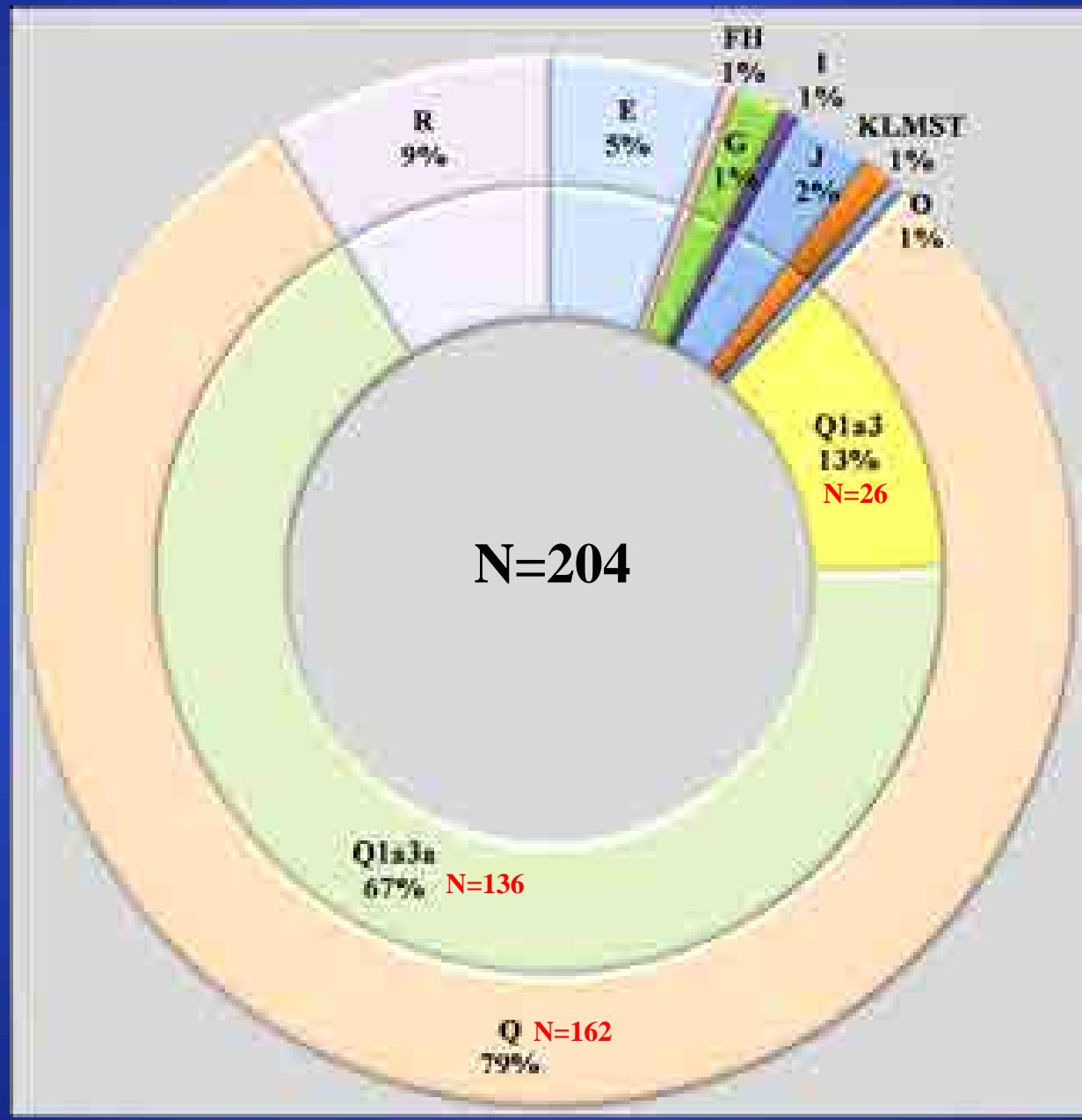
11 min

95 °C
8G

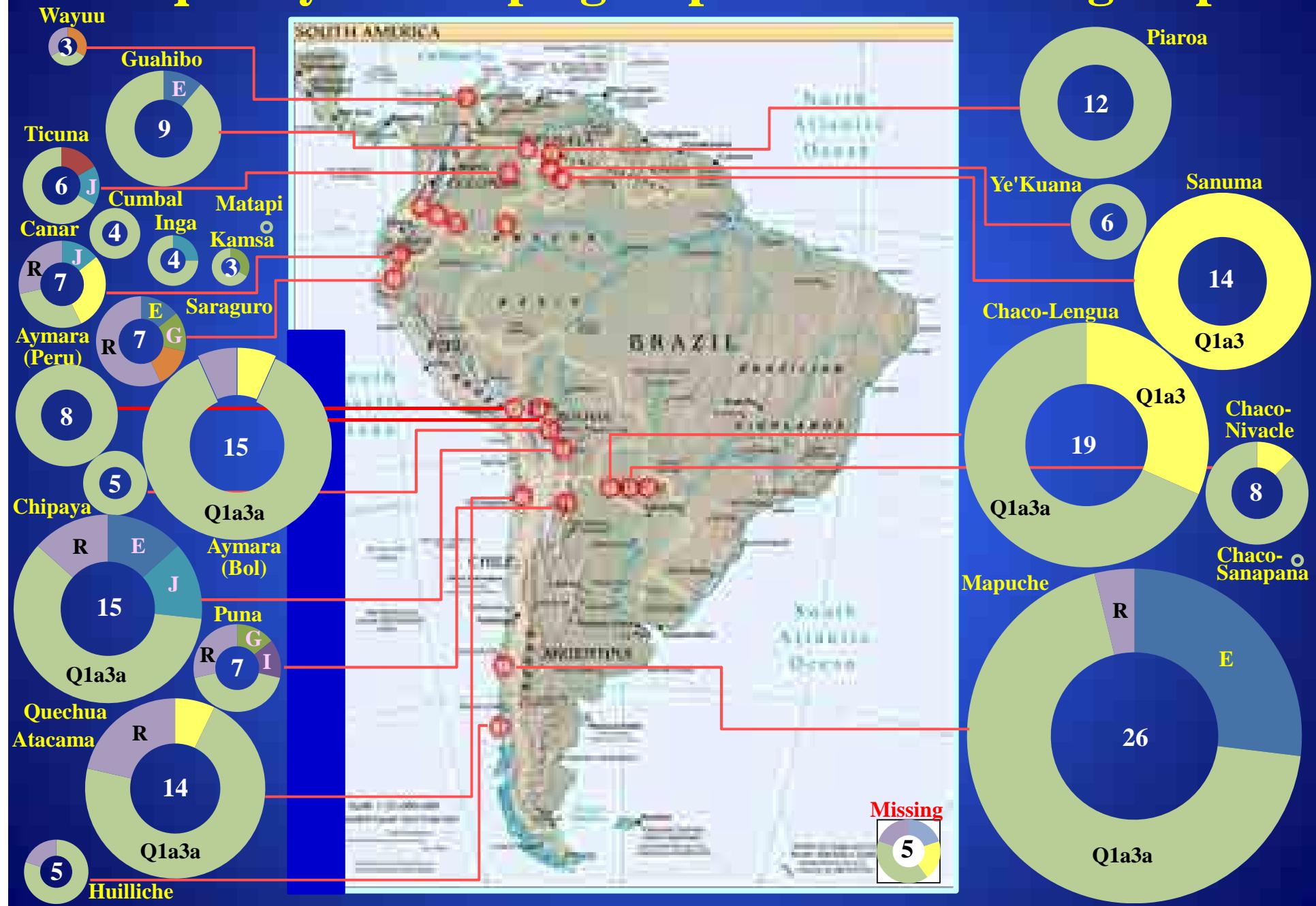
45 sec

XX °C
72 °C

45 sec
60 sec


72 °C

10 min


]

35 cycles

Frequency of Y-haplogroups in all DNA samples

Frequency of Y-haplogroups in each ethnic groups

Loci included in anAmpFlSTR Yfiler kit

Locus Designation	Chromosome Location	Common Sequence Motif	Allele Range	Dye Label
DYS456	Yp11.2	(AGAT) _n	13-18	6-FAM
DYS389 I	Yq11.1	(TCTG) ₃ (TCTA) _n	10-15	6-FAM
DYS390	Yq11.221	(TCTG) ₈ (TCTA) _n TCTG(TCTA) ₄	18-27	6-FAM
DYS389 II	Yq11.1	(TCTG) ₄₋₅ (TCTA) _m ... (TCTG) ₃ (TCTA) _n	24-34	6-FAM
DYS458	Yp11.2	(GAAA) _n	14-20	VIC
DYS19	Yp11.2	(TAGA) ₃ TAGG (TAGA) _n	10-19	VIC
DYS385	Yq11.222	(GAAA) _n	7-25	VIC
DYS393	Yp11.31	(AGAT) _n	8-16	NED
DYS391	Yq11.1	(TCTA) _n	7-13	NED
DYS439	Yq11.1	(GATA) _n or (AGAT) _n	8-15	NED
DYS635	Yq11.1	(TCTA) ₄ (TGTA) ₂ (TCTA) ₂ (TGTA) ₂ (TCTA) ₂ (TGTA) ₂ (TCTA) _n	20-26	NED
DYS392	Yq11.222	(TAT) _n	7-18	NED
H4	Yq11.221	(TAGA) _n	8-13	PET
DYS437	Yq11.1	(TCTA) _n (TCTG) ₂ (TCTA) ₄	13-17	PET
DYS438	Yq11.21	(TTTTC) _n	8-13	PET
DYS448	Yq11.223	(AGAGAT) _n ATAGAGATAG (AGAGAT) ₃ AGATAGATAGAGAA(AGAGAT) ₈₋₉	17-24	PET

YHRD.ORG.3.0

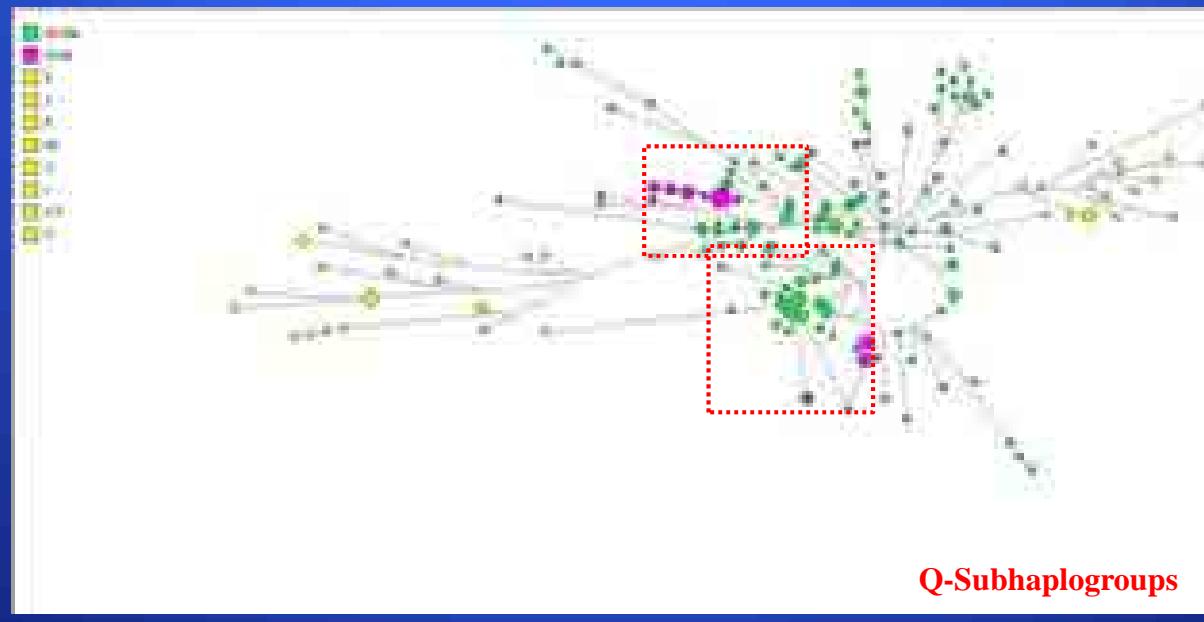
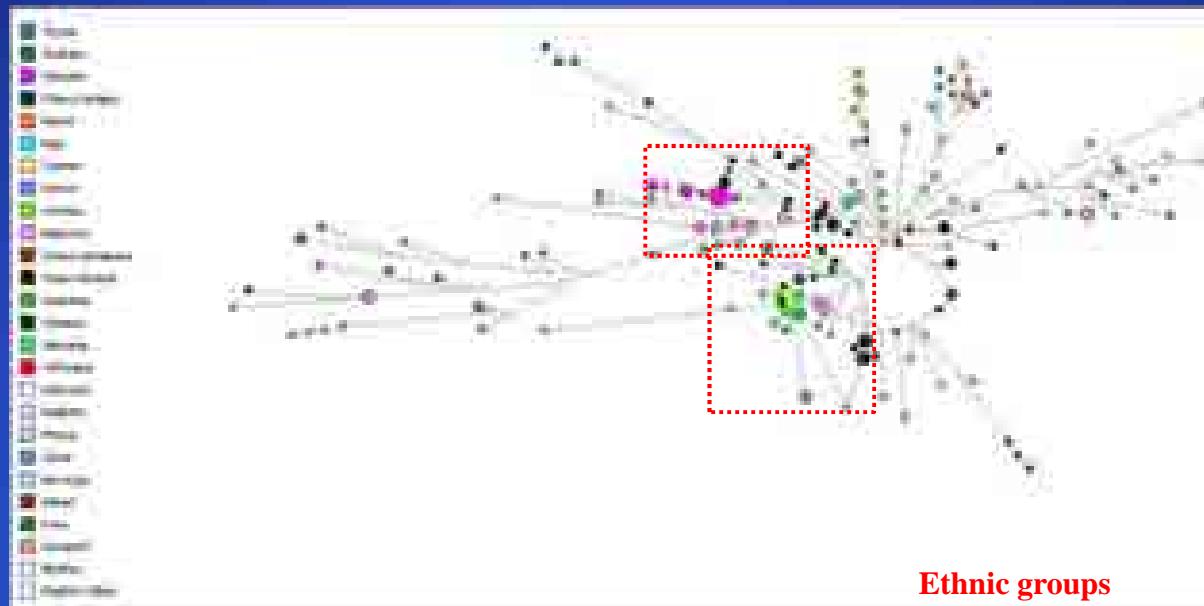
<http://www.yhrd.org/>

YHRD.ORG.3.0

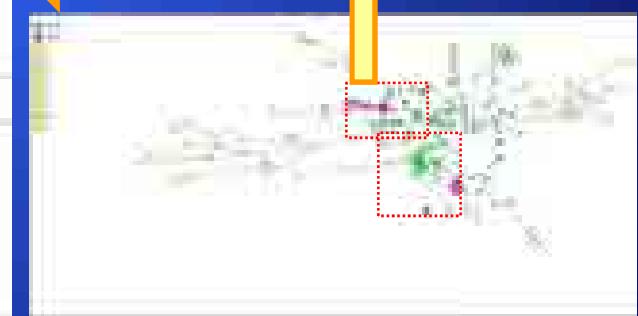
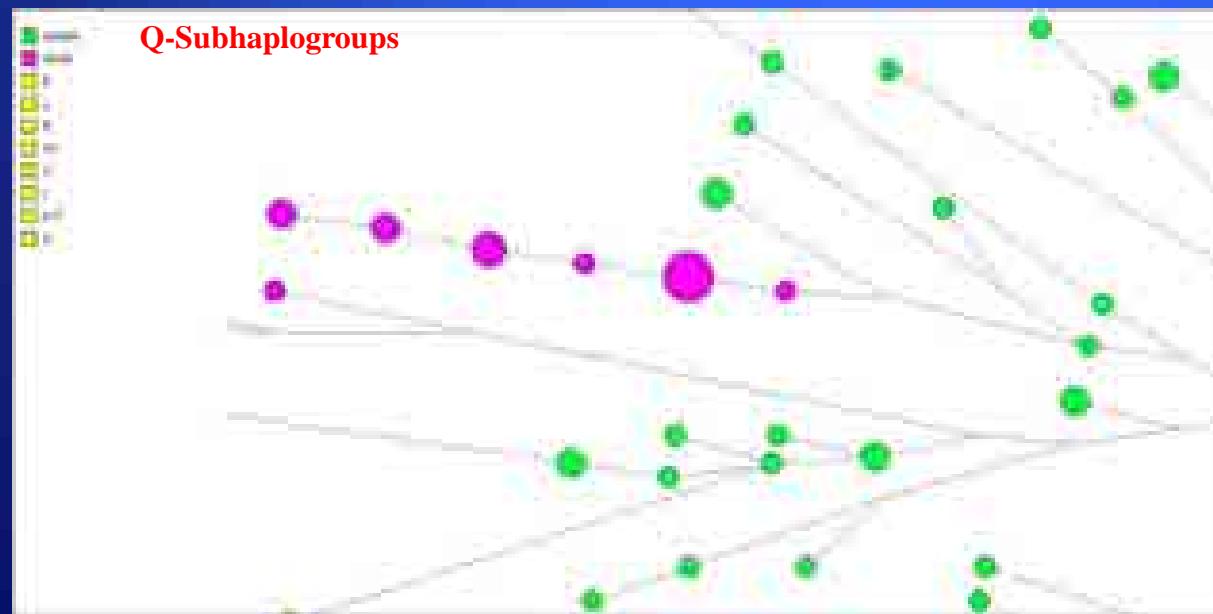
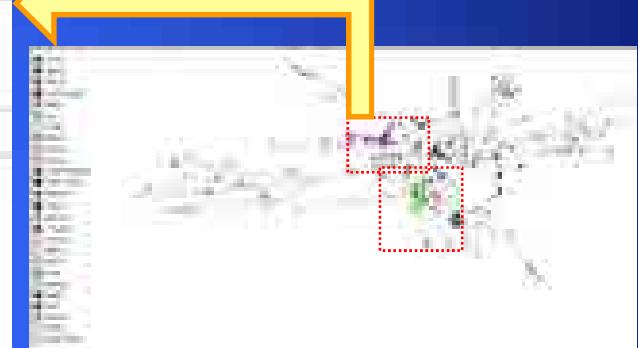
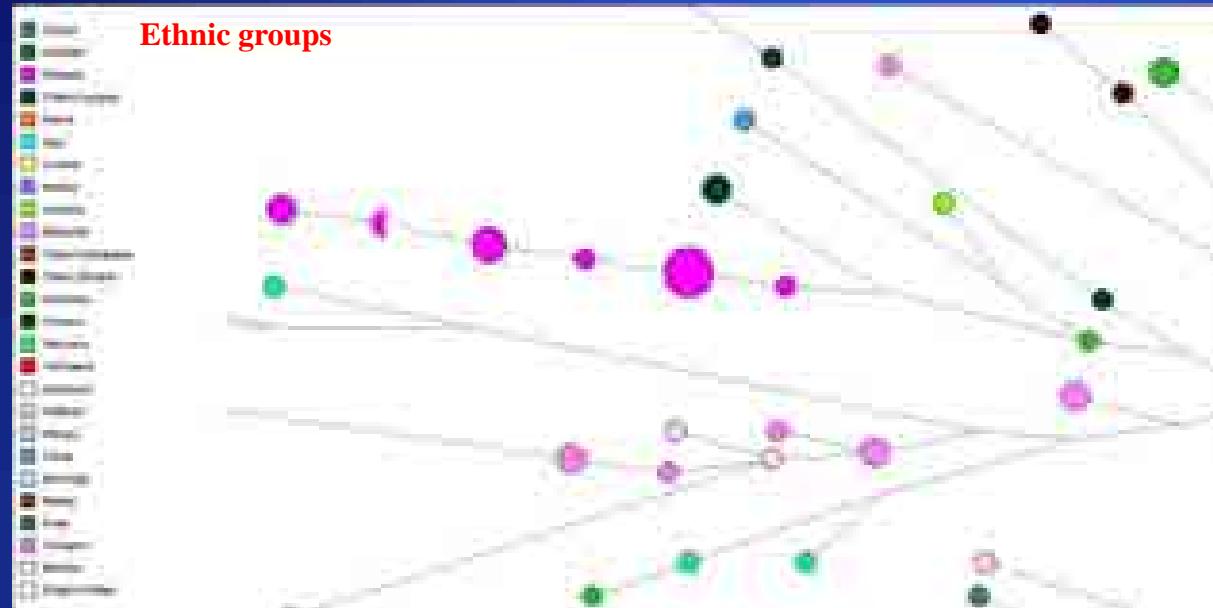
<http://www.yhrd.org/>

Mutation rates for DYS19 from 25 references.

Mutation Rates

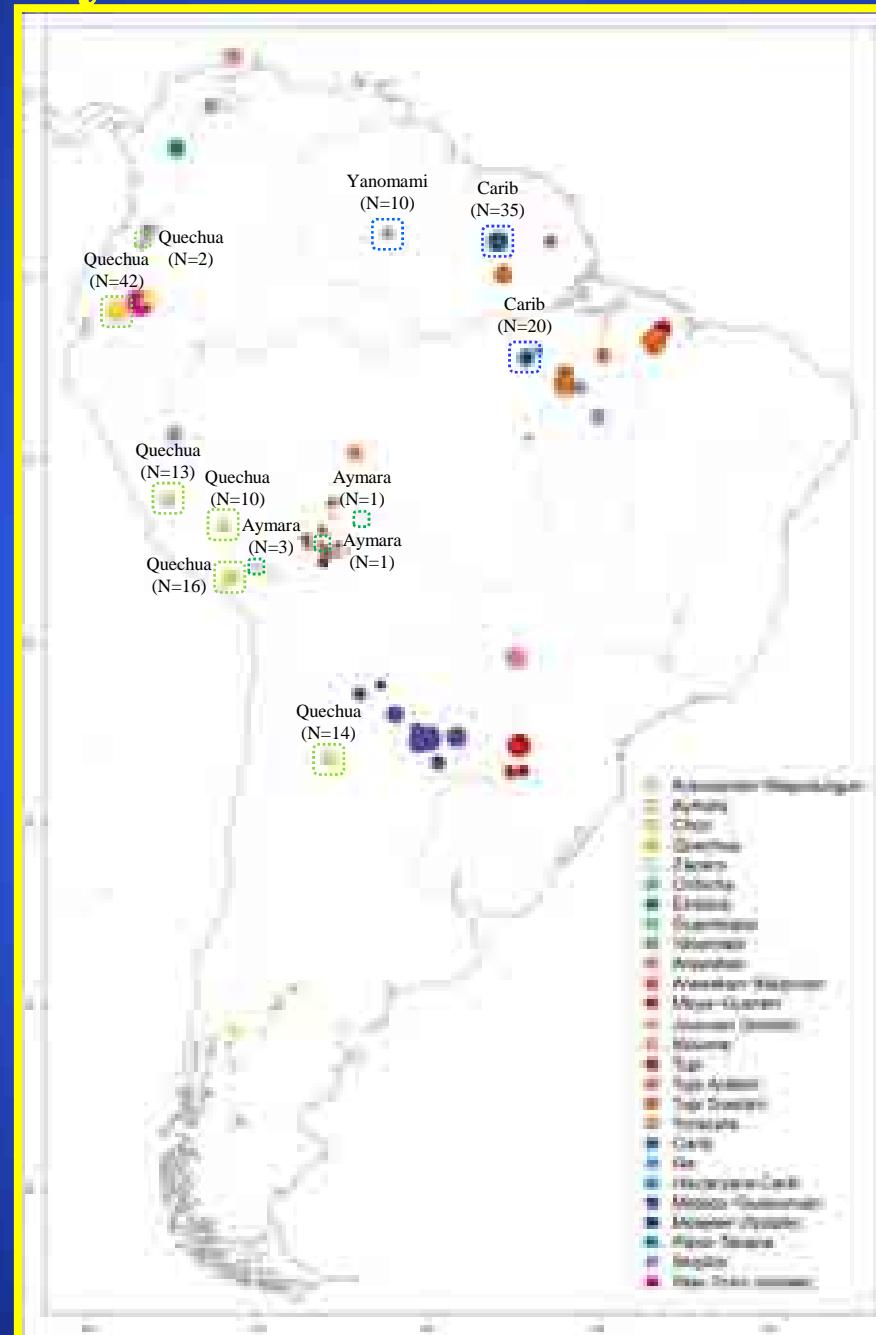


Reference	Marker	Rate
2007-Pereira et al. 2007	DYS19	1.11079E-012 - 7.8711E-1012
2007-Tarun et al. 2004	DYS19	1.4883E-011 (2.891E-012) - 1.977E-010 (1.977E-010)
2007-Lin et al. 2000	DYS19	1.11079E-012 - 1.127E-1012
2007-Sengen et al. 2008	DYS19	1.11079E-012 - 1.127E-1012
2007-Pew et al. 2007	DYS19	1.11079E-012 - 3.823E-1012
2007-Pereira et al. 2009	DYS19	1.2284E-011 (2.557E-012) - 1.977E-010 (1.977E-010)
2007-Homočová et al. 2007	DYS19	1.8442E-011 (2.991E-012) - 1.2277E-010 (1.2277E-010)
2007-Liu et al. 2007	DYS19	6.42E-011 (2.891E-012) - 1.888E-010 (1.888E-010)
2007-Dominguez et al. 2007	DYS19	1.4021E-010 (2.891E-012) - 4.058E-010 (4.058E-010)
2007-Dunphy et al. 2008	DYS19	1.2277E-011 (2.557E-012) - 1.4234E-010 (1.4234E-010)
2007-Pereira et al. 2008	DYS19	1.2284E-011 (2.557E-012) - 1.2277E-010 (1.2277E-010)
2007-Nunes et al. 2009	DYS19	1.11079E-012 (1.11079E-012)
2007-Sauvage et al. 2008	DYS19	1.0999E-011 (2.188E-012) - 4.222E-010 (4.222E-010)
2007-Pereira et al. 2009	DYS19	1.2284E-011 (2.557E-012) - 1.2277E-010 (1.2277E-010)
2007-Hayes et al. 1987	DYS19	1.11079E-012 - 1.11079E-012
2007-Dobogó et al. 2004	DYS19	1.11079E-012 (2.891E-012) - 1.558E-010 (1.558E-010)
2007-Wood et al. 2008	DYS19	1.11079E-012 (2.891E-012)
2007-Llorente et al. 2008	DYS19	1.2284E-011 (2.557E-012) - 1.04E-009 (1.04E-009)
2007-Dunphy et al. 2008	DYS19	1.11079E-012 (2.891E-012)
2007-Pereira et al. 1998	DYS19	1.11079E-012 - 6.711E-012
2007-Qi et al. 2009	DYS19	1.11079E-012 (2.891E-012) - 1.874E-010 (1.874E-010)
Sengen, T. et al. (2008) (YHRD.org)	DYS19	1.11079E-012 (2.891E-012) - 1.977E-010 (1.977E-010)
Domínguez, B. et al. (2006)	DYS19	1.11079E-012 - 5.287E-010
Domínguez, B. et al. (2007)	DYS19	1.11079E-012 - 1.11079E-012
Domínguez, B. et al. (2008)	DYS19	1.11079E-012 (2.891E-012) - 4.022E-010 (4.022E-010)
Domínguez, B. et al. (2009)	DYS19	1.11079E-012 (2.891E-012) - 3.296E-010 (3.296E-010)

The weights for Median-joining Network analysis





From YHRD				Weight in median-joining network analysis
Locus	Mutations	Meioses	Mutation Rate	
DYS19	36	15539	2.3×10^{-3}	4
DYS389I	37	13788	2.7×10^{-3}	4
DYS389II	52	13759	3.8×10^{-3}	3
DYS390	31	15061	2.1×10^{-3}	5
DYS391	38	14935	2.5×10^{-3}	4
DYS392	6	14867	0.4×10^{-3}	25
DYS393	15	13713	1.1×10^{-3}	9
DYS385	59	25620	2.3×10^{-3}	4
DYS438	3	10122	0.3×10^{-3}	34
DYS439	54	10096	5.3×10^{-3}	2
DYS437	12	10101	1.2×10^{-3}	8
DYS448	11	6678	1.6×10^{-3}	6
DYS456	28	6678	4.2×10^{-3}	2
DYS458	45	6677	6.7×10^{-3}	1
DYS635	28	7525	3.7×10^{-3}	3
Y-GATA-H4	19	7709	2.5×10^{-3}	4
Ave(14 loci)=			2.62×10^{-3}	0.00262

The weights for Median-joining Network analysis

Network analysis for 14 Y-STRs


Network analysis for 14 Y-STRs

Network analysis for 14 Y-STRs

Network analysis for 14 Y-STRs with data published

Gyographically close to
Sanuma

Yanomami : N=10

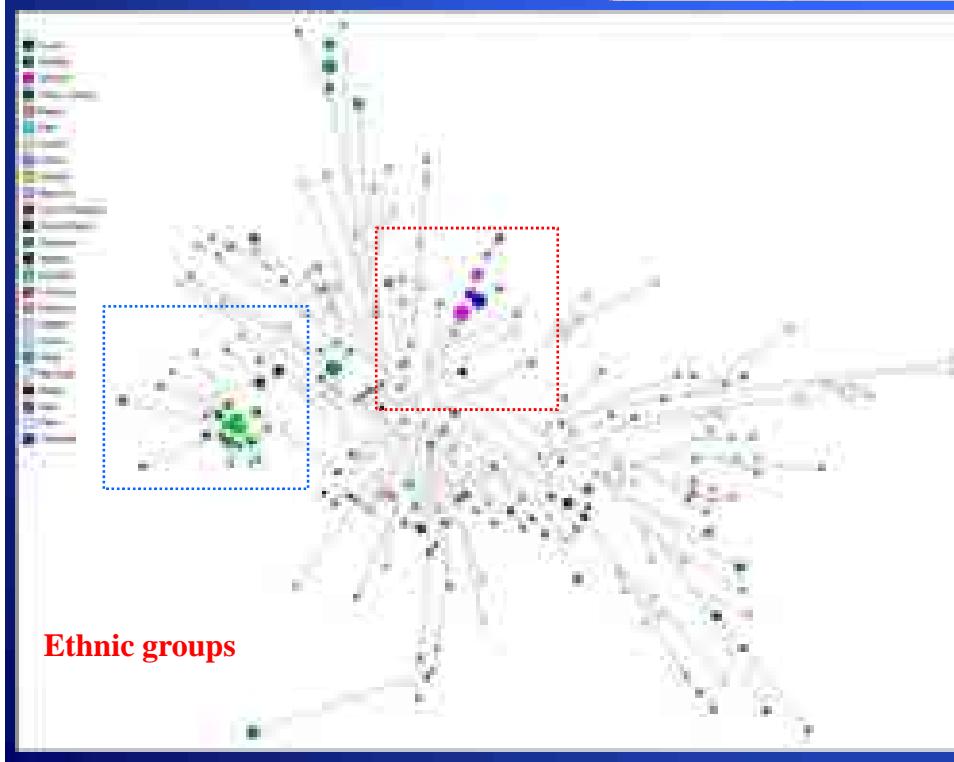
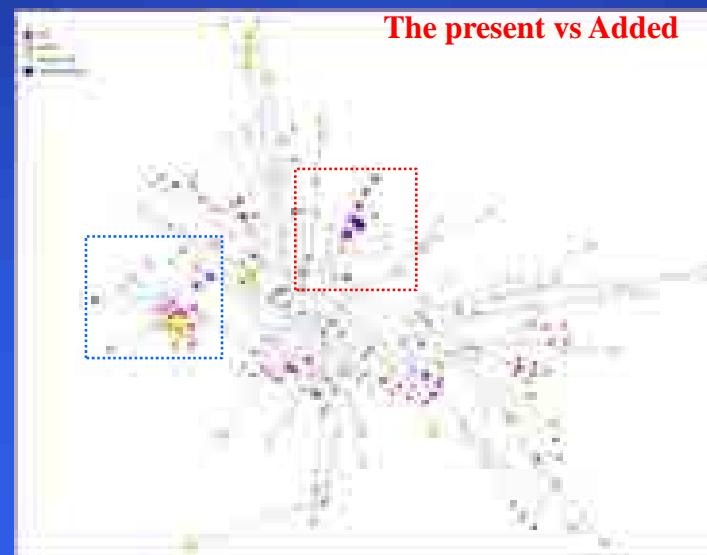
Carib : N=55

Same language cluster as
Andean

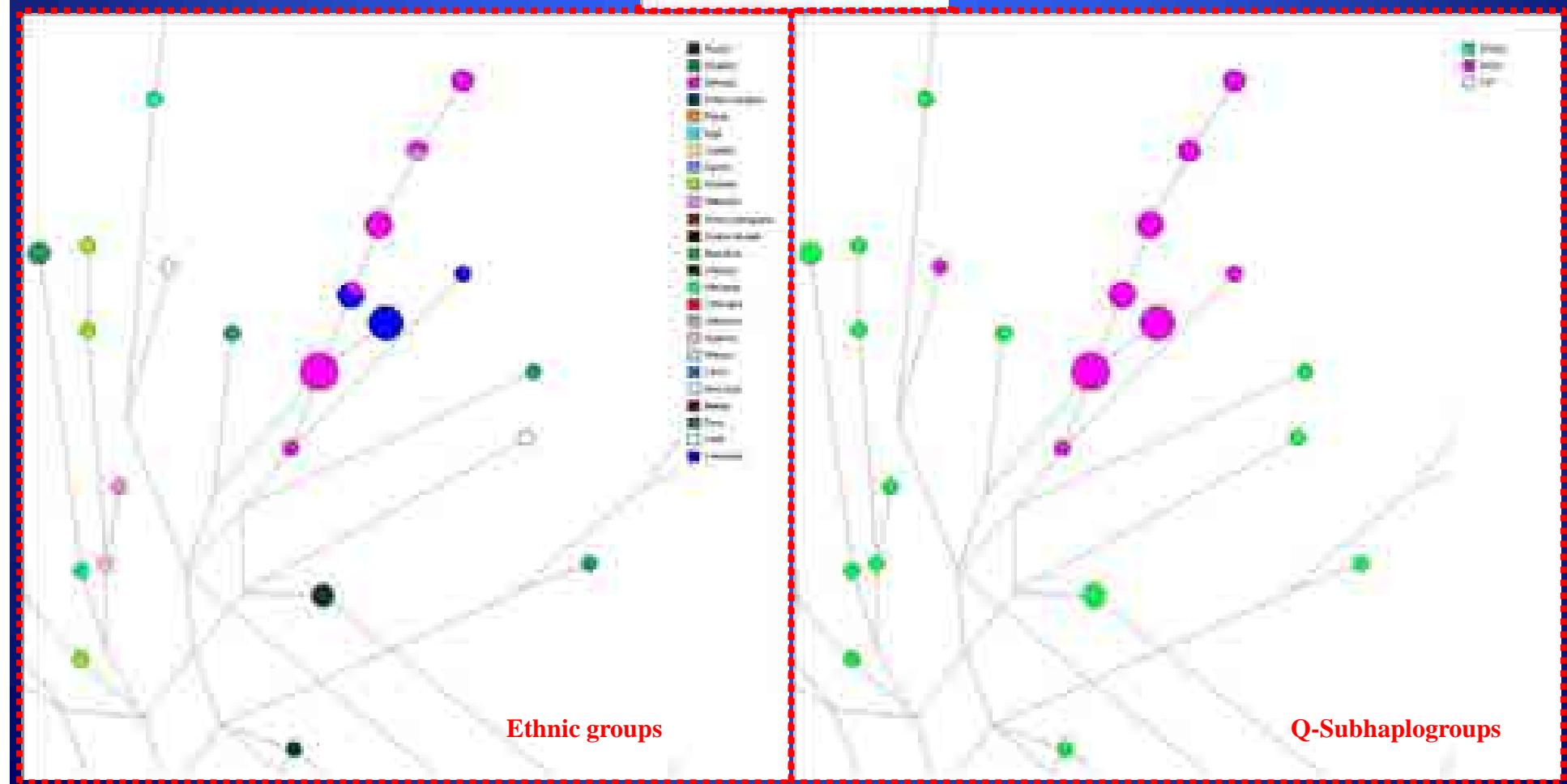
Quechua : N=97

Aymara : N=5

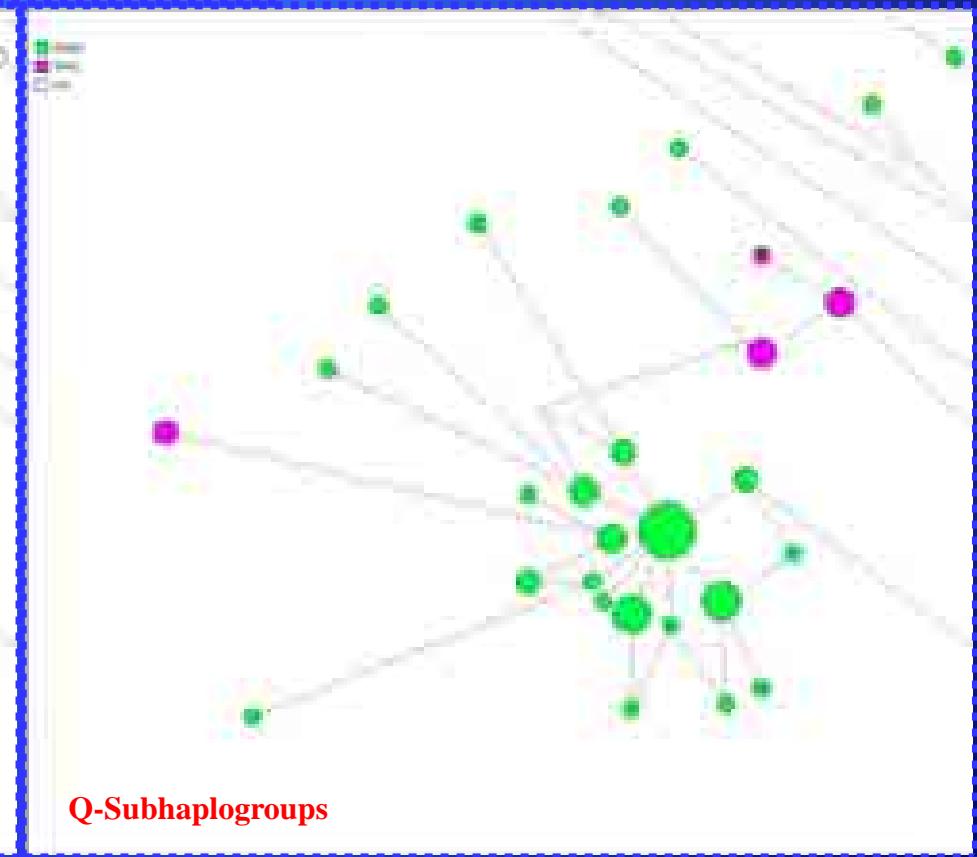
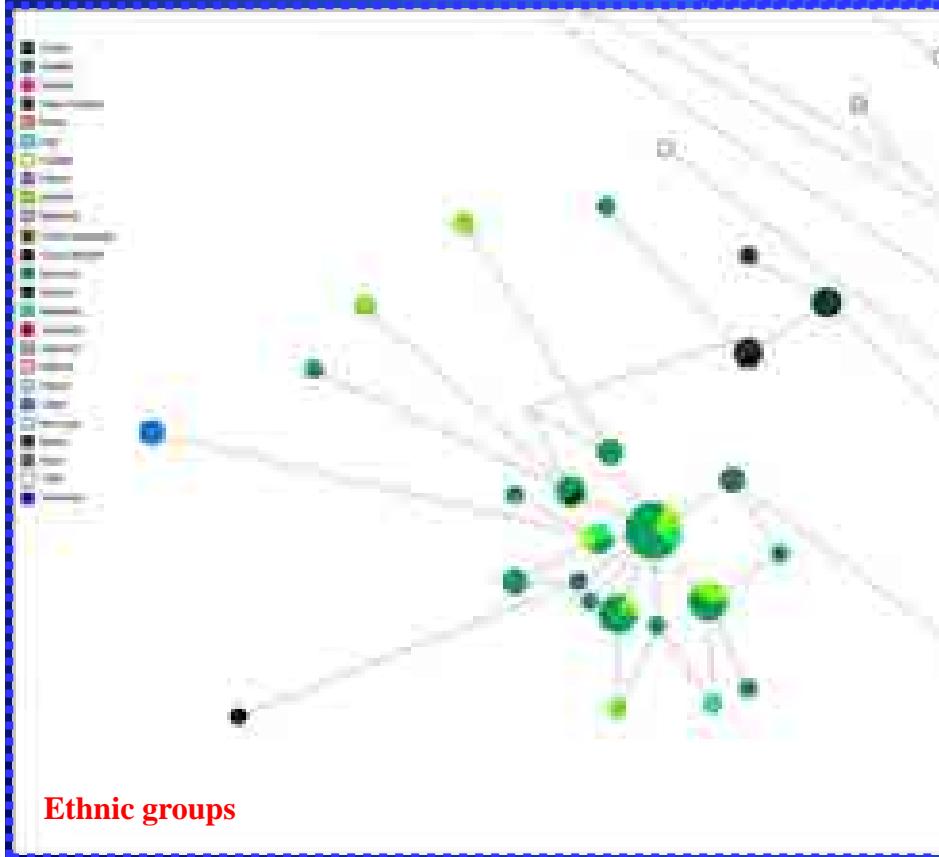
Total: 167



This study: 162

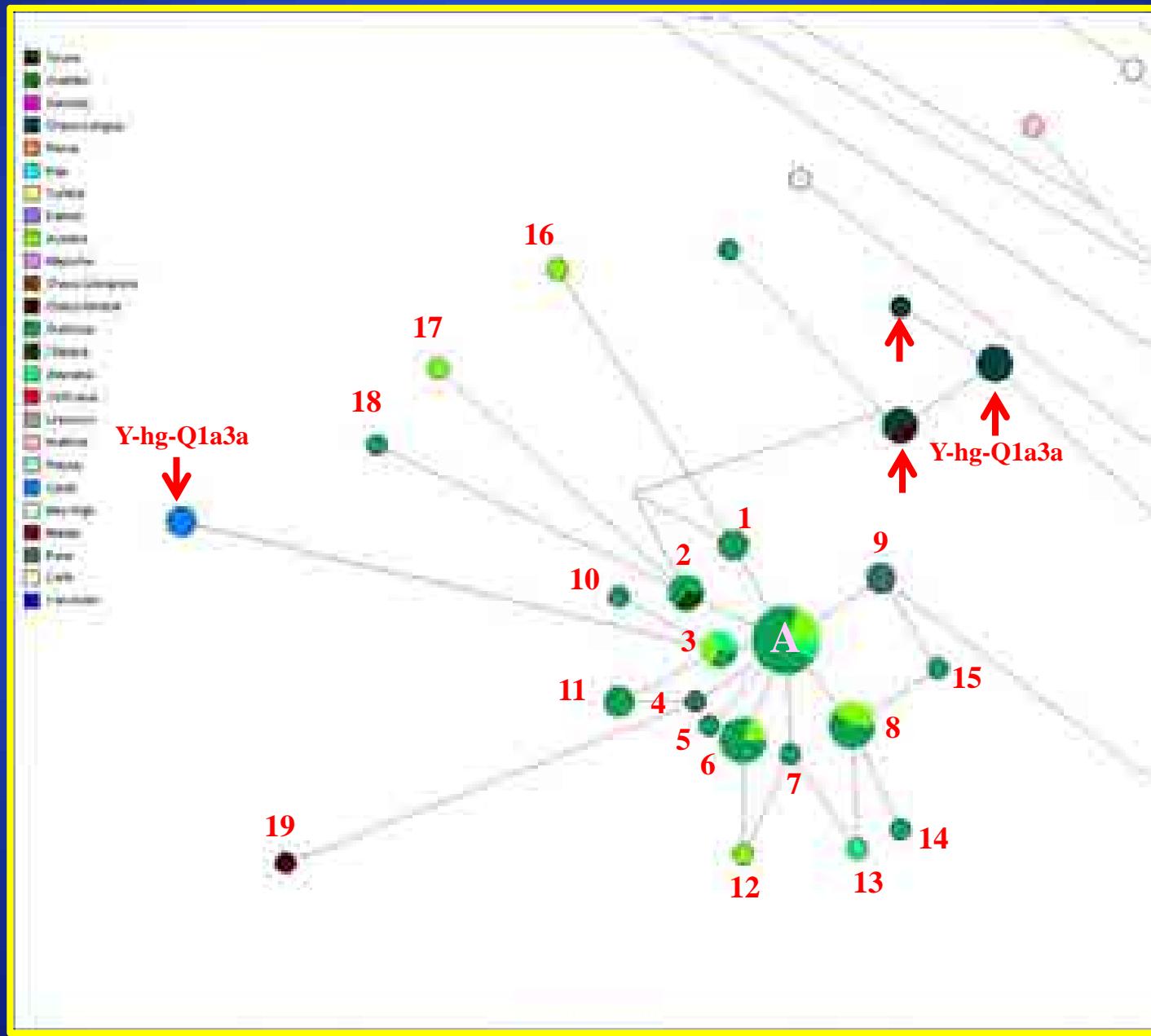
(Only Y-hg-Q)


N=329

Roewer et al.
PLOS Genetics 9 (2013) e1003460



Network analysis for 14 Y-STRs with data published

Network analysis for 14 Y-STRs with data published


Network analysis for 14 Y-STRs with data published

Calculation for average mutation for years

From YHRD				Weight in median-joining network analysis
Locus	Mutations	Meioses	Mutation Rate	
DYS19	36	15539	2.3×10^{-3}	4
DYS389I	37	13788	2.7×10^{-3}	4
DYS389II	52	13759	3.8×10^{-3}	3
DYS390	31	15061	2.1×10^{-3}	5
DYS391	38	14935	2.5×10^{-3}	4
DYS392	6	14867	0.4×10^{-3}	25
DYS393	15	13713	1.1×10^{-3}	9
DYS385	59	25620	2.3×10^{-3}	4
DYS438	3	10122	0.3×10^{-3}	34
DYS439	54	10096	5.3×10^{-3}	2
DYS437	12	10101	1.2×10^{-3}	8
DYS448	11	6678	1.6×10^{-3}	6
DYS456	28	6678	4.2×10^{-3}	2
DYS458	45	6677	6.7×10^{-3}	1
DYS635	28	7525	3.7×10^{-3}	3
Y-GATA-H4	19	7709	2.5×10^{-3}	4
Ave(14 loci)=		2.62×10^{-3}	0.00262	
A mutation for years		20 25	yrs/generat	7630 9537

Time estimation

Time estimation

The time when a male-lineage strongly influenced these tribes was estimated as 735 and 918 years ago, at 20 and 25 years per a generation, respectively.

Considering with the history of South America, this period (about 800 years ago) is almost corresponded to the period establishing the Cuzco Kingdom.

Summary

1. It is suggested that Sanuma tribe is very isolated, and very closed to Yanomami in male-lineage on a Y-STR network analysis.
2. A “ Star-like ” cluster which consists of mainly Andean speaking such as Quechua and Aymara tribes was observed in this study.
3. As a result from the time estimation when a male-lineage strongly influenced these tribes, it was suggested that rapid population growth started or a strong male (relatives) influenced these tribes about 800 years ago when are almost concordant with the period of the establishment of the Cuzco Kingdom before Inca Empire.

Acknowledgment

The Charité -
Universitätsmedizin Berlin

**Prof. Lutz Roewer
Dr. Maria Geppert**

Thank you very much for your attention!!