Faculty of Health and Medical Sciences

Sequencing of 58 STRs using the Illumina[®] ForenSeq[™] workflow and analysis of the data with the STRinNGS v.1.0 software

C. Hussing, C. Huber, R. Bytyci, H.S. Mogensen, C. Børsting, and N. Morling

Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark

Why do STR sequencing?

Example:

Among 120 Danes, 48 individuals (20.16 %) had allele 14 in the locus D8S1179:

<u>Capillary elec-</u> trophoresis (CE)		<u>Sequence</u>	Frequency in 120 Danes
D8S1179[14]	<i>→</i>	TCTA[14] TCTA[1]TCTG[1]TCTA[12] TCTA[1]TCTG[1]TGTA[1]TCTA[11] TCTA[2]TCTG[1]TCTA[11]	2.5 % (6 individuals) 11.8 % (28 individuals) 1.7 % (4 individuals) 4.2 % (10 individuals)

20.2 % (48 individuals)

One CE allele can correspond to several sequence alleles \rightarrow higher diversity \rightarrow higher possible discrimination power

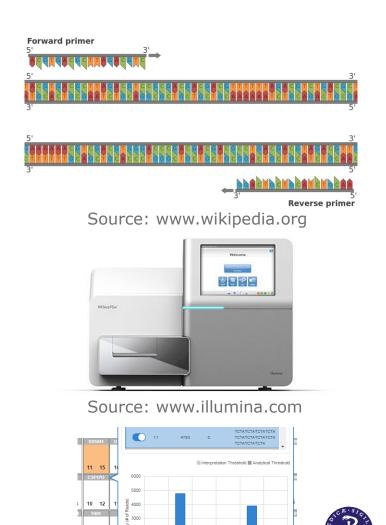
Why do STR sequencing?

Higher discrimination power can be valuable in cases of

Mixtures: Separate DNA from two individuals, if possible

Partly degraded samples: Need to get as much information as possible from the few markers that can be typed

Complex relationship cases: Need to find genetic differences among closely related individuals



Sequencing method: The Illumina[®] ForenSeq[™] workflow

- 1) ForenSeq[™] library build
 - 58 STRs (27 autosomal, 24 Y-STRs, 7 X-STRs)
 - 94 identity-informative SNPs,
 - 56 ancestry-informative SNPs,
 - 24 phenotypic-informative SNPs
 - Amelogenin

2) Sequencing on the MiSeq FGx instrument

3) Data analysis in ForenSeq[™] Universal Analysis Software (FUAS)

11 12 14

6 9.3

11 12

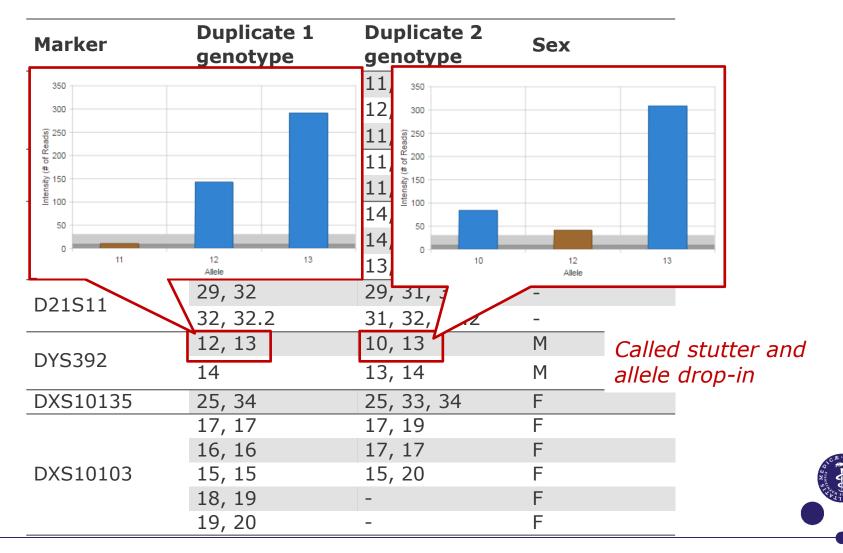
Analysis of DNA sequences

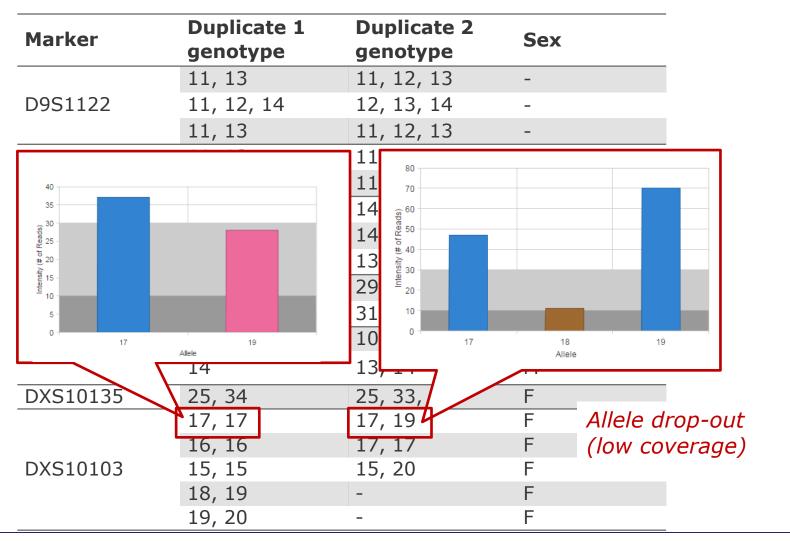
Data analysis using FUAS

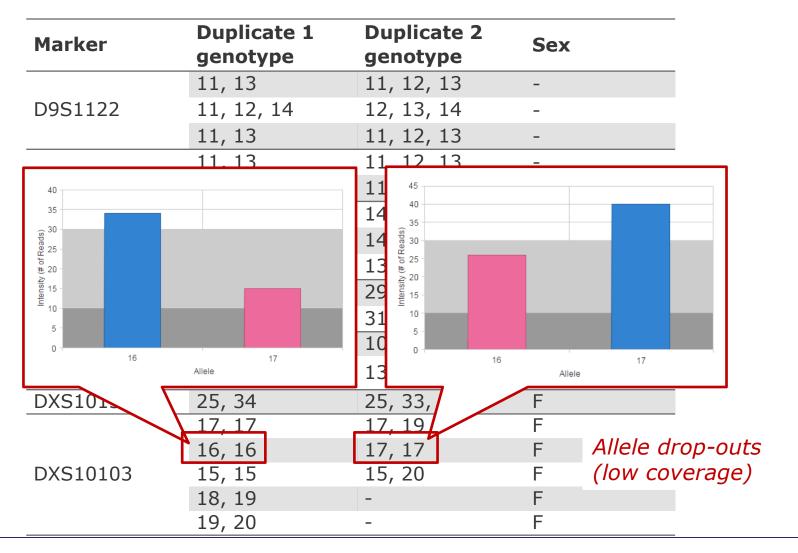
Reproducibility CE-MPS concordance Sensitivity / low template samples DNA mixtures

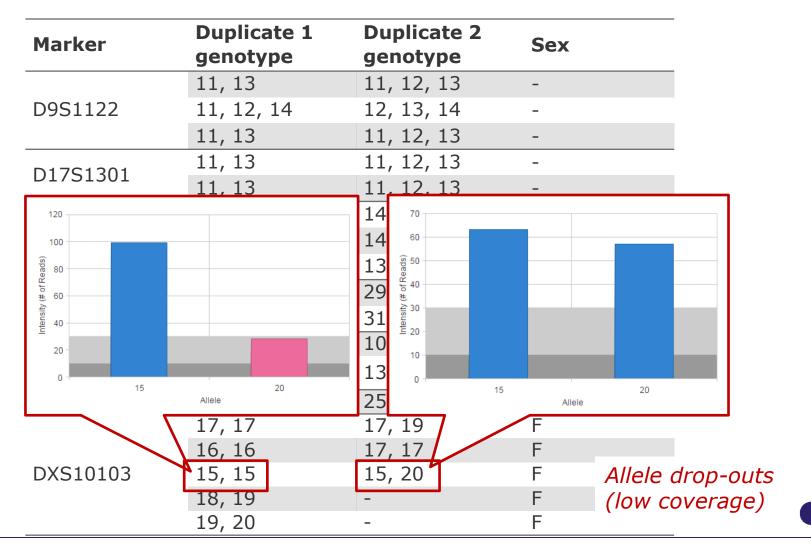
Data analysis using STRinNGS v.1.0

Locus balance Allele balances SNPs in STR flanking regions


Marker	Duplicate 1 genotype	Duplicate 2 genotype	Sex
	11, 13	11, 12, 13	-
D9S1122	11, 12, 14	12, 13, 14	-
	11, 13	11, 12, 13	-
D17S1301	11, 13	11, 12, 13	-
D1/31301	11, 13	11, 12, 13	-
	14, 16	14, 15, 16	-
D20S482	14, 16	14, 15, 16	-
	13, 15	13, 14, 15	-
D21C11	29, 32	29, 31, 32	-
D21S11	32, 32.2	31, 32, 32.2	-
DV(6202	12, 13	10, 13	М
DYS392	14	13, 14	Μ
DXS10135	25, 34	25, 33, 34	F
	17, 17	17, 19	F
	16, 16	17, 17	F
DXS10103	15, 15	15, 20	F
	18, 19	-	F
	19, 20	-	F

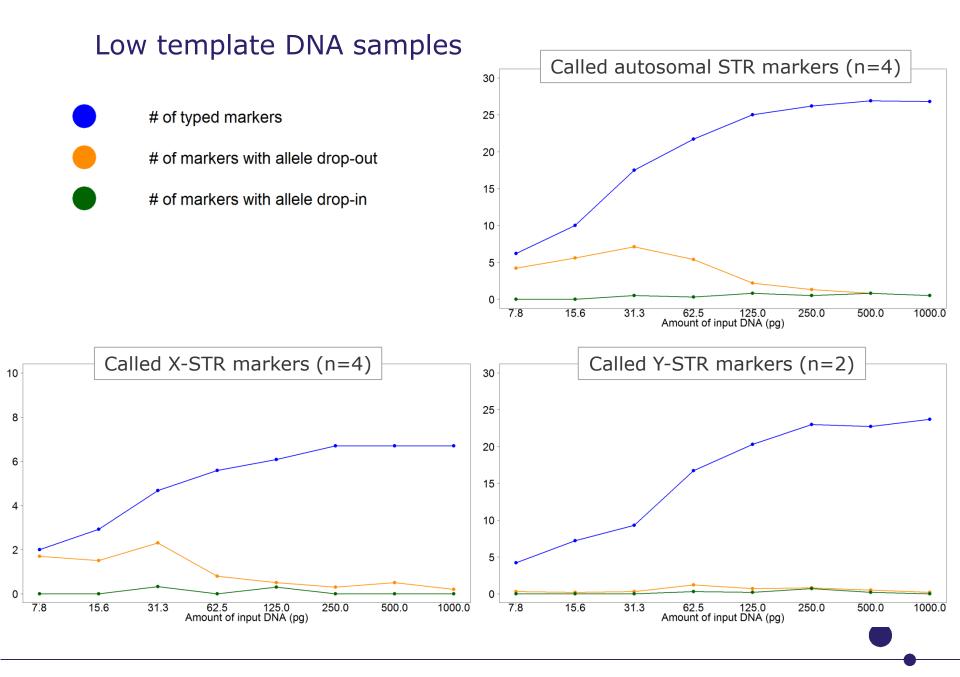

Marker	Duplicate 1 genotype	Duplicate 2 genotype	Sex	
	11, 13	11, 12, 13	-	
D9S1122	11, 12, 14	12, 13, 14	-	Called stutter
	11, 13	11, 12, 13	-	
D17C1201	11, 13	11, 12, 13	-	Called stutter
D17S1301	11, 13	11, 12, 13	-	Called Stutter
	14, 16	14, 15, 16	-	
D20S482	14, 16	14, 15, 16	-	Called stutter
	13, 15	13, 14, 15	-	
D21S11	29, 32	29, 31, 32	-	Called stutter
	32, 32.2	31, 32, 32.2	-	Called Statter
DYS392	12, 13	10, 13	М	Called stutter
	14	13, 14	Μ	Called Stutter
DXS10135	25, 34	25, 33, 34	F	Called stutter
DXS10103	17, 17	17, 19	F	
	16, 16	17, 17	F	
	15, 15	15, 20	F	
	18, 19	-	F	Locus drop-o
	19, 20	-	F	

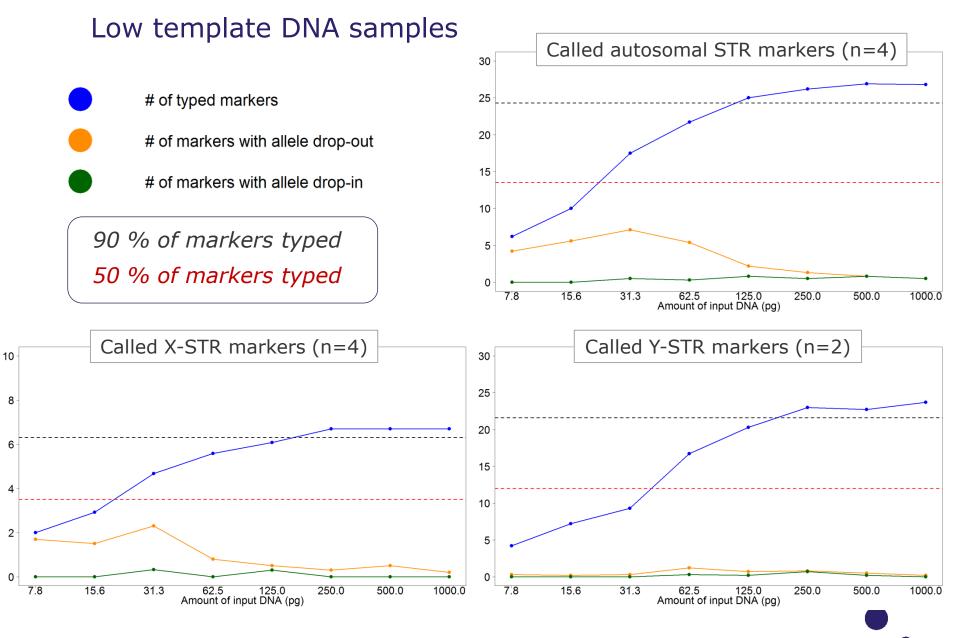

Marker	Duplicate 1 genotype	Duplicate 2 genotype	Sex	
	11, 13	11, 12, 13	-	
D9S1122	11, 12, 14	12, 13, 14	-	Called stutter
	11, 13	11, 12, 13	-	
D17S1301	11, 13	11, 12, 13	-	Called stutter
D1/51301	11, 13	11, 12, 13	-	Called Stutter
	14, 16	14, 15, 16	-	
D20S482	14, 16	14, 15, 16	-	Called stutter
	13, 15	13, 14, 15	-	
D21C11	29, 32	29, 31, 32	-	Called stutter
D21S11	32, 32.2	31, 32, 32.2	-	Called Statter
	12, 13	10, 13	М	Called stutter
DYS392	14	13, 14	Μ	Called Stutter
DXS10135	25, 34	25, 33, 34	F	Called stutter
DXS10103	17, 17	17, 19	F	
	16, 16	17, 17	F	
	15, 15	15, 20	F	
	18, 19	-	F	Locus drop-outs
	19, 20	-	F	



Marker	Duplicate 1 genotype	Duplicate 2 genotype	Sex	
	11, 13	11, 12, 13	-	
D9S1122	11, 12, 14	12, 13, 14	-	Called stutter
	11, 13	11, 12, 13	-	
D17S1301	11, 13	11, 12, 13	-	Called stutter
D1/51501	11, 13	11, 12, 13	-	
	14, 16	14, 15, 16	-	
D20S482	14, 16	14, 15, 16	-	Called stutter
	13, 15	13, 14, 15	-	
D21C11	29, 32	29, 31, 32	-	Called stutter
D21S11	32, 32.2	31, 32, 32.2	-	
DYS392	12, 13	10, 13	Μ	Called stutter and
	14	13, 14	Μ	allele drop-in
DXS10135	25, 34	25, 33, 34	F	Called stutter
DXS10103	17, 17	17, 19	F	_
	16, 16	17, 17	F	Locus and allele
	15, 15	15, 20	F	drop-outs (low
	18, 19	-	F	coverage)
	19, 20	-	F	

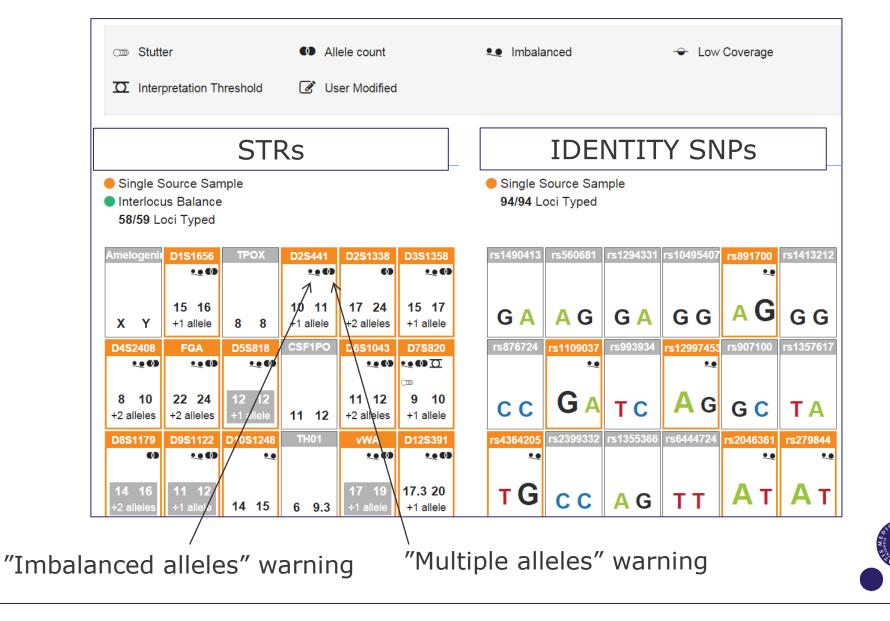
CE-MPS concordance (15 autosomal markers)


Marker	CE genotype	ForenSeq genotype
D2S1338	LDO	19, 25
FGA	LDO	19, 20
D21011	29, 32	29, 31, 32
D21S11	32, 32.2	31, 32, 32.2



CE-MPS concordance (15 autosomal markers)

Marker	CE genotype	CE genotype ForenSeq genoty		
D2S1338	LDO	19, 25	Locus drop-out	
FGA	LDO	19, 20	Locus drop-out	
D21S11	29, 32	29, 31, 32	Called stutters	
	32, 32.2	31, 32, 32.2		



DNA mixtures - STRs & SNPs - FUAS screenshot

DNA mixtures – autosomal STRs

Male:female mixture	Average # of "Multiple	Average # of
ratio	alleles" warnings	"Imbalanced" warnings
1,000:1	1.5	0.5
100:1	3	3
50:1	8.5	3
25:1	9.5	4.5
12:1	16	9
6:1	19	19
3:1	19	20
1:1	20	17.5
1:3	19	21
1:6	17	19.5
1:12	14.5	13.5
1:25	10	5
1:50	4.5	2.5
1:100	1	1
1:1,000	1	2.5
30 single	0.5	2.2
contributor samples	0.5	2.2

DNA mixtures – autosomal STRs

Male:female mixture		Averag	e # of "Multiple	Average # of
ratio		alleles" warnings		"Imbalanced" warnings
1,000:	1,000:1		1.5	0.5
100:1			3	3
50:1			8.5	3
25:1			9.5	4.5
12:1			16	9
6:1			19	19
3:1	3:1Notable differ1:1to single cont		19	20
1:1			20	17.5
1:3	samples		19	21
1:6			17	19.5
1:12			14.5	13.5
1:25			10	5
1:50			4.5	2.5
1:100		1		1
1:1,000		1		2.5
30 single contributor samples			0.5	2.2

Calling STR alleles with STRinNGS v.1.0

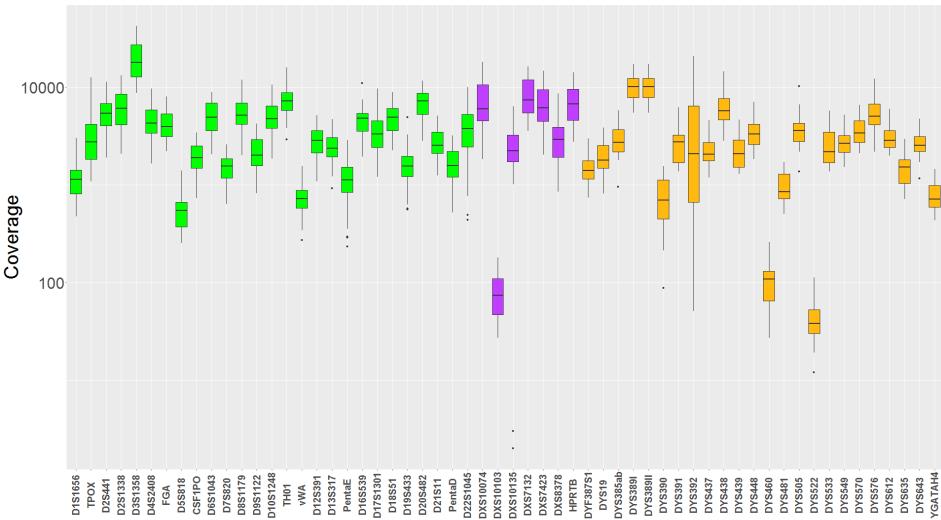
In-house software for calling STR sequence alleles¹

Predefined STR repeat structures and start and stop positions of flanking regions

Pipeline:

- 1) Identifies STR flanking regions
- 2) Counts STR repeat numbers and identifies SNPs in flanks
- Provides detailed information for each unique sequence, e.g. locus coverage, allele coverage, and full STR and flanking sequences

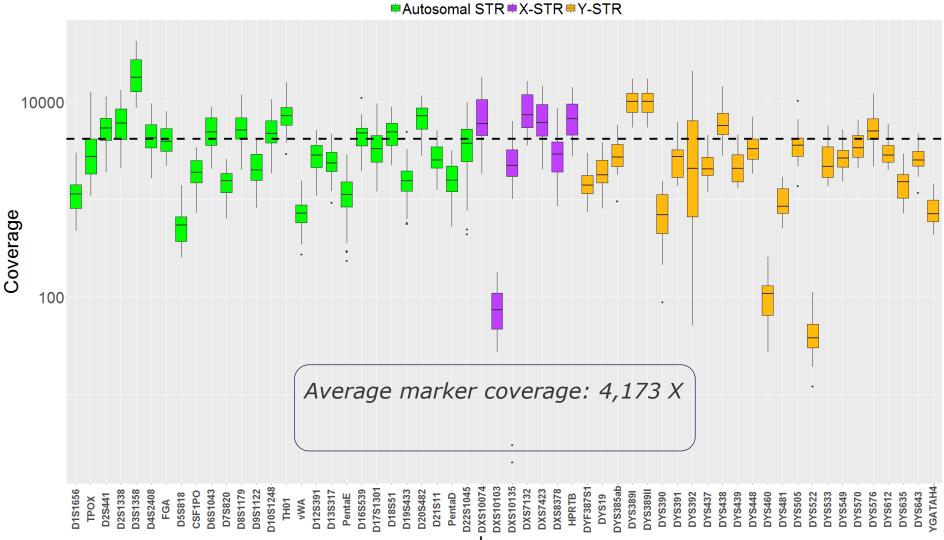
¹Friis SL et al.: Introduction of the Python script STRinNGS for analysis of STR regions in FASTQ or BAM files and expansion of the Danish STR sequence database to 11 STRs. Forensic Sci Int Genet. 2016; 21: 68-75.


Calling STR alleles with STRinNGS v.1.0

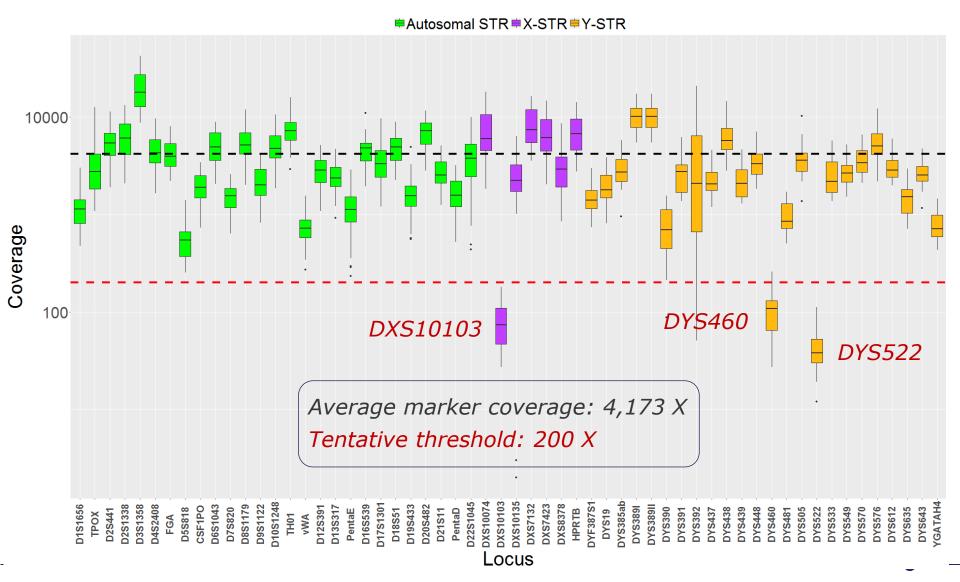
STRinNGS v.1.0 (in-house) – features not in FUAS:

- Analyses of STR flanking regions
- Automatic naming of SNP-STR alleles
- Simultaneous obtainment of allele and locus coverage of all unique sequences from all samples in a run

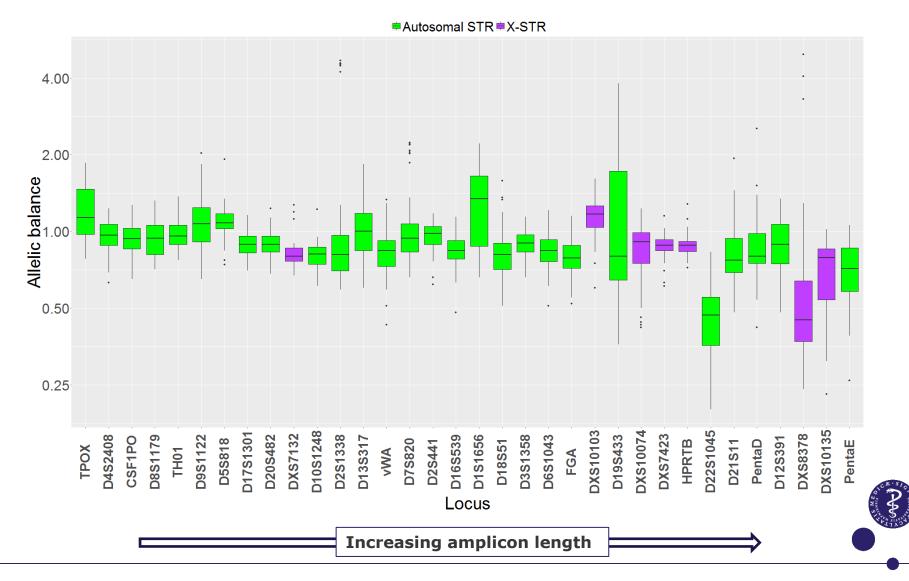
Coverage – numbers of relevant DNA sequences


30 individuals (12 males, 18 females)

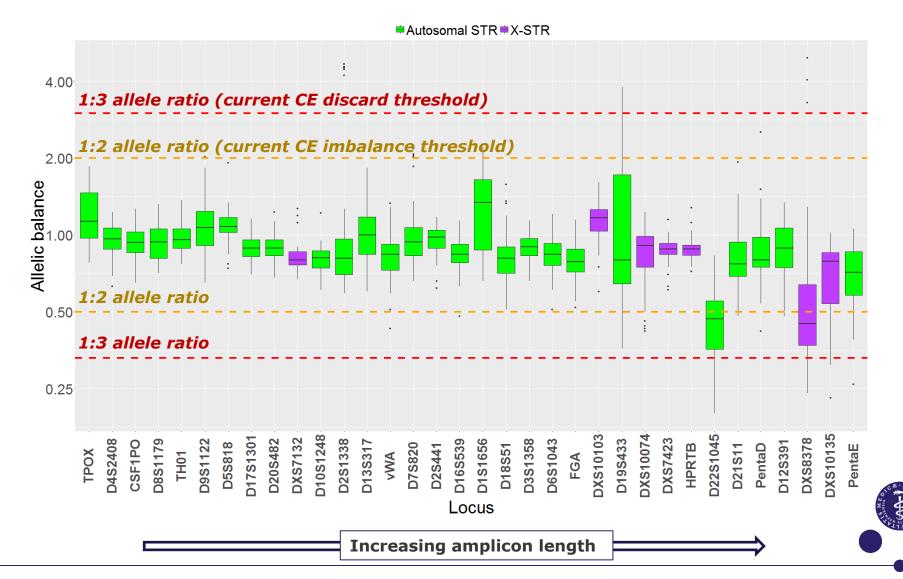
■Autosomal STR ■X-STR ■Y-STR

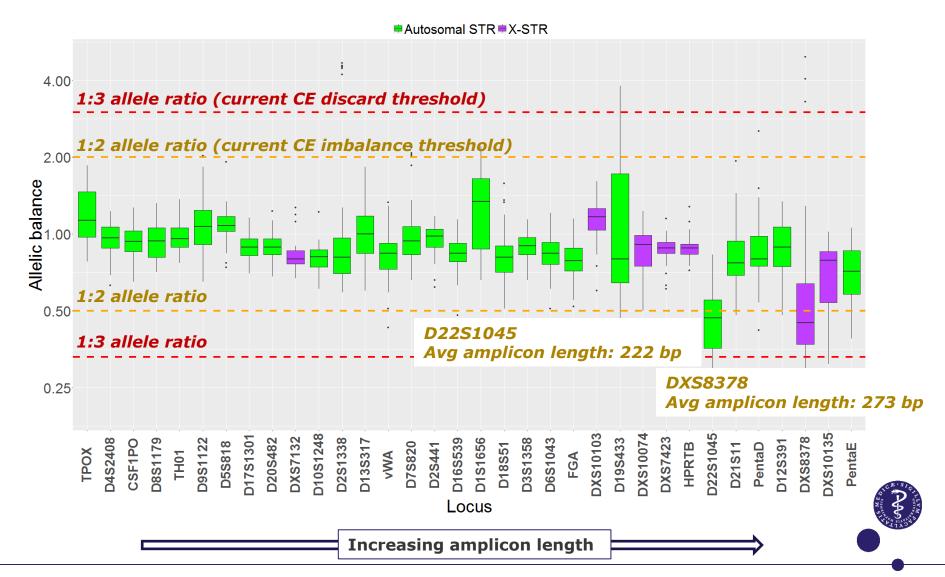

Coverage – numbers of relevant DNA sequences

30 individuals (12 males, 18 females)



Locus


Coverage – numbers of relevant DNA sequences


Allele balances (longest allele / shortest allele)

Allele balances (longest allele / shortest allele)

Allele balances (longest allele / shortest allele)

Conclusion

The ForenSeq[™] kit gave good results in sequencing 58 STRs simultaneously

Lack of reproducibility was mainly due to calling of stutters as a true, third allele and low coverage in DXS10103

Few discordances to CE genotyping was observed (CE locus drop-out, stutters called as true alleles by ForenSeq[™])

Above 90 % of markers were called at \geq 250 pg input DNA, and above 50 % at \geq 62.5 pg

The FUA software could effectively mark mixtures as imbalanced and/or containing more than two alleles in mixtures ranging from 1:1 to 1:25/1:50 ratios of DNA

Conclusion

STRinNGS v.1.0 proved to be efficient in analysing STRs

Acceptable locus and allele coverages were obtained except for the locus coverage of DXS10103, DYS460, and DYS522 (below 200 X)

A total 26 SNPs were observed in the flanking regions of 19 different STRs.

Acknowledgements

Members of the staff of the Section of Forensic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen:

Technician Anja Ladegaard Jørgensen Bioinformatician Carina Grøntved Jønck Forensic Geneticist Eszter Rockenbauer, MSc, PhD Forensic Geneticist Anders Buchard, MSc, PhD

