Faculty of Health and Medical Sciences

Sequence variation in the short tandem repeat system SE33 discovered by next generation sequencing

Eszter Rockenbauer, MSc, PhD and Line Møller, MSc

Forensic Geneticist Section of Forensic Genetics Department of Forensic Medicine Faculty of Health and Medical Sciences University of Copenhagen Denmark

Aims

- Sequence SE33 with an NGS assay
- Use Roche Junior Platform
- Search for sequence variation
- Identify new allele variants
- Find population specific alleles
- Test usefulness of higher allele diversity in paternity cases

SE33

- Core locus in the European Standard Set of STRs
- Included in several commercial STR typing kits
 E.g. NGM Select, ESI17
- Complex and highly variable sequence
- Consisting of four nucleotide AAAG units interrupted by AA and AG units
- Wide span of allele length variation (3 to 39 four repeat units)

Challenges with SE33

- No commercially available NGS kits to sequence SE33
- Several polyA stretches difficult to sequence with presently used NGS techniques
- Alleles can be up to 343 bp ↔ most NGS machines produce ≤ 300 bp reads

GS Junior 454

- Pyrosequencing technology
- 200 cycles of nucleotide addition (A, T, C and G in fixed order)
- Read length \leq 800 bases
- Accuracy of 99% for reads of \leq 400bp
- Several successful STR sequencing studies*

*Fordyce et al. 2011, Van Neste et al. 2012, Dalsgaard et al. 2014; Rockenbauer et al. 2014; Gelardi et al. 2014; Scheible et al. 2014

Samples

Samples

203 samples from Danes(144), Somalis(81) and Greenlanders(58)

- 188 from unrelated individuals
- 5 trios with an unsolved genetic inconsistency in SE33 between parent and child

Control

 ISO17025 accredited STR typing (AmpFLSTR[®] NGMSelect[®] PCR Amplification Kit)

STR sequencing

- Amplicon sequencing with Multiplex IDentifiers (MIDs) in the PCR primer sequence
- Quantification and pooling amplicons into a library
- emPCR and sequencing

Data analysis

- Generally low sequencing quality
- Standard filters were switched off to get more reads in output file
- "Filters_off_amplicons"-pipeline*:
 - \circ $\,$ Sorting by MIDs $\,$
 - Filtering by flanking sequences
- Both flanking sequence must be present (optional)
- Alignment in BioEdit (Ibis Biosciences)

*in-house Python-based algorithm

Results of allele calling

- Total sample coverage 4,643 (before) and 318 (after filtering)
- 10-20% forward 80-90% reverse strand reads
- 57 samples were sequenced twice
- Low-quality samples were reanalysed with only one flanking sequence
- 295 correct allele calls (from 394 expected alleles)
- ~20% called with an insecurity of +/-1bp
- Most correctly called alleles had ≤ 30 repeats (~300bp incl. flanks)

Results of allele calling

- Uncertain calls:
 - Only few reads for long alleles (>30 repeats)
 - Uncertain number of "A's" ("T" in reverse strand read)
- Undetermined alleles:
 - \circ lack of sequencing reads
 - inconsistent reads
 - \circ reads deviating from PCR-CE

Results of allele calling

- High increase in allele variation
- 27 novel alleles not reported in STRbase
- Raised the power of discrimination by 282% compared to CE
- Identified the mutated allele in 3 out of 5 family trios

Bold black bases are missing in some reads. **Bold red** bases are appear duplicated in some reads.

	Ð

DEPARTMENT OF FORENSIC MEDICINE

Novel alleles

UNIVERSITY OF COPENHAGEN

Tab	ole 19 – New	Alleles
1	SE33[13]	[AAAG]2AG[AAAG]3AG[AAAG]13G[AAAG]3AG
2	SE33[16]	[AAAG] ₂ AG[AAAG] ₃ AG[AAAG] ₁₆ G[AAAG] ₃ AG (4bp del in flanking region)
3	SE33[17]	[AAAG] ₂ AG[AAAG] ₃ AG[AAAG] ₁₇ G[AAAG] ₃ AG (4bp del in flanking region)
4	SE33[17.3]	[AAAG]2AG[AAAG]3[AAAG]15G[AAAG]3G[AAAG]3AG
5	SE33[18]	[AAAG]₂AG[AAAG]₃AG[AAAG]₁7GAAGG[AAAG]₃AG
6	SE33[21.2]	[AAAG]2AG[AAAG]3AG[AAAG]8AA[AAAG]13GAAGG[AAAG]2AG
7	SE33[21.2]	[AAAG]₂AG[AAAG]₃AG[AAAG]ュ₂AA[AAAG]₃GAAGG[AAAG]₂AG
8	SE33[23]	[AAAG]2AG[AAAG]3AG[AAAG]23G[AAAG]3AG
9	SE33[24.2]	[AAAG]₂AG[<mark>A</mark> AAG]₃AG[AAAG]₃A <mark>A</mark> AAAG]₁₃GAAGG[AAAG]₂AG
10	SE33[25.2]	[AAAG]₂AG[AAAG]₃AG[AAAG]⁊A A] AAAG]ュŝGAAGG[AAAG]₂AG
11	SE33[25.2]	[AAAG]₂AG[AAAG]₃AG[AAAG]₂AA[AAAG]ュ7GAAGG[AAAG]₂AG
12	SE33[25.2]	[AAAG]₂AG[AAAG]₃AG[AAAG]ュ₃A <mark>A</mark> AAAG]ュ₂GAAGG[AAAG]₂AG
13	SE33[26.2]	[AAAG]₂AG[<mark>A</mark> AAG]₃AG[AAAG] ₇ A <mark>A</mark> AAAG] <u>1</u> 9 G AA <mark>G</mark> G[AAAG]₂AG
14	SE33[26.2]	[AAAG]₂AG[AAAG]₃A <mark>A</mark> G[AAAG]ュ₀A[AAAG]ュ⁊G <mark>G</mark> [AAAG]₂AG
15	SE33[26.2]	[AAAG] ₂A G[AAAG] ₃A G[AAAG]ュ₂A <mark>A</mark> AAAG]ュ₄GAAGG[AAAG]₂AG
16	SE33[27.2]	[AAAG]2AG[AAAG]3AG[AAAG]3A[AAAG]20[GAAG]3G[AAAG]2AG
17	SE33[27.2]	[AAAG]₂AG[AAAG]₃AG[AAAG]₃A[AAAG]₂₂GAAGG[AAAG]₂AG
18	SE33[27.2]	[AAAG]₂AG[AAAG]₃AG[AAAG] ァA<mark>A[</mark>AAAG]₂₀GAAGG[AAAG]₂AG
19	SE33[27.2]	[AAAG]₂AG[<mark>A</mark> AAG]₃AG[AAAG]₃A A [AAAG]ュଃGAAGG[AAAG]₂AG
20	SE33[28.2]	[AAAG]2AG[AAAG]3AG[AAAG]3AA[AAAG]17G[AAGG]3[AAAG]2AG
21	SE33[29.2]	[AAAG]₂AG[AAAG]₃AG[AAAG]₃A[AAAG]ュցG[AAGG]₂[AAAG]₂AG
22	SE33[29.2]	[AAAG]₂AG[AAAG]₃AG[AAAG]ュ₀AA[AAAG]ュ∍GAAGG[AAAG]₂AG
23	SE33[30.2]	[A AAG]₂AG[AAAG]₃AG[AAAG]₅AA[AAAG]₂₂GAAGG[AAAG]₂AG
24	SE33[31.2]	[AAAG]2AG[AAAG]3AG[AAAG]11AA[AAAG]20GAAGG[AAAG]2 (4bp del in flanking region)
25	SE33[30.2]	[AAAG]₂AG[AAAG]₃AG[AAAG]ュ₃A[AAAG]ュ₅G[AAAG]₂AG
26	SE33[31.2]	[AAAG]₂AG[AAAG]₃AG[AAAG]₄A[AAAG]₁₀A[AAAG]₁7GAA <mark>G</mark> G[AAAG]₂AG
27	SE33[31.2]	[AAAG]₂AG[AAAG]₃AG[AAAG]₂AG[AAAG]₂₃GAAGG[AAAG]₂AG

FACULTY OF HEALTH AND MEDICAL SCIENCES

Allele distribution

Mutation studies

	Rolle	NGS Allele sequence	CE length
1	М	[AAAG] ₂ A[AAAG] ₃ AG[AAAG] ₃ AG[AAAG] ₁₁ AA[AAAG] ₁₀ GAAGG[AAAG] ₂	21.2
1	м	No usable sequence information obtained	(31.2)
1	С	[AAAG]2A[AAAG]3AAG[AAAG]3AAG[AAAG]19G[AAAG]3	19
1	С	[AAAG] ₂ A[AAAG] ₃ AG[AAAG] ₃ AAG[AAAG] ₁₁ A _x [AAAG] ₁₀ GAAGG[AAAG] ₂	21.2
1	F	[AAAG] ₂ A[AAAG] ₃ AG[AAAG] ₃ AG[AAAG] ₁₈ G[AAAG] ₃	18
1	F	[AAAG]₂A[AAAG] <u>₃AAG[</u> AAAG]₃AAG[AAAG]₂₀G[AAAG]₃	20
2	М	[AAAG] ₂ A[AAAG] ₃ AG[AAAG] ₃ AG <u>[AAAG]₁7</u> G[AAAG] ₃	17
2	М	[AAAG] ₂ A[AAAG] ₃ AG[AAAG] ₃ AG[AAAG] ₁₈ G[AAAG] ₃	18
2	С	[AAAG] ₂ A[AAAG] ₃ AG[AAAG] ₃ AG <mark>[AAAG]₁₇G[AAAG]₃</mark>	17
2	С	[AAAG] ₂ A[AAAG] ₃ AG[AAAG] ₃ AG[AAAG] _{1€} <u>GAAGG[</u> AAAG] ₃	17
2	F	[AAAG] ₂ A[AAAG] ₂ AG[AAAG] ₂ AG[AAAG] ₁₇ <u>GAAGG[</u> AAAG] ₃	18
2	F	No usable sequence information obtained	(20)
5	М	$[AAAG]_2A_x[AAAG]_3A_xG[AAAG]_3A_xG[AAAG]_{11}A_x[AAAG]_{18}GAAGG[AAAG]_2$	29.2
5	М	[AAAG] ₂ A[AAAG] ₃ AG[AAAG] ₃ AG[AAAG] ₁₃ A <mark>[AAAG]₁₈G[AAAG]₂</mark>	30.2
5	С	[AAAG] ₂ A _x [AAAG] ₃ AG[AAAG] ₃ AG[AAAG] ₁₃ A _x [AAAG] ₁₅ GAAGG[AAAG] ₂	28.2
5	С	[AAAG] ₂ A[AAAG] ₃ AG[AAAG] ₃ AG[AAAG] ₁₃ A <mark>[AAAG]₁₈G[AAAG]₂</mark>	30.2
5	F	[AAAG]2A[AAAG]2AG[AAAG]3AG[AAAG]11A[AAAG]20G[AAAG]2	30.2
5	F	[AAAG]2Ax[AAAG]3AG[AAAG]3AG[AAAG]14AA[AAAG]15GAAGG[AAAG]2	29.2

M: mother, F: father, C: child. () Alleles with no sequence information were not sequenced correctly in comparison to CE results and were left out of analysis.

Conclusions

- SE33 is a promising candidate locus for NGS based genotyping
- Large sequence variation is observed
- Difficulties owing to poly-A stretches and long alleles
- The Roche Junior platform does not perform optimally
- Similar difficulties expected on other available NGS platforms
- Alternative sequencing technique/s and platform/s are needed

Acknowledgements

Professor and Director of the department: Niels Morling

Forensic geneticists: Claus Børsting

Bioinformatics: Carina G. Jønck

Lab: Nadia Jochumsen

Thank you for your attention

