The Low Copy Number (LCN) STR interpretation strategy

Peter Gill and John Buckleton

LCN STRATEGY

- The duplication strategy might be regarded as ad hoc.
- However, a statistical model was developed to underpin our rationale and to demonstrate the conservative nature of the method used.
- But - we do need to think in a very different way about interpretation

Models to interpret LCN profiles

- Probability of contamination
- Calculated from probability of contaminant in a negative control
- Probability of allele drop-out
- Predicted by the size of the associated allele
- Probability of stutter
- Also predicted by the size of the associated allele

Procedure to estimate the LR

- Nomenclature:
- Replicates
- Say, $R_{1}=\mathrm{a} \quad R_{2}=\mathrm{ab}$
- $\operatorname{Pr}\left(E \mid H_{\mathrm{p}}\right)$ is the probability of the evidence if the profile is the suspect's
- $\operatorname{Pr}\left(E \mid H_{\mathrm{d}}\right)$ is the probability of the evidence if the profile is from someone else

$$
\begin{aligned}
L R & =\frac{p\left(R_{1}, R_{2}, \ldots \mid H p\right)}{p\left(R_{1}, R_{2}, \ldots . \mid H d\right)} \\
& =\frac{p\left(R_{1}, R_{2}, \ldots \mid H p\right)}{\sum_{j} p\left(R_{1}, R_{2}, \ldots . \mid M_{j}, H d\right) p\left(M_{j} \mid H d\right)}
\end{aligned}
$$

Assume replicate 1 and replicate 2 etc are independent?
Once M_{j} is specified we don't need $H d$.

$$
=\frac{\prod_{i} p\left(R_{i} \mid H_{p}\right)}{\sum_{j} \prod_{i} p\left(R_{i} \mid M_{j}\right) p\left(M_{j}\right)}
$$

Consider one replicate profile is $a b$ suspect is $a b$

Explanation of the evidence $\left(H_{p}\right)$

- We condition on the suspect who is $a b$
- If R_{1} is really from the suspect how is the evidence explained?
- $R_{1}=a b$ - explanation - no drop out of allele a, no drop out of allele b, no drop in

$$
p\left(R_{1} \mid H p\right)=\bar{D} \bar{D} \overline{S p}
$$

Explanation of the evidence $\left(H_{\mathrm{d}}\right)$

- In LCN there are a lot of possible‘true offender" profiles. We call these $M \mathrm{j}$.
- There is no need for restriction if you have a computer but there is a need if you do it by hand.
- I think in this case we could have $M \mathrm{j}=a b, a a, b b$

$M \mathrm{j}$	$\operatorname{Pr}(\mathrm{Mj})$	$R_{1}=a b$
$a b$	$2 f_{a} f_{b}$	$\bar{D} \bar{D} \bar{S} p$
$a a$	f_{a}^{2}	$\bar{D} ? S p f_{b}$
$b b$	f_{b}^{2}	$\bar{D} S p f_{a}$
$2 f_{a} f_{b} \bar{D}^{2} \bar{S} p+f_{a}^{2} \bar{D} S p f_{b}+f_{b}^{2} \bar{D} S p f_{a}$		

$$
\begin{aligned}
& =\frac{\bar{D}^{2} \bar{S} p}{2 f_{a} f_{b} \bar{D}^{2} \bar{S} p+f_{a}^{2} \bar{D} S p f_{b}+f_{b}^{2} \bar{D} S p f_{a}} \\
& =\frac{\overline{\bar{D}} p}{2 f_{a} f_{b} \bar{D} \bar{S} p+f_{a}^{2} S p f_{b}+f_{b}^{2} S p f_{a}} \\
& =\frac{1}{2 f_{a} f_{b}\left(1+\frac{S p\left(f_{a}+f_{b}\right)}{2 \bar{D} \overline{S p}}\right)}
\end{aligned}
$$

$$
\frac{1}{1+\frac{S p\left(f_{a}+f_{b}\right)}{2 \bar{D} \overline{S p}}}
$$

Replicate profile is a suspect is aa

Explanation of the evidence $\left(H_{\mathrm{p}}\right)$

- We condition on the suspect who is $a a$
- If R_{1} is really from the suspect how is the evidence explained?
- $R_{1}=a a$ - explanation - no drop out of allele a, a no drop in

$$
p\left(R_{1} \mid H p\right)=\bar{D} \overline{S p}
$$

Explanation of the evidence $\left(H_{\mathrm{d}}\right)$

- I think in this case we could have $M \mathrm{j}=a x$, $a a$

$M \mathrm{j}$	$\operatorname{Pr}(\mathrm{Mj})$	$R_{1}=a$
$a x$	$2 f_{a}\left(1-f_{a}\right)$	$\bar{D} \bar{D} \overline{S p}$
$a a$	f_{a}^{2}	$\bar{D} \overline{S p}$
$2 f_{a}\left(1-f_{a}\right) \bar{D} \overline{S p}+f_{a}^{2} \bar{D}$		

$$
\begin{aligned}
L R & =\frac{\overline{\bar{D} \overline{S p}}}{2 f_{a}\left(1-f_{a}\right) \bar{D} \overline{D P p}+f_{a}^{2} \bar{D} \overline{S p}} \\
& =\frac{1}{2 f_{a}\left(1-f_{a}\right) D+f_{a}^{2}} \\
& =\frac{1}{2 f_{a}\left[\left(1-f_{a}\right) D+\frac{f_{a}}{2}\right]} \\
& =\frac{1}{2 f_{a}\left(1-\frac{f_{a}}{2}\right)} \quad \begin{array}{l}
\text { Worst scenari } \\
D=1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
L R & =\frac{\bar{D} \overline{S p}}{2 f_{a}\left(1-f_{a}\right) \overline{\bar{D} D} \overline{\overline{S p}}+f_{a}^{2} \overline{\overline{D S p}}} \\
& =\frac{1}{2 f_{a}\left(1-f_{a}\right) D+f_{a}^{2}} \\
& =\frac{1}{2 \operatorname{Pr}(a \mid a a)(1-\theta)\left(1-f_{a}\right) D+\operatorname{Pr}(a \mid a a) \operatorname{Pr}(a \mid a a a)} \\
& =\frac{(1+\theta)(1+2 \theta)}{\left\{2 \theta+(1-\theta) f_{a}\right\}\left[3 \theta+(1-\theta)\left[f_{a}+2 D\left(1-f_{a}\right)\right]\right]}
\end{aligned}
$$

Eq 1

$$
L R \approx \frac{(1+\theta)(1+2 \theta)}{\left\{2 \theta+(1-\theta) f_{a}\right\}\left[3 \theta+(1-\theta)\left[f_{a}+2 D\left(1-f_{a}\right)\right]\right]} \quad \text { Eq } 1
$$

Eq 2
$L R \approx \frac{1}{2 f_{a}}$
$L R \approx \frac{1}{2 \operatorname{Pr}(a \mid a a)}$
Eq 3

Set $D=1$
$L R \approx \frac{(1+\theta)(1+2 \theta)}{\left\{2 \theta+(1-\theta) f_{a}\right\}\left[3 \theta+(1-\theta)\left[f_{a}+2\left(1-f_{a}\right)\right]\right]}$
Eq 4

$$
L R \approx \frac{(1+\theta)(1+2 \theta)}{\left\{2 \theta+(1-\theta) f_{a}\right\}\left[3 \theta+(1-\theta)\left[f_{a}+2 D\left(1-f_{a}\right)\right]\right]} \quad \text { Eq } 1
$$

Eq 2

$$
\begin{aligned}
& L R \approx \frac{1}{2 f_{a}} \\
& L R \approx \frac{(1+\theta)}{2\left\{2 \theta+(1-\theta) f_{a}\right\}}
\end{aligned}
$$

Eq 3

$$
L R \approx \frac{(1+\theta)(1+2 \theta)}{\left\{2 \theta+(1-\theta) f_{a}\right\}\left[3 \theta+(1-\theta)\left[f_{a}+2\left(1-f_{a}\right)\right]\right]}
$$

Eq 4

Suspect $a b$ Stain $R_{1}=a$

- Under Hp

$$
\operatorname{Pr}\left(R_{1} \mid H p\right)=\bar{D} \overline{D p}
$$

Suspect $a b$ Stain $R_{1}=\mathrm{a}$

- Under Hd
- Consider $M j=a a$ or $a x$

$$
\operatorname{Pr}\left(R_{1} \mid H d\right)=\bar{D} \overline{S p} f_{a}^{2}+D \bar{D} \overline{S p} 2 f_{a}\left(1-f_{a}\right)
$$

Suspect $a b$ Stain $R_{1}=a$

$$
\begin{aligned}
L R & =\frac{\bar{D} D \overline{S p}}{\bar{D} \overline{S p} f_{a}^{2}+D \bar{D} \overline{S p} 2 f_{a}\left(1-f_{a}\right)} \\
& =\frac{D}{f_{a}^{2}+D 2 f_{a}\left(1-f_{a}\right)} \\
& =\frac{D}{f_{a}\left(f_{a}+2 D-2 D f_{a}\right)} \\
& =\frac{D}{f_{a}\left(2 D+(1-2 D) f_{a}\right)} \\
L R & \approx \frac{(1+\theta)(1+2 \theta) D}{\left\{\theta+(1-\theta) f_{a}\right\}\left[2 \theta+2 D+(1-2 D)(1-\theta) f_{a}\right]}
\end{aligned}
$$

$$
\begin{array}{cc}
L R \approx \frac{(1+\theta)(1+2 \theta) D}{\left\{\theta+(1-\theta) f_{a}\right\}\left[2 \theta+2 D+(1-2 D)(1-\theta) f_{a}\right]} & \text { Eq } 5 \\
L R \approx \frac{1}{2 f_{a}} \quad \operatorname{Eq} 2 \quad L R \approx \frac{(1+\theta)}{2\left\{2 \theta+(1-\theta) f_{a}\right\}} & \text { Eq } 3 \\
L R \approx \frac{(1+\theta)(1+2 \theta)}{\left\{2 \theta+(1-\theta) f_{a}\right\}\left[3 \theta+(1-\theta)\left[f_{a}+2\left(1-f_{a}\right)\right]\right]} & \text { Eq } 4 \\
L R \approx \frac{(1+\theta)(1+2 \theta)}{\left\{\theta+(1-\theta) f_{a}\right\}\left[2 \theta+2-(1-\theta) f_{a}\right]} & \text { Eq } 6
\end{array}
$$

Eq 6

Single replicate?

- Suspect aa Stain $a \mathrm{~F} \rightarrow$ no problem
- Suspect $a b$ Stain $a \mathrm{~F} \rightarrow$ maybe a problem
- Suspect $a b$ Stain $a b$ caution needed!

Single replicate Suspect $a b$ Stain a

Two replicates

- Suspect is $a b$
- R_{1} is a
- R_{2} is $a b$

$M \mathrm{j}$	$\operatorname{Pr}(M \mathrm{j})$	$\operatorname{Pr}\left(R_{1}=\mathrm{ab} \mid M \mathrm{j}\right)$	$\operatorname{Pr}\left(R_{2}=\mathrm{a} \mid M \mathrm{j}\right)$
ab	$2 f_{a} f_{b}$	$\bar{D} \bar{D} \overline{S p}$	$\bar{D} D \overline{S p}$
aa	f_{a}^{2}	$\bar{D} S p f_{b}$	$\bar{D} \overline{S p}$

$$
\begin{aligned}
& L R \approx \frac{\bar{D} \overline{\overline{S p}} \overline{\bar{D}} \bar{D} \overline{\overline{S p}}}{\overline{\bar{D} \overline{S p} \bar{D} D \overline{S p} 2 f_{a} f_{b}+\bar{D} \overline{S p} \bar{D} \overline{S p} f_{b} f_{a}^{2}}} \begin{array}{l}
=\frac{\overline{S p} D \bar{D}}{\overline{S p} D 2 f_{a} f_{b}+S p f_{b} f_{a}^{2}} \\
=\frac{1}{2 f_{a} f_{b}+\frac{S p}{\overline{S p} D \bar{D}} f_{b} f_{a}^{2}} \\
=\frac{1}{2 f_{a} f_{b}\left(1+\frac{S p f_{a}}{2 \overline{S p} D}\right)}
\end{array} .
\end{aligned}
$$

Two replicates

- Suspect is $a b$
- R_{1} is a
- R_{2} is a

$M \mathrm{j}$	$\operatorname{Pr}(M \mathrm{j})$	$\operatorname{Pr}\left(R_{1}=\mathrm{a} \mid M \mathrm{j}\right)$	$\operatorname{Pr}\left(R_{2}=\mathrm{a} \mid M \mathrm{j}\right)$
ax	$2 f_{a}\left(1-f_{a}\right)$	$\bar{D} D \overline{S p}$	$\bar{D} D \overline{S p}$
aa	f_{a}^{2}	$\bar{D} \overline{S p}$	$\bar{D} \overline{S p}$

$$
\begin{aligned}
L R & \approx \frac{\bar{D} \overline{D p} \bar{D} \bar{D} \overline{\operatorname{Dp}}}{\bar{D} \overline{S p} \bar{D} D \overline{S p} \operatorname{Pr}(a x \mid a b)+\bar{D} \overline{S p} \overline{D P p} \operatorname{Pr}(a a \mid a b)} \\
& \approx \frac{D D}{\operatorname{Pr}(a a \mid a b)+D D \operatorname{Pr}(a x \mid a b)} \\
& \approx \frac{D D}{\operatorname{Pr}(a \mid a b)[\operatorname{Pr}(a \mid a a b)+D D \operatorname{Pr}(x \mid a a b)]} \quad \text { Eq } 7 \\
& \approx \frac{(1+\theta)(1+2 \theta) D D}{\left(\theta+(1-\theta) f_{a}\right)\left[2 \theta+(1-\theta) f_{a}+2 D D\left[\theta+(1-\theta)\left(1-f_{a}\right)\right]\right]} \\
& \approx \frac{(1+\theta)(1+2 \theta) D D}{\left(\theta+(1-\theta) f_{a}\right)\left[2 \theta+(1-\theta) f_{a}+2 D D \theta+2 D D(1-\theta)\left(1-f_{a}\right)\right]} \\
& \approx \frac{(1+\theta)(1+2 \theta) D D}{\left(\theta+(1-\theta) f_{a}\right)\left[2 \theta+2 D D \theta+(1-\theta)\left(f_{a}+2 D D\left(1-f_{a}\right)\right]\right.}
\end{aligned}
$$

Example 8.8

- Suspect $a b$
- R_{1} is ac
- R_{2} is a
"Inspection of the scaling function suggests...the biological model will be seriously non-conservative in this instance."

Scaling function

- Analysis of scaling functions enables critical levels of contamination to be estimated
- These feed back into quality assurance programs to ensure that limits are not exceeded

Acknowledgements

- Jonathan Whitaker
- Becky Sparkes
- Alex Lowe
- Peter Gill
- Amanda Kirkham

End

