

Algebra (basic rules)

E=evidence *Hd*= defence hypothesis *Hp*=prosecution hypothesis S=suspect V=victim

- Consider a simple 2 person mixture 1 locus only consisting of 2 heterozygotes
- The suspect is ab
- There must be another (unknown person) who is *cd*

- •The prosecution say: the DNA has come from the suspect and one unknown person
- •The defence say: The DNA has come from 2 unknown people
- How do we evaluate this evidence?

•The prosecution say: the DNA has come from the suspect and one unknown person

•IF this is true then we would expect *ab* to be present with probability •Pr=1. The chance of seeing an unknown person of type *cd* is $2p_cp_d$ •*Pr*(*E*|*S*,*U*)=2pcpd

The denominator

Individual Individual products The defence say: this could 2 have come from any two 4abcd ab cd random individuals Work out all pairwise hd 4abcd ac combinations from *abcd* and their probabilities ad *bc* 4abcd 4abcd cd ab bd 4abcd ac 4abcd **b**c ad These are the reverse Sum of 24abcd combations products

Now we form the LR

 $LR = \frac{\Pr(E \mid S, U)}{\Pr(E \mid U_1, U_2)}$ 2ed Aabed

 $=\frac{1}{12ab}$

All Calculations follow the same basic rules as described

- Different hypotheses?
- More on conditioning
- The top bit of the equation belongs to the prosecution
- The bottom bit of the equation belongs to the defence.
- Lets change the hypotheses

- The profile is from a semen contaminated vaginal swab
- The suspect is ab and the victim is cd
- •Because it is reasonable to suppose that alleles from the victim are on the swab we can condition on this

Conditioning on a victim

- The prosecution hypothesis (S+V) is completely explained hence the probability of the evidence is Pr=1.
- ◆ The defence hypothesis is U (still) + V.
- The LR is therefore:

2ab

- This is the same as for a non-mixed sample comprising the suspect alone.
- An illustration of simplification by 'subtraction'
- Subtraction is an important part of reporting mixtures but care must always be taken to ensure that we do not remove alleles simply because they are 'inconvenient'.
- Later we will discuss the use of 'thresholds' to assist with the interpretation process

 $\ensuremath{\mathbb{C}}$ Forensic Science Service Ltd. 2006. All Rights Reserved ${\scriptstyle \bullet}$

Moving onto more complex examples (the three allele locus)

The

Forensic

Science Service[®]

There are four alleles present given a two person mixture So one person must be homozygous. Lets work with Hp: S+U and Hd: U + U IF S=ab then U=cc under Hp then $Pr(E|Hp)=c^2$ What is Pr(E|Hd) if the suspect is ab?

Denominator

1	2	Pr	
aa	bc	2a²bc	
ab	ac	4a²bc	
ab	bc	4ab ² c	
bc	ab	4abc ²	
bb	ac	2ab ² c	
СС	ab	2abc ²	

	bc	aa	$2a^2bc$
	ac	ab	4a ² bc
\mathbf{D} (\mathbf{D}) \mathbf{U} (\mathbf{C}) \mathbf{C} (\mathbf{C}) \mathbf{C} (\mathbf{C}) \mathbf{C} (\mathbf{C})	bc	ab	4ab ² c
$Pr(E \mid Hd) = 2(6a^{2}bc + 6ab^{2}c + 6abc^{2})$	ab	bc	4abc ²
=12abc(a+b+c)	ac	bb	2ab ² c
	ab	СС	2abc ²
			sum

The LR (three alleles)

- ♦ Hp: S+U
 ↓ U
- ♦ Hd:U+U
- IF S=ab, $Pr(E|Hp)=c^2$

$$Pr(E \mid Hd) = 2(6a^{2}bc + 6ab^{2}c + 6abc^{2})$$
$$LR = \frac{c^{2}}{12abc(a+b+c)}$$
$$= \frac{c}{12ab(a+b+c)}$$

$$Pr(E \mid Hd) = 2(6a^{2}bc + 6ab^{2}c + 6abc^{2})$$
$$LR = \frac{2bc}{12abc(a+b+c)}$$
$$= \frac{1}{6a(a+b+c)}$$

For homework try 2 alleles

- Calculations are quite time consuming
- But easily programmed
- The rules are just the same as described for any mixture and can be expanded for complex mixtures (3-person or more)