

Peter Gill, James Curran, Amanda Kirkham

Definition of low level DNA (formerly LCN)

- Low level DNA is defined by 2 conditions
 - When allele dropout may occur
 - ♦ When low level (single allele) contamination may be observed –c. 1% in our hands
- This occurs with 28 cycles too!!
- Low level DNA <u>is not just 34 cycles</u> (which is why we prefer to abandon the LCN term).

A typical low level result has drop-out occurring

Ideally need to take account of the probability of dropout and the probability of contamination.

	D3	VWA	D16	D2	Amel	D8	D21	D18	D19	TH	FGA
suspect	15 18	19 19	12 13	17 19	ху	15 15	30 30.2	14 17	13 15	89	20 26
female victim	16 16	16 18	10 12	17 17	хх	15 16	30.2 31.2	14 18	14 14	88	18 20
Crime stain	15 16 18	16 18	10 12 13	17	ху	15 16	31.2	18	13 14 15	89	18 20 26
dropout alleles		19		19			30	14 17			

Note: If there are alleles that have dropped out of the crime stain DNA profile – this is not neutral evidence, it is evidence that favours the defence i.e. the probability of the evidence if the suspect is a contributor is less than 1
This is why it is preferable to use likelihood ratios for low level DNA analysis

Lets try to understand the biochemistry first before we try to understand what to do about calculations

◆ In particular.....

What is low level DNA exactly? – why is it different to conventional DNA??

- To answer this we need:
 - ♦ To define causes of heterozygous imbalance
 - To define causes of allele drop-out
 - By comparing the results of a computer simulation model with real data
- And to show how a good understanding of the complex biochemical processes that underpin PCR can assist towards developing a robust way to interpret low level DNA profiles

Consider a tube containing 50ul with 7 cells that have been extracted. There are 7 A alleles and 7 B alleles at a particular locus. Take half of the sample in an aliquot of 25ul – how many alleles are extracted?

How many molecules are recovered in an aliquot if continuous samples are taken?

Pr=Bin(14,0.5) 14 trials 0.25 *Pr*=0.5 0.2 chance of Probability **SUCCESS** 0.15 per trial 0.1 0.05 0 5 10 15 \mathbf{O} Expected no. of alleles (out of a possible 14 total)

How can we simulate DNA analysis?

- We start with a stain that has *n* cells and *2n* copies of DNA
- If we extract *n* cells (with any method), we can never recover *2n* copies of DNA because the efficiency of extraction is never 100%.
- We can simulate the process with a binomial random number generator.
- ♦ For a diploid heterozygote (*AB*) *nA* does not equal *nB* after extraction.

Simulation of recovery N = 5,10,20 cells respectively where extraction efficiency= 0.6. Calculated using Bin(2N, 0.6).

Haploid v. diploid

- If we take a single diploid cell and analyse the DNA then we will have equal contribution of alleles
- How many haploid (sperm) cells are needed to obtain both alleles of a heterozygote?

The probability of observing both alleles A and B in a sample of **n** *sperm at a*

heterozygous locus

Taking an aliquot for PCR

- Once we have extracted DNA from a sample, then we take an aliquot of the DNA for analysis – e.g.
 20ul from a total of 66ul
- Again this results in imbalance of heterozygotes.
- Furthermore, if we repeat the experiment exactly, the numbers of DNA molecules recovered are different.

PCR

PCR is not 100% efficient

- There is approximately 80% chance that a fragment will be amplified per cycle
- This will lead to some imbalance
- BUT we demonstrated that PCR efficiency does not have much effect compared to sampling.
- PCR is also simulated as a binomial model

Heterozygous balance

- Imbalance is often observed in heterozygotes
- Why?
- Drop-out is sometimes observed associated with low level DNA
- Why?

How will heterozygous balance be affected if 7 alleles are randomly recovered?

No of A's	No of B's	Hb
7	0	0
6	1	.14
5	2	.29
4	3	.42
3	4	.42
2	5	.29
1	6	.14
0	7	0

What causes drop-out? General principles of low level DNA:

- Dropout is a consequence of heterozygous imbalance (part of same phenomenon).
- There are 2 reasons for drop-out:
 - Stochastic ie no molecule is present in PCR reaction mix
 - Or: Insufficient molecules to trigger a signal
- BUT we have shown that if a molecule is present, and 34 cycles are used then there are always sufficient generated to exceed the threshold of detection i.e. it really is single molecule sensitive under ideal conditions.
- PCR inhibition and degradation will reduce sensitivity.

Cumulative probability density 28 v 34 cycles

probability density of 5,10,20 cells after extraction ($\pi_{Extraction} = 0.6$), selection of an aliquot ($\pi_{Aliquot} = 20/66$), and PCR ($\pi_{PCReff} = 0.8$) using 28 and 34 cycles respectively. © Forensic Science Service Ltd. 2006. All Rights Reserved.

Bayes net (graphical model) – A computer simulation of PCR

- We have built a simple computer model that randomly selects molecules (e.g from extracted products) and replicates molecules in PCR.
- i.e. The entire DNA process can be simulated at the molecular level by a series of simple binomial models using efficiency parameters
- Two models one for haploid and one for diploid cells.

© Forensic Science Service Ltd. 2006. All Rights Reserved .

How well does the model work?

How does it compare to real data?

Heterozgous balance

10 cells picked by LMD and subject to extraction

LoComatioN – a new probabilistic system to interpret low copy number profiles

© Forensic Science Service Ltd. 2006. All Rights Reserved

Interpretation using LoComatioN

Full probabilistic model

- Factors in contamination and dropout into the calculation.
- Enables the interpretation of complex mixtures up to 3 persons.
- Enables the probabilistic evaluation of multiple scenarios (impossible to do this previously

LoComatioN

- Based on our new understanding of the biochemistry of low level DNA we have developed an expert system to calculate likelihood ratios
- The system is fully validated and about to be implemented into casework by the FSS
- It can be used for 34 cycles and 28 cycles low level DNA profiles.

A duplication experiment - the traditional method

© Forensic Science Service Ltd. 2006. All Rights Reserved .

LoComatioN

- Doesn't depend upon a consensus profile
- It calculates probabilities across alleles across replicate PCR analyses
- The key is that we assign a probability of dropout and a probability of contamination to each allele
- It is therefore a much more efficient analytical tool because we don't have to make subjective decisions about whether or not to include a given allele in the DNA profile.

e Options		Summ	ary	of	pro	file	s ado	ded	for	this	c c	ase						ſ	<u>E</u> dit pr	ofiles		Clos
Create N	lew Case						,											L				
Open Ex	isting Case	Ex Ex	port to	<u>W</u> ord	Report																	
Save Cu	irrent Case	Contribu	utor P	Profil	ec		1					Susper	t Prof	iles				Known	Profile	95		
Close Cu	urrent Case	Contrib						F	6	7		Juspec	FCA	10	20)(_	KIIOWII	FCA	10	20	
			FGA	19	20		9 4	5	0	/			VWA	15	17				VWA	17	17	
e Browsei	r		VWA	15	17	19							D3	17	18	-			D3	19	19	
e bronsei			D3	17	18								D5	12	12				D5	13	13	
PROFILE I	INPUT		D5	12	13							Suspect 1	D7	9	11		K	(nown 1	D7	8	10	
🖾 Manua	al Input	Replicate 1	D7	8	9	10	11						D8	13	14	-			D8	13	13	
CASE OPT	TIONS		D8	13	14	11	12						D13	10	13	-			D13	8	11	
Profile	e Summary		D13	14	15	16	13						D18	27	28	-			D18	29	31	
Set V	ariables		D21	27	28	29	31						021	27	20				021	25	51	
- D-t-il-																						
e Details																						
eplicates:	1																					
uspects:	1																					
ctims:	1																					
	Hd																					
Sus:	nSus:																					
Vic:	nVic:	< "									<u>,</u>											
Jnk:	nUnk:																					

View Tools Help

ile View Tools Help

Vic: 1

Unk: 0

nVic: 1

nUnk: 1

<

Note lots of combinations to consider

>

ile View Tools Help -Results summary screen e Options Close Stage 4 of 4 Create New Case Variables Hypotheses Open Existing Case Probability of DropOut: 0.17 Prosecution hypothesis: Suspect 1, Known 1 Probability of Contamination: Save Current Case 0.0001 Defence hypothesis: Known 1, Unknown Close Current Case Reports Inputs Open Excel Report Open Word Report Open HTML Report View Profiles View Frequencies e Browser View HP PROFILE INPUT Manual Input View HD CASE OPTIONS Profile Summary Set Variables LR Values for Race And Locus Add hypotheses COMBINATIONS African-American Hispanic Caucasian Combinations FGA. 6.06245 7.80208 6.45939 CASE OUTPUT VWA 0.00045 0.00029 0.00031 Result Summary D3 14.42223 32.05249 17.55188 🔀 Full Calc's D5 2.77176 2.64493 3.11189 Word Summary D7 13.17107 20.43755 15.91702 HTML Summary D8 5.46852 3.37690 3.77300 D13 54.83012 78.79599 33.70414 D18 25.30186 36.78632 24.03170 D21 66.25859 79.27677 21.59031 e Details Overall LR 717,194 822,050 424,230 Sci Value 7.17E+05 8.22E+05 4.24E+05 eplicates: 1 1 uspects: ictims: 1 Hd Sus: 1 nSus: 0 Vic: 1 nVic: 1 nUnk: 1 Unk: 0

How do we calculate probability of dropout?

- Under the assumption that the probability of dropout is equivalent across all loci we simulate a mixture of 2 or more individuals
 - Use a random number generator to simulate dropout
 - Then count the number of surviving alleles
 - Example: Suppose that on average when there is no dropout p(D)=0 we observe c. 15 alleles
 - If p(D) = 0.5, we will observe on average 7.5 alleles
 - But if we carry out a simulation (1000x) then we may find that there will be a distribution between 4-12 alleles
 - We calculate 95% confidence interval

Calculation of the probability of drop-out from a sample with 32 alleles (SGMplus)

Probability of dropout p(D)

A case-work example

- Two female victims were assaulted by a man wielding a hammer in their flat. Both sustained minor injuries
- The assailant fled the scene of crime.
- The hammer was recovered 100 yards from the crime scene
- Low level DNA from the head of the hammer revealed a mixture of DNA
- The suspect denied the offence and denied that the hammer was his.

The case-preassessment – we have to formulate both the prosecution and alternative defence hypotheses

Prosecution hypothesis: The hammer was used by the suspect to commit the offence

The

Forensic

Science Service[®]

- Defence hypothesis: The hammer was not used by the suspect to commit the offence
- Is there evidence to suggest that the suspect handled the hammer?
- Is there evidence to suggest that the victims were hit by the hammer?
- OK s0 formulating hypotheses can be the hardest part there may be multiple possibilities suggested by both prosecution and the defence
- How do we explore this?

© Forensic Science Service Ltd. 2006. All Rights Reserved .

Case analysis – lets look a bit more closely at the data

				Allelic	Results O	bserved At	Each Loci	Tested				
	Amelo	D3	VWA	D16	D2	D8	D21	D18	D19	THO	FGA	
Sample	XY	1416	15 16	1113	2023	11/12	28 31		12 14	689	22	
(R_1)			19	(14)	24 25	1315			15.2	9.3		
			\checkmark						17.2			
Sample	XY	1416	1516	1013	(20)24		28/29	13 14	(12)13	689	22/23	
(R_2)			17 10				30 31	1617			25	
(112)						1.5LL	21.0		15.0	().5	25	
							51.2		15.2			
									17.2			
Victim 1	XX	16 16	15 16	13 13	20 20	11 15	29 30	17 17	12 14	68	22 25	
Victim 2	XX	15 17	16 19	12 13	18 25	11 13	29 30	15 17	14 14	67	20 22	
Suspect	XY	14 16	15 19	11 14	24 25	12 13	28 31	14 17	15.2	9 9.3	22 23	
									17.2			

© Forensic Science Service Ltd. 2006. All Rights Reserved .

Hypotheses

- The first set of hypotheses (based on casework circumstances):
 - ♦ *Hp*: Suspect + victim 1 +victim 2
 - ♦ Hd: unknown 1 +victim 1 + victim 2
- Both victims present and suspect?
 - What about VWA-17 allele; D18-13 allele?? Contamination??
- One victim and one unknown individual?
 - No need to invoke victim 2 in the profile because lots of alleles are shared.
- By inspection the simplest explanation is
 - ♦ *Hp*: Suspect + victim 1 + unknown
 - ♦ Hd: Unknown 1 + victim 2 + unknown 2
- How would we evaluate these uncertainties??

Evaluation of multiple hypotheses

© Forensic Science Service Ltd. 2006. All Rights Reserved .

Evaluation of the hypotheses

- It doesn't matter if victim 2 contributed or not as the LRs are virtually unaffected i.e. the prosecution hypothesis is unaffected
- The consensus method gives a similar result in this case.
- The program allows extensive evaluation of any scenario.
- The prosecution hypothesis is seriously affected if it supposed that the DNA profile comprises victim 2 + unknown under *Hp* and *Hd* – this wouldn't make sense though.

Computer simulation and modelling

- We are using computer simulation to improve our understanding of the stochastic processes involved with low copy number DNA profiling
- We now understand the reasons for allele dropout and heterozygous balance using the PCRSIM model
- We have used this improvement in understanding to develop a powerful new probabilistic model to interpret low level DNA profiles (LoComatioN).
- We anticipate that these new models will quickly supersede current methods of low level DNA analysis (at both 28 and 34 PCR cycles)

Important points

- LoCoMatioN is not a black box it does not give you <u>the</u> answer.
- It is an exploratory tool to assist the reporting officer to make a fair evaluation about a case
- It is used to evaluate multiple 'what-if' scenarios these are complex calculations that can be completed within a few minutes (*in the example we show that some scenarios are not important to consider*).
- It is a very flexible tool; it will be essential that the user is well trained in low level DNA theory to use it properly.
- It is also up to the reporting officer to decide <u>how</u> to use it. There are no hard and fast rules.

Publications on low level DNA theory and background

- P. Gill, J. Whitaker, C. Flaxman, N. Brown, J. Buckleton, An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA, Forensic Sci Int. 112 (2000) 17-40.
- P. Gill, Application of low copy number DNA profiling, Croat Med J. 42 (2001) 229-32.
- P. Gill, A. Kirkham, Development of a simulation model to assess the impact of contamination in casework using STRs, J Forensic Sci. 49 (2004) 485-91.
- P. Gill, J. Curran, K. Elliot, A graphical simulation model of the entire DNA process associated with the analysis of short tandem repeat loci, Nucleic Acids Res. 33 (2005) 632-43.

Publications on LoComatioN

- J. Curran, P. Gill, M.R. Bill, Interpretation of repeat measurement DNA evidence allowing for multiple contributors and population substructure, Forens. Sci. Int. 148 (2004) 47-53.
- Peter Gill, Amanda Kirkham and James Curran (2007) *LoComatioN*: a software tool for the analysis of low-copy number DNA profiles. Forens. Sci. Int. 166, 128-138.

Acknowledgements

- Amanda Kirkham (validation)
- James Curran (theory and programming)
- Martin Bill (encouragement and support).