What is a likelihood ratio?

Basic maths

- When '+' is used this mean 'OR'
- When ' x ' is used this means 'AND'
- Pr. is shorthand for probability
- So the probability of a 'AND' b happening together is $\operatorname{Pr}(\mathrm{a}$ and b$)=\mathrm{a} \times \mathrm{b}$
- And the $\operatorname{Pr}(\mathrm{a}$ 'OR' b) happening $=\mathrm{a}+\mathrm{b}$
- Probabilities are conditional which means that the probability of something is based on a hypothesis

Conditioning

- In maths conditioning is denoted by a vertical bar - hence $\operatorname{Pr}(\mathrm{a} \mid \mathrm{b})$ means 'the probability of a given that b is true.
- This is a very important concept because the probability a is dependent upon various assumptions.
- The assumptions or hypotheses can change.

Conditioning

- Lets suppose that a is the probability of an event
- For example: what is the probability that it will rain in the afternoon - $\operatorname{Pr}(\mathrm{a})$?
- This probability is dependent upon assumptions - look out of the window in the morning.
- $\operatorname{Pr}(\mathrm{a})$ if it is sunny (s) is less than $\operatorname{Pr}(\mathrm{a})$ if it is cloudy (c)
- We can write this as $\operatorname{Pr}(\mathrm{a} \mid \mathrm{s})$ and $\operatorname{Pr}(\mathrm{a} \mid \mathrm{c})$
- $\operatorname{Pr}(\mathrm{s})=1-\operatorname{Pr}(\mathrm{c})$

Calculation of the likelihood ratio (LR)

- $\operatorname{Pr}(\mathrm{a} \mid \mathrm{s})$ and $\operatorname{Pr}(\mathrm{a} \mid \mathrm{c})$ can be calculated from data.
- How often does it rain when its sunny in the morning? E.g. 20 out of 100 observations is $\operatorname{Pr}(\mathrm{a} \mid \mathrm{s})=0.2$
- How often does it rain when its cloudy in the morning? E.g. 80 out of 100 observations is $\operatorname{Pr}(\mathrm{a} \mid \mathrm{c})=0.8$

Formation of the likelihood ratio

- The LR compares these two probabilities to find out which of the two probabilities is the most likely
- Thus in this example we compare 2 probabilities

$$
L R=\frac{\operatorname{Pr}(a \mid c)}{\operatorname{Pr}(a \mid s)}=\frac{0.8}{0.2}=4
$$

Explanation of the likelihood

 ratio$$
L R=\frac{\operatorname{Pr}(a \mid c)}{\operatorname{Pr}(a \mid s)}=\frac{0.8}{0.2}=4
$$

-The probability that it will rain is 4 times more likely if it is cloudy in the morning than if it is sunny in the morning
The word if is very important here. It must always be used when explaining a likelihood ratio otherwise the explanation could be misleading.

How does the LR work in crime stain work?

- We evaluate the evidence (E) relative to alternative pairs of hypotheses
- Usually, these are formulated as follows:
$-\operatorname{Pr}(\mathrm{E} \mid \mathrm{S})$ the probability of the evidence if the stain originated from the suspect?
$-\operatorname{Pr}(\mathrm{E} \mid \mathrm{U})$ the probability of the evidence if the stain originated from an unknown (unrelated) individual.

$$
L R=\frac{\operatorname{Pr}(E \mid S)}{\operatorname{Pr}(E \mid U)} \text { The numerator } \text { The denominator }
$$

The statement

- The probability of the evidence is x times more likely if the stain came from Mr Smith than if it came from an unknown unrelated invidual.
- It is not allowed to say: " The probability that the stain came from Mr Smith" because we must always include the conditioning statement - ie always make the hypothesis clear in the statement.
- Always use the ‘IF’ word when using a likelihood ratio to avoid this trap.

