MtDNA profiles and associated haplogroups A systematic approach to an old problem

Anita Brandstätter¹, Alexander Röck², Arne Dür², Walther Parson¹

¹Institute of Legal Medicine Innsbruck Medical University

²Institute of Mathematics University of Innsbruck

22nd Congress of the International Society for Forensic Genetics Copenhagen 2007

Outline

Introduction

- Definition of Haplogroups
- Haplogroups in Forensics

2 Software solutions

- Haplogroup-ID & Phylocheck
- Maximum likelihood

3 Conclusions

Definition of Haplogroups Haplogroups in Forensics

Outline

Introduction

- Definition of Haplogroups
- Haplogroups in Forensics

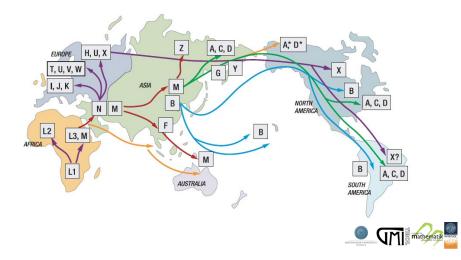
Software solutions

- Haplogroup-ID & Phylocheck
- Maximum likelihood

3 Conclusions

Definition of Haplogroups Haplogroups in Forensics

Human mitochondrial haplogroups


Characterization

- Human phylogeny ⇔ Emergence of distinct lineages
- Haplogroups:
 - Clusters of evolutionary closely related haplotypes
 - Defined by the presence of specific polymorphisms in the entire mitochondrial genome that are identical by descent
 - Result of the emigration of human populations out of Africa
 - Reflect human migration routes over the different continents
 - Determine an association of distinct mitochondrial polymorphisms to ethnic populations

Definition of Haplogroups Haplogroups in Forensics

Human migration routes (rough overview)

Definition of Haplogroups Haplogroups in Forensics

Human mitochondrial haplogroups

Problems

- Backbone of the human mitochondrial tree is well defined
- New haplogroups are being found continuously
- \Rightarrow Tips of the terminal branches are still under refinement

Balor B

Catayo

nardet Sun

Oceano meridianal

Definition of Haplogroups Haplogroups in Forensics

Balor R

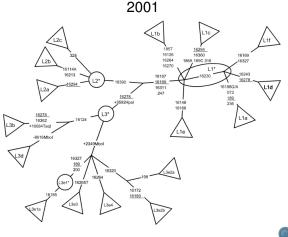
Serican

History of the geographical perception of the world...

Around 1550

AL Brafil

Definition of Haplogroups Haplogroups in Forensics


History of the geographical perception of the world...

Brandstätter, Röck, Dür, Parson MtDNA profiles and associated haplogroups

Definition of Haplogroups Haplogroups in Forensics

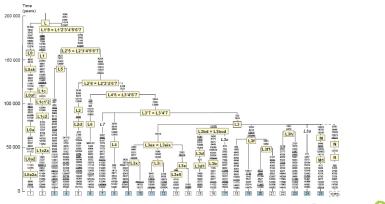
History of haplogroup characterization...

Pereira et al. AHG 2001

Definition of Haplogroups Haplogroups in Forensics

History of haplogroup characterization...

2004 root


Kivisild et al. AJHG 2004

Brandstätter, Röck, Dür, Parson

MtDNA profiles and associated haplogroups

Definition of Haplogroups Haplogroups in Forensics

History of haplogroup characterization...

2006

Torroni et al. Trends Genetics 2006

Brandstätter, Röck, Dür, Parson MtDNA profiles and associated haplogroups

Definition of Haplogroups Haplogroups in Forensics

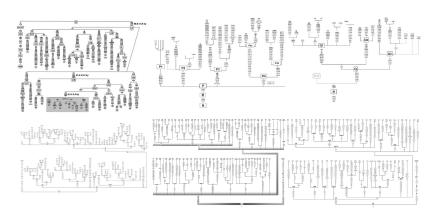
Publications for haplogroup characterization

L

Gonder *MBE*Kivisild *Genetics*Torroni *Genetics*Kivisild *AJHG*Mishmar *HumMut*Salas *AJHG*Pereira *AHG*Graven *MBE*

Μ

Hill AJHG 2007 Kong HumMolGen 2006 Sun MBE 2006 Thangaraj BMCGen 2006 Pierson MBE 2006 Friedlaender MBE 2005 Kong AJHG 2003 Kivisild MBE 2002


Ν

Roostalu *MBE*Behar *AJHG*Achilli *AJHG*Palanichamy *AJHG*Reidla *AJHG*Herrnstadt *AJHG*Finnilä *AJHG*Richards *AHG*

Definition of Haplogroups Haplogroups in Forensics

Haplogroup definition trees

Definition of Haplogroups Haplogroups in Forensics

Haplogroup assignment: a demanding task

Requirements

- Profound knowledge of past and recent publications
- Background in human phylogenetics
- Good estimation of mutation rates of different polymorphisms

Definition of Haplogroups Haplogroups in Forensics

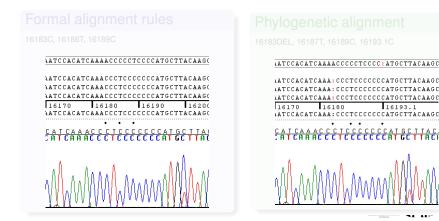
Haplogroup assignment: a demanding task

Determination of haplogroup affiliation

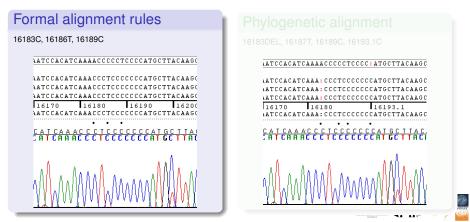
- Thorough forensic investigation includes the determination of the haplogroup affiliation of samples
- Annotation of indel positions relies on the phylogenetic background of the sample (Bandelt and Parson *IJLM* 2007)
- Potential errors can be uncovered

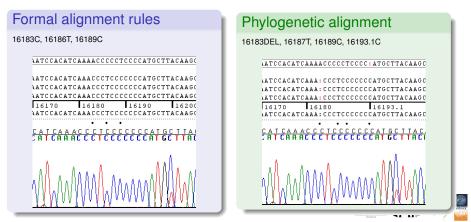
African haplogroup L5a1

Brandstätter et al. IJLM 2004:


Nai023 16129A, 16148T, 16166G, 16183C, 16186T, 16189C, 16223T, 16278T, 16311C, 16355T, 16362C

Nai068 16093C, 16129A, 16148T, 16166G, 16183DEL, 16187T, 16189C, 16223T, 16278T, 16311C, 16355T, 16362C


- Samples belong to L5a1
- Kivisild et al. AJHG 2004


Nai023: 16129A, 16148T, 16166G,..., 16223T, 16278T, 16311C, 16355T, 16362C

Nai023: 16129A, 16148T, 16166G,..., 16223T, 16278T, 16311C, 16355T, 16362C

Nai023: 16129A, 16148T, 16166G,..., 16223T, 16278T, 16311C, 16355T, 16362C

Definition of Haplogroups Haplogroups in Forensics

Phylogenetic annotation of indel positions

Problem with formal alignment

Sample from Ruanda:

Ru2A5 16129A, 16148T, 16166G, 16183DEL, 16187T, 16189C, 16223T, 16278T, 16311C, 16355T, 16362C

- 1 difference to Nai068 on 16093 (hotspot)
- 3 differences to Nai023 on 16183, 16186, 16187

If Nai023 was phylogenetically aligned...

Sample from Ruanda:

Ru2A5 16129A, 16148T, 16166G, 16183DEL, 16187T, 16189C, 16223T, 16278T, 16311C, 16355T, 16362C

- 1 difference to Nai068 on 16093 (hotspot)
- 1 difference to Nai023 on 16193.1C (length heteroplasmic hotspot)

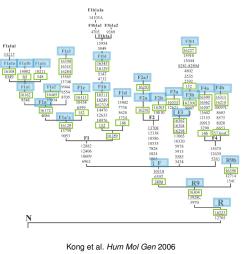
Problems with haplogroup identification

Definition of haplogroups

- Haplogroup definitions mainly rely on phylogenetically stable positions within the coding region
 - However, also there are some hotspots (e.g. 3010)
- Associations between haplogroups and polymorphisms within the control region are less stable
 - However, some polymorphisms are very stable (e.g. 497C in K1a)
- Mutational hotspots lead to homoplasy
- Most hotspots reside within HVS-I and HVS-II

Definition of Haplogroups Haplogroups in Forensics

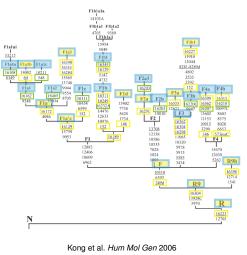
Problems with haplogroup identification


Do CR polymorphisms provide sufficient information for haplogroup determination?

Introduction

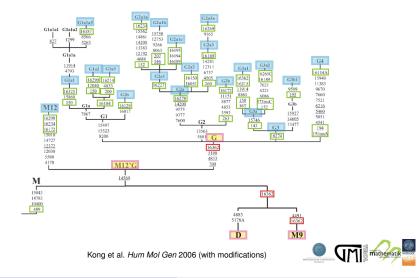
Definition of Haplogroups Haplogroups in Forensics

Haplogroup F

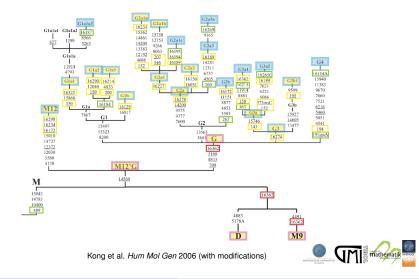


Introduction

Definition of Haplogroups Haplogroups in Forensics


Haplogroup F

Definition of Haplogroups Haplogroups in Forensics


Haplogroups M9 - M12 - D - G

Brandstätter, Röck, Dür, Parson MtDNA profiles and associated haplogroups

Definition of Haplogroups Haplogroups in Forensics

Haplogroups M9 - M12 - D - G

Definition of Haplogroups Haplogroups in Forensics

Forensic haplogroups

Definition of haplogroups

- Only a fraction of all worldwide haplogroups can be distinguished by control region polymorphisms
- These polymorphisms need to be phylogenetically stable
- The estimation should rather be conservative than tentative

Confident haplogroup determinations can only be reached by typing selected coding region SNPs.

Definition of Haplogroups Haplogroups in Forensics

Forensic haplogroups

Definition of haplogroups

- Only a fraction of all worldwide haplogroups can be distinguished by control region polymorphisms
- These polymorphisms need to be phylogenetically stable
- The estimation should rather be conservative than tentative

Confident haplogroup determinations can only be reached by typing selected coding region SNPs.

Definition of Haplogroups Haplogroups in Forensics

Methods for haplogroup-identification

Brandstätter, Parsons, Parson.

Rapid screening of mtDNA coding region SNPs for the identification of west European Caucasian haplogroups.

Int J Legal Med (2003)

Quintans, Alvarez-Iglesias, Salas, Phillips, Lareu, Carracedo. Typing of mitochondrial DNA coding region SNPs of forensic and anthropological interest using SNaPshot minisequencing. *FSI* (2004)

Lee, Yoo, Park, Chung, Kim, Shin.

East Asian mtDNA haplogroup determination in Koreans: haplogroup-level coding region SNP analysis and subhaplogroup-level control region sequence analysis.

Electrophoresis (2006)

Haplogroup-ID & Phylocheck Maximum likelihood

Outline

Introduction

- Definition of Haplogroups
- Haplogroups in Forensics

2 Software solutions

- Haplogroup-ID & Phylocheck
- Maximum likelihood

3 Conclusions

Haplogroup-ID & Phylocheck Maximum likelihood

Software solutions for haplogroup identification

Requirements

- Support haplogroup assignment of mtDNA profiles
- Handle large population samples
- Deal with different reading frames
- Incorporate all available information
- Model phylogenetic instability

Haplogroup-ID & Phylocheck Maximum likelihood

First approach: Haplogroup-ID

Concept

- Haplogroups were summarized from the literature
 - Listed as virtual haplotypes
- Linearized approach:
 - Sum of weights of matching polymorphisms between virtual haplogroup and sample in question is calculated
 - Weights refer roughly to estimated mutation rates
 - Highest scoring haplogroups are chosen

Haplogroup-ID & Phylocheck Maximum likelihood

First approach: Haplogroup-ID

Problems

- Virtual haplotypes are difficult to define
 - Are to some extend arbitrary
 - Reflect reality only to a certain extent
- Linearized approach: sum was not influenced by
 - Number of unexplained (private) polymorphisms
 - Number of missing defining polymorphisms
- Weights were estimated empirically

 \Rightarrow 5% of classifications were outside the correct super-haplogroups.

Haplogroup-ID & Phylocheck Maximum likelihood

Second approach: Phylocheck

Concept

- Different HVS-I + HVS-II sequences with classified haplogroups were collected and stored in two datafiles:
 - One datafile containing only HVS-I sequences, the other one containing only HVS-II sequences
- By nearest neighbor search, the genetically closest sequence to a new sample was determined in HVS-I and HVS-II separately
 - Model of nucleotide substitution: *GTR* + *I* + Γ on non-indel sites
 - Hamming distance on indel sites

Haplogroup-ID & Phylocheck Maximum likelihood

Second approach: Phylocheck

Concept

- The haplogroup affiliations of 'closest' sequences were compared
- Match: hint for haplogroup affiliation of new sample
- **Mismatch**: hint to artificial recombination in the new sample

Haplogroup-ID & Phylocheck Maximum likelihood

Second approach: Phylocheck

Problems

- Backbone datafile needs continuous care and updating
- GTR + I + Γ is O.K. for phylogenetic reconstructions, but does not take site-specific variation of sites into account
- Some haplogroups are identical in HVS-II

 \Rightarrow More applicable for detection of artificial recombination than for haplogroup assignment.

Haplogroup-ID & Phylocheck Maximum likelihood

New approach: Maximum likelihood

Reference database

- Correctly classified sequences were collected from the literature
- Antiquated nomenclature was updated using contemporary articles
- Haplogroup classification confirmed with coding region information in the form of either whole genome sequences or SNPs from the coding region

Haplogroup-ID & Phylocheck Maximum likelihood

New approach: Maximum likelihood

Reference database

- Backbone database comprises >5000 sequences with different reading frames
- Condensation to control region and reduction of duplicates yields >3000 different haplotypes

Haplogroup-ID & Phylocheck Maximum likelihood

New approach: Maximum likelihood

Advantages of the new reference database

- All of the CR-information is used in the classification decision, rather than simply counting on rule-defining sites
- Any mutations within haplogroups that have appeared in backbone samples are useful for classification
- ⇒ Phenomena such as homoplasy or back mutations in haplogroup-defining sites exert less influence on the estimation
 - Other loci support correct classification

Haplogroup-ID & Phylocheck Maximum likelihood

New approach: Maximum likelihood

Concept

- Initial cost of a profile is calculated as sum of weights of all its polymorphisms
- Weights refer to phylogenetic stability of each single mutation
- Weights of matching polymorphisms in haplotypes with known hg-affiliation are subtracted
- Haplogroups of haplotypes with lowest costs are chosen

Haplogroup-ID & Phylocheck Maximum likelihood

Maximum likelihood: costs

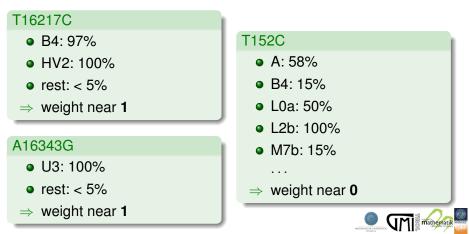
Weights of polymorphisms

- Weights reflect phylogenetic stability of mutations
- Mutational hotspots have low phylogenetic stability
- Low reliability ⇒ low weights
- High stability of mutations \Rightarrow high weights
- Floating-point numbers $\in [0,\infty]$

Haplogroup-ID & Phylocheck Maximum likelihood

Maximum likelihood: costs

Estimation of weights


- Weights reflect mutability or stability of certain positions in certain haplogroups
- Polymorphisms with high frequency (>95%) in certain haplogroups and low frequency in other haplogroups (<5%) are assigned a weight near 1
- Polymorphisms with an average frequency (30-70%) in many different haplogroups are assigned a weight near 0
- Hypervariable polymorphisms, i.e. length heteroplasmic C-insertions are assigned weight **0**

Haplogroup-ID & Phylocheck Maximum likelihood

Weights: Example

Estimate from a collection of 5223 entire CR profiles

Haplogroup-ID & Phylocheck Maximum likelihood

Haplogroup assignment process: Example

Profile and costs

- Profile: 73G(1.00); 152C(0.33); 263G(1.00); 295T(1.00); 315.1C(0.00);
 462T(1.00); T489C(1.00); 16069T(1.00); 16126C(0.33); 16193T(0.33);
 16519C(0.33)
- Analyzed frame: 1-576 16024-16569
- Costs of profile = 7.33

Haplogroup-ID & Phylocheck Maximum likelihood

Haplogroup assignment process: Example

Results

Feasible haplotype with lowest cost **1.00** and minimum number **3** of differences:

- Palanichamy AJHG04 (J1)
- Observed mutations: 73G(-1.00); 263G(-1.00); 295T(-1.00); 315.1C(0.00); 462T(-1.00); 489C(-1.00); 16069T(-1.00); 16126C(-0.33)
- Missing mutations: none
- Extra mutations: 152C(0.33); 16193T(0.33); 16519C(0.33)
- Differences: 3 mutations in 1162 positions

Haplogroup-ID & Phylocheck Maximum likelihood

ML Estimator for Independent Positions

Likelihood function

$$L_x(h) = \prod_i p_i(a_i \to a_i) \cdot \prod_{i \in \bar{x}} \frac{p_i(a_i \to x_i)}{p_i(a_i \to a_i)} \cdot \prod_{i \in \bar{h} \cap \bar{x}} \frac{p_i(h_i \to x_i)}{p_i(a_i \to x_i)} \cdot \prod_{i \in \bar{h} \setminus \bar{x}} \frac{p_i(h_i \to a_i)}{p_i(a_i \to a_i)}$$

where

- x is the given profile,
- *h* is the haplotype of the haplogroup,
- a is the haplotype of the rCRS,
- \bar{h} and \bar{x} denote the sets of positions of *h* or *x* different to the rCRS,
- *i* runs over the specified positions, and
- $p_i(h_i \rightarrow x_i), \dots, p_i(h_i \rightarrow a_i)$ are the transition probabilities.

ML Estimator for Independent Positions

To maximize the likelihood and scale according to the reading frame, we minimize the

Cost function

$$\begin{array}{lcl} \mathcal{C}_{x}(h) & = & \log\left(\frac{\prod_{i} p_{i}(a_{i} \rightarrow a_{i})}{L_{x}(h)}\right) \\ & = & \sum_{i \in \bar{x}} \log\left(\frac{p_{i}(a_{i} \rightarrow a_{i})}{p_{i}(a_{i} \rightarrow x_{i})}\right) + \sum_{i \in \bar{h} \cap \bar{x}} \log\left(\frac{p_{i}(a_{i} \rightarrow x_{i})}{p_{i}(h_{i} \rightarrow x_{i})}\right) \\ & + & \sum_{i \in \bar{h} \setminus \bar{x}} \log\left(\frac{p_{i}(a_{i} \rightarrow a_{i})}{p_{i}(h_{i} \rightarrow a_{i})}\right). \end{array}$$

Haplogroup-ID & Phylocheck Maximum likelihood

ML Estimator for Independent Positions

Scaling

Within the cost function, the value of the logarithm is scaled in a way that non-speedy transitions are assigned weight **1**.

Haplogroup-ID & Phylocheck Maximum likelihood

ML Estimator for Independent Positions

For a perfect match h = x the

Total costs

$$\mathcal{C}_x(h) = \sum_{i \in \bar{x}} \log \left(rac{p_i(a_i
ightarrow a_i)}{p_i(h_i
ightarrow h_i)}
ight)$$

approximate 0.

Haplogroup-ID & Phylocheck Maximum likelihood

Problems with the ML approach

Reading frames

- Haplotypes from the literature were typed for a variety of different reading frames
 - Entire genomes
 - HVS-I + HVS-II + SNPs from the coding region
 - HVS-I + SNPs from the coding region
- Definition of standard reading frame for haplogroup estimation:
 - 16024-16181 16184-16193 16194-16518 16520-16569
 1-309 310-315 316-522 525-573.1 574-576
- Problem: partially overlapping profiles

Haplogroup-ID & Phylocheck Maximum likelihood

Problems with the ML approach

Solution

Only polymorphisms in overlapping regions between the profile in question and haplotypes with known hg-affiliation are taken into consideration for the minimization of the cost function

Haplogroup-ID & Phylocheck Maximum likelihood

Problems with the ML approach

Weights of mutations

- Sound estimation of the reliability of different mutations, which correspond to the transition probabilities in the ML-model, is crucial for the performance of the estimator
- Problem:
 - Representative sample of entire CR population data from all different haplogroups
 - Idea how to model the reliability of different mutations

Haplogroup-ID & Phylocheck Maximum likelihood

Problems with the ML approach

Solution

- Compilation of >5000 CR profiles from worldwide populations
- Randomized population samples
- When possible, full CR + coding region SNPs
- Estimation of reliability by determining the frequency of every mutation in the CR in every (sub-)haplogroup

Haplogroup-ID & Phylocheck Maximum likelihood

Problems with the ML approach

Independency of mutations

- Our model requires independency of the reliability of the positions from each other and from the phylogenetic background.
- Only then, weights can be summarized after logarithmizing.
- Problem: Do mutations occur independently from each other?

Haplogroup-ID & Phylocheck Maximum likelihood

Problems with the ML approach

Solution

- Compilation of >5000 CR profiles from worldwide populations
- Inference of all partitions, which are based on 2 or more polymorphisms
- 'Linked' polymorphisms, such as the AC-repeat around 523-524 in HVS-III or the Chibcha-deletion in HVS-II (bp 106-111) are treated as one single locus.

Outline

- Definition of Haplogroups
- Haplogroups in Forensics

2 Software solutions

- Haplogroup-ID & Phylocheck
- Maximum likelihood

3 Conclusions

Conclusions

Problems with control region typing

- CR polymorphisms have a limited reliability for haplogroup determination
- Mutational hotspots vs. diagnostic sites
- Modeling this uncertainty is a difficult task

Reliability of mutations

 Estimating the stability of markers in haplogroups as inferred from their frequencies in different population samples yields a good approximation of the reliability

Conclusions

Problems with control region typing

- CR polymorphisms have a limited reliability for haplogroup determination
- Mutational hotspots vs. diagnostic sites
- Modeling this uncertainty is a difficult task

Reliability of mutations

 Estimating the stability of markers in haplogroups as inferred from their frequencies in different population samples yields a good approximation of the reliability

Conclusions

Maximum likelihood

- Estimation relies on real mtDNA control region profiles with haplogroup-defining coding region SNPs
- Maximum likelihood approach yields better results than linear approach
- Taking reading frames into consideration improved the estimation considerably
- Site-specific reliability values further enhanced the accuracy of the haplogroup appraisal

Thank you very much for your attention!

