

WORKSHOP #10 International Society for Forensic Genetics Tuesday, August 29, 2017

Autosomal STR Markers and Interpretation

Organized by John M. Butler and Lisa Borsuk

U.S. National Institute of Standards and Technology

Time	Торіс	Presenter
Ur	nderstanding STR Markers and Measur	ements
09:00 – 09:30	Introductions & Expectations Reviewed, STR Kits & Measurement Techniques	John Butler
09:30 – 10:00	STR Markers Commonly Used	Lisa Borsuk
10:00 – 10:30	Interpretation Issues	John Butler
10:30 – 11:00	Length vs Sequence Information: Lessons Learned from TPOX and SE33	Lisa Borsuk
11:00 – 11:30	BREAK	
C	Communicating and Sharing STR Inform	nation
11:30 – 12:00	STR Nomenclature, STRSEQ, STRidER	Katherine Gettings
12:00 – 12:30	STRBase and Revisions Planned	John Butler & Lisa Borsuk
12:30 – 13:00	Other Uses with Forensic STR Markers and Potential Privacy Concerns	John Butler

Points of view are those of the presenters and do not necessarily represent the official position or policies of the US Department of Justice or the National Institute of Standards and Technology. Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Core STR Sets

United States:

CODIS 13 (1997-2017): TH01, TPOX, CSF1PO, FGA, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11

<u>CODIS 20</u> (2017-present): TH01, TPOX, CSF1PO, FGA, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, D1S1656, D2S441, D2S1338, D10S1248, D12S391, D19S433, D22S1045

European Standard Set:

<u>ESS 7</u> (1998-2009): TH01, FGA, ∨WA, D3S1358, D8S1179, D18S51, D21S11

ESS 12 (2009-present): TH01, FGA, vWA, D3S1358, D8S1179, D18S51, D21S11, D1S1656, D2S441, D10S1248, D12S391, D22S1045

United Kingdom:

<u>SGM</u> (1995-1999): TH01, FGA, vWA, D8S1179, D18S51, D21S11, amelogenin

<u>SGM Plus</u> (1999-2014): TH01, FGA, vWA, D8S1179, D18S51, D21S11, D2S1338, D3S1338, D16S539, D19S433, amelogenin

<u>DNA-17</u> (2014-present): TH01, FGA, vWA, D3S1358, D8S1179, D18S51, D21S11, D1S1656, D2S441, D10S1248, D12S391, D22S1045, D2S1338, D16S539, D19S433, SE33, amelogenin

Australia:

<u>Profiler Plus</u>: FGA, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D18S51, D21S11, amelogenin

<u>PowerPlex 21</u>: FGA, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D18S51, D21S11, D1S1656, D2S1338, D6S1043, D12S391, D16S539, D19S433, CSF1PO, Penta D, Penta E, TH01, TPOX, amelogenin

John M. Butler, Lisa Borsuk, Katherine Gettings

Purpose and Value of this Workshop Aid understanding of autosomal STR markers widely used in forensic genetics and issues involved with data interpretation Autosomal STR markers will likely be used for years to come - National DNA databases continue to expand (-75-100 million STR

- profiles worldwide) – Recent rapid growth in the number of available STR typing kits due to (1) expansion of core loci in Europe (2011; $7 \rightarrow 12$) and United States (2017; $13 \rightarrow 20$) and (2) patent coverage expiring
- (2017; 13 → 20) and (2) patent coverage expiring
 Possible STR typing methodologies are expanding due to (1) new CE instruments, (2) rapid DNA systems, and (3) massively parallel sequencing (next-generation sequencing) technologies
- Receive input on revisions to the NIST STRBase website

isfg Auto	Workshop#10 Outline	e pretation isfg
Time (approximate)	Торіс	Presenter
	Understanding STR Markers and Measure	ments
09:00 - 09:30	Introductions & Expectations Reviewed, STR Kits & Measurement Techniques	John Butler
09:30 - 10:00	STR Markers Commonly Used	Lisa Borsuk
10:00 - 10:30	Interpretation Issues	John Butler
10:30 - 11:00	Length vs Sequence Information: Lessons Learned from TPOX and SE33	Lisa Borsuk
11:00 - 11:30	BREAK	
	Communicating and Sharing STR Informa	ation
11:30 - 12:00	STR Nomenclature, STRSEQ, STRidER	Katherine Gettings
12:00 - 12:30	STRBase and Revisions Planned	John Butler & Lisa Borsuk
12:30 - 13:00	Other Uses with Forensic STR Markers and Potential Privacy Concerns	John Butler

John M. Butler, Lisa Borsuk, Katherine Gettings

	Contents lists available at ScienceDirect
F	Forensic Science International: Genetics
ELSEVIER	journal homepage: www.elsevier.com/locate/fsig
Katherine Butler Gettings	^{1,e} , Rachel A. Aponte ^b , Peter M. Vallone ^a , John M. Butler ^c
Katherine Butler Gettings [*] ^a US National Institute of Standards and Techt ^b The Googe Washington University. Departen ^c US National Institute of Standards and Tech ARTICLE INFO	^{ba} , Rachel A. Aponte ^b , Peter M. Vallone ^a , John M. Butler ^c Mag. Removal through the mean first section of the mean first section of the mean first section of the mean section of the mean first section of the mean first section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the mean section of the section of the mean section of the mean section of the mean section of the mean section of the section of the mean section of the me
Katherine Butler Gettings ² "LS Nermal Jonitrue of Standards and Debr ¹⁹ Corper Vestaming Districtly, Desr ¹⁰ S. Neimal Jonitrue of Standards and Tech ¹⁰ A RTICLE INFO ARTICLE INFO Article Abstray: Received 13 Persuang 2015 Received 11 revised form 2015	^{ba} , Rachel A. Aponte ^B , Peter M. Vallone ^a , John M. Butler ^c Mag, Remote Manager and Stream Brock, California Brock, B. 2000, 104 Mag, Shend Nguno, Shend
Katherine Butler Gettings ² ⁴ Lis Neuron Johnen, Down ⁴ Lis Neuron Mennes, Down ⁴ Lis Neuron Mennes of Sandord and John ⁴ Lis Neuron Mennes of Sandord and John Ak ITICLE INFO Article Assemption Record an avoid for m20 May 2015 Record ID June 2015 Record ID June 2015 Reported STR John	^{bas} , Rachel A. Aponte ^B , Peter M. Vallone ^a , John M. Butler ^a Mag, Remote Manage and Participation (2019). In the Calibration (2019) and (2019) https://www.com/apontee/apontee.com/apontee.com/apontee.com/apontee.com/apontee.co

Greg Matheson on Forensic Science Philosophy

The CAC News – 2nd Quarter 2012 – p. 6 "Generalist vs. Specialist: a Philosophical Approach" http://www.cacnews.org/news/2ndg12.pdf

 If you want to be a technician, performing tests on requests, then just focus on the policies and procedures of your laboratory. <u>If you want to be a</u> <u>scientist and a professional</u>, learn the policies and procedures, but go much further and learn the philosophy of your profession. <u>Understand the</u> <u>importance of why things are done</u> the way they are done, the scientific method, the viewpoint of the critiques, the issues of bias and the importance of ethics.

Advantages for STR Markers

- Small product sizes are generally compatible with degraded DNA and PCR enables recovery of information from small amounts of material
- · Numerous alleles per locus aid mixture interpretation
- Multiplex amplification with fluorescence detection enables high power of discrimination in a single test
- · Commercially available in an easy to use kit format
- Uniform set of core STR loci provide capability for national (and international) sharing of criminal DNA profiles

Standard Approaches Enable Reliable DNA Data Comparison

Core loci

- In 1997, U.S. selected 13 core STR markers
- Europe moved from 7 to 12 core STR loci in November 2011
- U.S. moved to 20 core STRs in January 2017
- · Common data formats
 - ISFG DNA Commission allele nomenclature designation recommendations
 - ANSI/NIST-ITL standard for data storage and transmission
- Commercial STR kits
 - Consistent allelic ladders
- Certified reference materials

- NIST SRM 2391c (certified values for STR allele measurements)

National Institute of Standards and Technology (NIST)

- Started in 1901 with roots back to the Constitution
- Name changed to National Institute of Standards and Technology (NIST) from National Bureau of Standards in 1988
- Primary campus in Gaithersburg, Maryland (just outside of Washington, D.C.)
- Part of the U.S. Department of Commerce
- >3,000 employees and >2,000 associates
- Supply >1300 reference materials
- Defines official time for the U.S.

DNA reference

materials can help calibrate laboratory

results and enable

traceability to a common standard

(Seoul, 29 August 2017)

John M. Butler, Lisa Borsuk, Katherine Gettings

NIST Disclaimer

Points of view are those of the presenters and do not necessarily represent the official position or policies of the National Institute of Standards and Technology.

Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

John M. Butler, Lisa Borsuk, Katherine Gettings

C	Other Published STR Kits & Assays
Spain •	I-DNASE21 System (21 autosomal STRs, amelogenin) – Aznar, J.M., et al. (2014). IDNASE21 system: development and SWGDAM validation of a new STR 21-plex reaction. Forenis: Science International Generatics, 8(1), 10-19.
China • (Guangzhou)	HomyGene19+14Y System (18 autosomal STRs, 14 Y-STRs, amelogenin) - Du, W., et al. (2017). Developmental validation of the HomyGene19+14Y System. International Journal of Legal Medicine, 313(3):605-620.
China • (Xinxiang)	GoldenEye 20A Kit (19 autosomal STRs, amelogenin) – Huang, YM, et al. (2013). Assessment of application value of 19 autosomal short tandem repeat loci of GoldenEye 20A kit in forensici paternity testing. International Journal of Legal Medicine, 127(3),587-590.
China • (Beijing)	Rapid 21-plex System (20 autosomal STRs, amelogenin) - Yang, M., et al. (2016). Development of a rapid 21-plex autosomal STR typing system for forensic applications. <i>Bictrophoresa</i> , 37, 2798-2799.
China • (Shanghai)	Expressmarker 16+10Y & 16+18Y Kits (15 autosomal STRs, 10/18 Y-STRs, amelogenin) Tabout H, et al. (2016). Developmental validation of formate DNA-STR kite: Expressmarker 16+10Y and Expressmarker 16-18Y Formats Genome Repression 24-107.
China • (Xi'an)	AGCU 21+1 STR Kit (21 non-core autosomal STRs, amelogenin) – Zhu, B.F., et al. (2015). Developmental validation of the AGCU 21+1 STR kit: a novel multiplex assay for freesing anolication. <i>Electrophysics</i> , 33 , 221-276.
China (Shantou)	SureID PanGlobal System (24 autosomal STRs, 2 Y markers, amelogenin) Uu, Y., et al. (2017). Developmental validation of a 6-dye typing system with 27 loci and application in Han population of China. Scientific Reports, 7, 4706.

John M. Butler, Lisa Borsuk, Katherine Gettings

STR Measurement Techniques

- Length-based measurements
 - Gels
 - Capillary electrophoresis
 - Mass spectrometry
- · Sequence-based measurements
 - Sanger sequencing
 - Massively parallel sequencing (MPS or NGS)

ABI Genetic Analyzer	Years Released for Human ID	Number of Capillaries	Laser	Polymer delivery	Other features
373 (gel system)	1992-2003	-	40 mW Ar+ (488/514 nm)		PMTs and color filter wheel for detection
377 (gel system)	1995-2006	-	40 mW Ar+ (488/514 nm)	-	CCD camera
310	1995-	1	10 mW Ar+ (488/514 nm)	syringe	Mac operating system & Windows NT (later)
3100	2000-2005	16	25 mW Ar+ (488/514 nm)	syringe	
3100-Avant	2002-2007	4	25 mW Ar+ (488/514 nm)	syringe	
3130	2003-2011	4	25 mW Ar+ (488/514 nm)	pump	
3130xi	2003-2011	16	25 mW Ar+ (488/514 nm)	pump	
3500	2010-	8	10-25 mW diode		110V power; RFID-tagged reagents: .hid files:
3500xl	2010-	24	(505 nm)	new pump	normalization & 6-dye detection possible
3700	2002-2003	96	25 mW Ar+ (488/514 nm)	cuvette- based	Split beam technology
3730	2005-	48	25 mW Ar+ (488/514 nm)	pump	
3730xl	2005-	96	25 mW Ar+ (488/514 nm)	pump	

(Seoul, 29 August 2017)

John M. Butler, Lisa Borsuk, Katherine Gettings

John M. Butler, Lisa Borsuk, Katherine Gettings

The FBI Qua	ality Assurance Standards
Begun in 1998/99 with u	pdates via SWGDAM in 2009, 2011, 2014, 2017,
OUALITY ANSURANCE STANDARDS FOR DNA DATABANG I ADDRATORIES OUALITY ASKARCE STANDARDS FOR FORENSE USA TOTAL AND ALTORIES DATABANG I ADDRATORIES The Annex and the Addrate Addrates and the Addrates and the Addrates and the Addrates and the Addrates and the BERECOVER Sheet Bound to Equilate 1, 2011.	SCOPE DEFINITIONS QUALITY ASSURANCE PROGRAM ORGANIZATION AND MANAGEMENT PERSONNEL FACILITIES FACILITIES VEIDENCE (SAMPLE) CONTROL S. VALIDATION
THE FBI QUALITY ASSURANCE STANDARDS THE FBI QUALITY ASSURANCE STANDARDS AUDIT FOR	9. ANALYTICAL PROCEDURES 10. EQUIPMENT CALIBRATION AND MAINTENANCE 11. REPORTS 12. REVIEW
FORENSIC DNA TESTING LABORATORIES IN ADDREMON WITH THE GULTY ADJUNICE STIMEMED FOR PORTICIS OF TRANSPORTS EFFECTIVE STIFFARE AL. 2011	13. PROFICIENCY TESTING 14. CORRECTIVE ACTION 15. AUDITS 16. SAFETY 17. OUTSOURCING
http://www.fbi.gov/about-us/lab/biometric-analysi	s/codis/qas-standards-for-forensic-dna-testing-laboratories-effective-9-1-2011

Scientific Working Group on DNA Analysis Methods (SWGDAM) http://www.swgdam.org/ Established in November 1988 by FBI Laboratory

- Named Technical Working Group on DNA Analysis Methods (TWGDAM) for the first decade Comprised of ~50 scientists from U.S. and Canada Typically 20-25 voting members and the rest as invited guests European Network of Forensic Science Institutes (ENFSI) DNA Working . Group representative often attends Three day meetings held semiannually every January and July Current committees (6) and working groups (4): • Autosomal STR Interpretation, Combined DNA Index System, Quality Assurance, Rapid DNA, Lineage Marker, Laboratory Operations, Next Generation Sequencing, Verbal Equivalent, Forensic Serology (coming), and Contextual Bias (coming) Previous committees: RFLP, PCR, mitochondrial DNA, Y-STR, mass spectrometry, training, validation, expert systems, missing persons/mass disasters, mixture interpretation, enhanced methods and interpretation, probabilistic genotyping
- Current SWGDAM Guidelines Hyperlinks to documents available on SWGDAM.org Guidelines 2017 STR Interpretation Guidelines (90 pages) 2000, 2010 2017 Contamination Prevention and Detection Guidelines (29 pages) Validation Guidelines for Forensic DNA Analysis Methods (15 pages) 2016 1991, 1995, 2004, 2012 2015 Validation of Probabilistic Genotyping Systems (12 pages) 2015 Collection and Serological Examination of Biological Evidence (19 page 2014 Guidelines for Missing Persons Casework (28 pages) 2014 Interpretation Guidelines for Y-Chromosome STRs (20 pages) 2009 2014 STR Enhanced Detection Methods (22 pages) 2013 2001 Training Guidelines (30 pages) Mitochondrial DNA Analysis Interpretation Guidelines (23 pages) & Mitochondrial DNA Nomenclature Examples (5 pages) 1993, 2003 2013

General Information

- Desirable Features for STRs
 - High heterozygosity
 - Regular repeat unit
 - 3-6 bases in length
 - 4 base repeats are most common
 - Distinguishable alleles
 - Robust amplification
- Types of STRs
 - Simple one repeat sequence
 - Compound two or more repeat sequences
 - Complex repeats
 - Hypervariable repeats

STRs 101 STRBase.NIST.gov

isted 06S10 n mar	are the prin 043, Penta E ny kits	nary Autosomal STRs available in F E, and Penta D are additional STRs	kits s present	US Core Loci 20	pean Standard S	SS Additional Lo-	erpol Standard S
Chr	STR Locus	Repeat			Euro	ŭ	ul
1042	D1S1656	ICCTAla ITCTAla	Compound				
2p25.3	TPOX	(AATG1a	Simple				
2p14	D2S441	[TCTA]a	Simple	•			
2q35	D2S1338	(GGAAla (GGCAlb					
3p21.31	D3S1358	TCTA [TCTG]a [TCTA]b		•			
4q31.3	FGA	[GGAA]a GGAG [AAAG]b AGAA AAAA [GAAA]c	Complex	•			
5q23.2	D5S818	[ATCT]a		•			
5q33.1	CSF1PO	[ATCT]a		•			
6q14	SE33	[CTTT]a [TT]0-1 [CT]b [CTTT]c	Hypervariable				٠
7q21.11	D7S820	[TATC]a		•			
3q24.13	D8S1179	[TCTA]a [TCTG]0-2 [TCTA]b		•			
10q26.3	D10S1248	[GGAA]a		•			
1p15.5	TH01	[AATG]a ATG 0-1 [AATG]b		•			
2p13.31	vWA	TAGA TGGA [TAGA]a [CAGA]b [TAGA]c		•			
12p13.2	D12S391	[AGAT]a [AGAC]b AGAT 0-1		•			
13q31.1	D13S317	[TATC]a		•			
16q24.1	D16S539	[GATA]a		•		٠	
8q21.33	D18S51	[AGAA]a		•	٠		٠
19q12	D19S433	[CCTT]a CCTA [CCTT]b CTTT [CCTT]c		•			
21q21.1	D21S11	[TCTA]a [TCTG]b [TCTA]c TA [TCTA]d TCA [TCTA]e TCCATA [TCTA]f		•			
22q12.3	D22S1045	[ATT]a ACT [ATT]2		•			
Xp, Yp	Amelogenin	-					

_	Interr	loc

D1S1656	6 – CE Kits
Thermo Fisher • - NGM - NGM SElect/Detect (Express) - Globalfiler (Express) - Verifiler Promega - PowerPlex ESX 16 (Fast) • - PowerPlex ESI 16 (Fast) - PowerPlex ESI 17 (Fast) - PowerPlex SI 17 (Fast) - PowerPlex Fusion - PowerPlex Fusion - PowerPlex Sign 8C	Qiagen – Investigator ESSplex Plus Kit – Investigator ESSplex SE Plus/GO!/QS – Investigator Nonaplex ESS Kit – Investigator Hexaplex ESS Kit – Investigator 24plex Gordiz – COrDIS Plus Peoplespot – Goldeneye DNA ID 22NC

ISFG 2017 Workshop #10

(Seoul, 29 August 2017)

D1S1656 - NGS Kits

- Illumina
 - ForenSeq Sets A and B
- Promega
- PowerSeq Auto
- Thermo Fisher
 - GlobalFiler NGS STR Panel

D1S1656 – Observed Lengths and Sequences 1000 – 000 –

ca]5 CCTA [TCTA]15 TCA [TC

Conclusions

- More information is being accumulated for STRs important to the forensic community
- More STRs are being explored and incorporated into routine analysis
- There is a lot of data out there and more is coming

(Seoul, 29 August 2017)

lan Evett on Interpretation

"The crucial element that the scientist brings to any case is the *interpretation* of those observations. This is the heart of forensic science: it is where the scientist adds value to the process."

Evett, I.W., et al. (2000). The impact of the principles of evidence interpretation on the structure and content of statements. *Science & Justice*, *40*, 233-239.

5 Reasons that DNA Results Are Becoming More Challenging to Interpret

- 1. More sensitive DNA test results
- 2. More touch evidence samples that are poor-quality, low-template, complex mixtures
- 3. More options exist for statistical approaches involving probabilistic genotyping software
- 4. Many laboratories are not prepared to cope with complex mixtures
- 5. More loci being added because of the large number of samples in DNA databases

ISFG 2017 Workshop #10

(Seoul, 29 August 2017)

Many laboratories are not prepared

to cope with complex mixtures

- Have appropriate validation studies been performed to inform proper interpretation protocols? (curriculum & classroom instruction)
- Are appropriately challenging proficiency tests being given? (graded homework assignments)
- Would we want to go into a calculus exam only having studied algebra and having completed homework assignments involving basic arithmetic?

Challenges in Real-World Data

- Stochastic (random) variation in sampling each allele during the PCR amplification process
 - This is highly affected by DNA quantity and quality
 - Imbalance in allele sampling gets worse with low amounts of DNA template and higher numbers of contributors
- Degraded DNA template may make some allele targets unavailable
- PCR inhibitors present in the sample may reduce PCR amplification efficiency for some alleles and/or loci
- Overlap of alleles from contributors in DNA mixtures
 - Stutter products can mask true alleles from a minor contributor
 - Allele stacking may not be fully proportional to contributor contribution

ABI Genetic Analyzer Data Collection

Advanced Topics in Forensic DNA Typing: Interpretation, Chapter 2

Advanced Topics in Forensic DNA Typing: Methodology, Chapter 6

Key Points on Data Collection

- On-scale data of STR allele peaks are important to interpretation (both lower and upper limits exist for reliable data)
- Data signals from ABI Genetic Analyzers are processed by proprietary algorithms that include variable binning (adjustment for less sensitive fluorescent dyes), baselining, smoothing, and multi-componenting for separating color channels
- Instrument sensitivities vary due to different lasers, detectors, and optical alignment (remember that signal strength is in "relative fluorescence units", RFUs)

(Seoul, 29 August 2017)

IfThenThreshold is set too highAnalysis may miss low-level legitimate peaks (false negative conclusions produced)Threshold is set too lowAnalysis will take longer as artifacts and baseline noise must be removed from consideration as true peaks during data review (false positive conclusions)	Impact of Setting Thresholds Too High or Too Low					
Threshold is set too highAnalysis may miss low-level legitimate peaks (false negative conclusions produced)Threshold is set 	lf	Then				
Analysis will take longer as artifacts and baseline noise must be removed from consideration as true peaks during data review (false positive conclusions	Threshold is set too high	Analysis may miss low-level legitimate peaks (false negative conclusions produced)				
produced)	Threshold is set	Analysis will take longer as artifacts and baseline noise must be removed from consideration as true peaks during data review (false positive conclusions produced)				

STR Alleles and PCR Amplification Artifacts Advanced Topics in Forensic DNA Typing: Interpretation, Chapter 3

 STR alleles can vary in their overall length (number of repeat units), with their internal sequence of repeats, and in the flanking region

ISFG 2017 Workshop #10

(Seoul, 29 August 2017)

Null Alleles

- Allele is present in the DNA sample but <u>fails to be</u> <u>amplified</u> due to a nucleotide change in a primer binding site
- Allele dropout is a problem because a heterozygous sample appears falsely as a homozygote
- Two PCR primer sets can yield different results on samples originating from the same source
- This phenomenon impacts DNA databases
- Large concordance studies are typically performed prior to use of new STR kits

- In heterozygous loci, the two alleles should be equal in amount; however, stochastic effects during PCR amplification (especially when the amount of DNA being amplified is limited) create an imbalance in the two detected alleles
- Heterozygote balance (Hb) or peak height ratios (PHRs) measure this level of imbalance
- Under conditions of extreme imbalance, one allele may "drop-out" and not be detected
- Stochastic thresholds are sometimes used to help assess the probability of allele drop-out in a DNA profile

Advanced Topics in Forensic DNA Typing: Interpretation, Chapter 5

Key Points with STR Profiles Tri-allelic patterns occasionally occur at STR loci (~1 in every 1000 profiles) and are due to copy number variation (CNVs) in the genome Due to potential deletions of the amelogenin Y region, additional male confirmation markers are used in newer 24plex STR kits The amelogenin gene is found on both the X and Y chromosomes and portions of it can be targeted to produce assays that enable gender identification as part of STR analysis using commercial kits Partial profiles can result from low amounts of DNA template or DNA samples that are damaged or broken into small pieces or contain PCR inhibitors

		D.N.A.	BOX 5.2		
E	STIMATIO FRI-ALLEL	N OF AVEL	RAGE FRE RNS IN ST	QUENCY FR PROFI	FOR LES
Second years ago, DNA analyst Malena, Immere from Messawi Sate Highway Patrol aupplied the NIST STRBase website with infor- mation on trialleles observed during analysis of 0,000 convicted offender samples. Below is as summary of the number of reported trialleles for each locus examined with their PowerPlex 16 single-source profiles.			these 69,600 s pected to occu samples on av with this data,	amples, a tri-all r about once ev rerage. Howeve , the distribution	elic pattern is ex- ery one thousand r, as can be seer n of tri-allelic pat-
each locus single-sourc	examined with th e profiles.	eir PowerPlex 16	Source: Steven M sontation provided NIST STRBase we tab.htm.	yers, California Dep to the author based or buile at http://www.	artment of Justice pre a data collected from th cstLnist.gov/strbase/tri
each locus single-sourc STR Locus CSF1PO	examined with the profiles.	eir PowerPlex 16 STR Locus D351358	Source: Steven M sentation provided NIST STRBase we tab.htm. # Tri-Alleles 2	stra locuss loci. yers, California Dep to the author based or boile at http://www. STR Locus D166539	artment of Justice pre a data collected from th estLnist.gov/strbase/tri # Tri-Alleles 3
each locus single-sourc STR Locus CSF1PO FGA	examined with the profiles. # Tri-Alleles	eir PowerPlex 16 STR Locus D351358 D55818	<pre># Control of the second s</pre>	strategies (Cliffornia Dep to the author based on boile at http://www. STR Locus D166539 D188551	artment of Justice pre data collected from th cstLnist.goe/strbuse/tri, # Tri-Alleles 3 3
each locus single-sourc STR Locus CSFIPO FGA TH01	examined with the profiles.	eir PowerPlex 16 STR Locus D351358 D55818 D75820	Source: Steven M southin provided NIST STRBase we tab.htm. Tri-Alleles 2 1 0	str actoss toci or the author based or bolic at http://www. STR Locus D168539 D18851 D21811	artment of Justice pre data collected from th coll.nist.goe/strbuse/tri, # Tri-Alleles 3 3 9
each locus single-sourc STR Locus CSFIPO FGA TH01 TPOX	examined with the profiles. # Tri-Alleles 1 11 0 9	eir PowerPlex 16 STR Locus D351358 D55818 D75820 D851179	Source: Staven M sontation provided NIST STRBase we tab.htm.	stratoss icc. yers. California Dep to the author based or bisite at http://www. STR Locus D165539 D18551 D21511 Penta D	artment of Justice pro data collected from th extEnist geo/strbuse/tri # Tri-Alleles 3 9 3

Outline

- · What is the NIST Population Set and how is it used?
 - · Overview of STRs
 - · The sequencing of the NIST Population Set
 - · Analysis of the NIST Population Set
- · Analysis Pipeline
 - · Modifications
 - · Analysis of results
- TPOX a quick look at how simple STRs can be affected by sequencing
- SE33 a deeper look into a highly polymorphic STR marker

NIST Population Samples

- · Highly Characterized Set
- Reliably report a number of DNA markers for human identity testing
 - · Short Tandem Repeats (STR)
 - Single Nucleotide Polymorphism (SNP)
 - Insertions and or Deletions (INDEL)
- · Generated data for population frequencies
- · Tested using a variety of methods
 - Capillary Electrophoresis (CE) kits for STR genotyping and confirmation

Forensic STRs

- · Mainly looking at 4 base repeats
- · Sequence motif varies by locus
- · Number of repeats varies by locus (and by individual)
- Highly polymorphic
 Repeat Sequence Classes
- Simple
- Compound
- Complex
- Hypervariable

Short Tandem Repeats (TPOX - Simple) 6,8 Genotype

ISFG 2017 Workshop #10

(Seoul, 29 August 2017)

The UAS

- GUI for exploration of data
 Easy to use
- Specific to ForenSeq workflow
- ~45 minutes to analyze a run of samples
 User-adjustable parameters
- Oser-adjustable param
 Allows manual edits
- Exportable Excel report

s:Allele	Length	Sequence	Cover
TPOX:7	28 bases	AATGAATGAATGAATGAATGAATGAATG	9
TPOX:7	28 bases	AATGAATGAATGAGTGAATGAATGAATG	1
TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATGAATG	332
TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAAAG	2
TPOX:8	32 bases	AATGAATGAATGAATGAATGAAGGAATGAATG	1
TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATGAATG	1
TPOX:8	32 bases	AACGAATGAATGAATGAATGAATGAATGAATG	1
TPOX:8	32 bases	AATGAATGAATGAATGAGTGAATGACTGATTG	1
TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATGGATG	1
TPOX:8	32 bases	AATGAATGATTGAATGAATGAATGAATGAATG	1
TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATGTATT	1
TPOX:8	32 bases	AATGAATGAATGGATGAATGAATGAATGAATG	1
TPOX:8	32 bases	AATGAATGAACGAATGACTGAATGAATGAATG	1
TPOX:9	36 bases	AATGAATGAATGAATGAATGAATGAATGAATGAATG	17
TPOX:10	40 bases	AATGAATGAATGAATGAATGAATGAATGAATGAATGAAT	321
TPOX:10	40 bases	ACTGAATGAATGAATGAATGAATGAATGAATGAATGAATG	1
TPOX:10	40 bases	AATGAATGAATGAATGAATGAATGAATGAAAGAATGAAT	1
TPOX:10	40 bases	AATGAATGAATGAGTGAATGAATGAATGAATGAATGAAT	1
TPOX:10	40 bases	AATGAATGAATAAATGAATGAATGAATGAATGAATGAAT	1
TPOX:10	40 bases	AATGAATGAATGAATGAATGAATGAATGAATGAATGATTG	1
TPOX:10	40 bases	AATGAATGAATGCATGAATGAATGAATGAATGAATGAATG	1
TPOX:11	44 bases	AATGAATGAATGAATGAATGAATGAATGAATGAATGAAT	2

5	STR	ait Razor – TPOX Results [Disse	cted
Locus	Length	Sequence	Coverage	Comment
TPOX:7	28 bases	AATGAATGAATGAATGAATGAATG	9	n-4 stutter
TPOX:7	28 bases	AATGAATGAATGAAGAATGAATGAATG	1	
TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATG	332	Allele
TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATGAAAGG	2	
TPOX:8	32 bases	AATGAATGAATGAATGAATGAAGGGAATGAATG	1	
TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGAATG	1	
TPOX:8	32 bases	AA <u>C</u> GAATGAATGAATGAATGAATGAATG	1	
TPOX:8	32 bases	AATGAATGAATGAATGAGTGAATGACTGATTG	1	
TPOX:8	32 bases	AATGAATGAATGAATGAATGAATG <mark>G</mark> ATG	1	
TPOX:8	32 bases	AATGAATGATGAATGAATGAATGAATGAATG	1	
TPOX:8	32 bases	AATGAATGAATGAATGAATGAATGTATT	1	
TPOX:8	32 bases	AATGAATGAATGGATGAATGAATGAATG	1	
TPOX:8	32 bases	AATGAATGAACGAATGACTGAATGAATGAATG	1	
TPOX:9	36 bases	AATGAATGAATGAATGAATGAATGAATGAATG	17	n-4 stutter; n+4 sutter
TPOX:10	40 bases	AATGAATGAATGAATGAATGAATGAATGAATGAATG	321	Allele
TPOX:10	40 bases	A <u>C</u> TGAATGAATGAATGAATGAATGAATGAATGAATG	1	
TPOX:10	40 bases	AATGAATGAATGAATGAATGAATGAATGAAATGAATG	1	
TPOX:10	40 bases	AATGAATGAATGAGTGAATGAATGAATGAATGAATGAAT	1	
TPOX:10	40 bases	AATGAATGAATAAATGAATGAATGAATGAATGAATGAAT	1	
TPOX:10	40 bases	AATGAATGAATGAATGAATGAATGAATGAATGAATGA	1	
TPOX:10	40 bases	AATGAATGAATG <mark>C</mark> ATGAATGAATGAATGAATGAATGAATG	1	
TPOX:11	44 bases	AATGAATGAATGAATGAATGAATGAATGAATGAATGAAT	2	n+4 stutter?

- TPOX is a simple STR
- · Lower levels of sequencing errors and noise
- · NGS based results concordant with CE length-based methods
- TPOX has SNPs in the flanks that do not affect length but do result in unique sequences
- Sequencing TPOX results in more information about the locus

Types	of Sequences Observed co	ounts
25 Distinct Patterns	$ \begin{array}{c} C \\ \mathsf$	1 7 4 56 801 25 13 13 1 2 9 4
	cr (crrr); (ccrr); c (crrr) h Tr (crrr)h cr (crrr)s cr (crrr); cr (crrr); Most common sequence pattern in the data set (crrr); cr (crrr); crrr); c (crrr)h cr (crrr)h cr (crrr); cr (crrr); c (crrr)h cr (crrr)h cr (crrr)h cr (crrr); cr (crrr); c (crrr)h cr (crrr)h cr (crrr)h cr (crrr); cr (crrr); c (crrr)h cr (crrr)h cr (crrr)h cr (crrr); cr (crrr); c (crrr)h cr (crrr)h cr (crrr)h cr (crrr); cr (crrr); c (crrr)h cr (crrr)h cr (crrr)h cr (crrr); cr (crrr); c (crrr)h cr (crrr)h cr (crrr)h cr (crrr); cr (crrr); c (crrr)h cr (crrr)h cr (crrr)h cr (crrr); cr (crrr); cr (crrr)h cr (crrr)h cr (crrr)h cr (crrr); cr (crrr); cr (crrr)h cr (crrr)h cr (crrr)h cr (crrr); cr (crrr); cr (crrr)h cr (crrr)h cr (crrr)h cr (crrr); cr (crrr); cr (crrr)h cr	34 2 20 940 5 5 1 12 30
10 Unique Sequences	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 1 1 1 1 2 1 1 1

Мс	ost Co	om	14 Alleles					
0.0	[comm]	2 0	[omm] -	0	Comm12	0.0	Commit 0	
CT	[CTTT]	3 C	[CTTT]7	CT	[CTTT13	СТ	[CTTT12	1
CT	(CTTT)	3 C	[CTTT]11	CT	[CTTT]3	CT	[CTTT]2	1
C1	[CIII]	5 C	[0111]12	C1	[0111]3	01	[0111]2	9
CT	[CTTT]	The	re appears	to b	e more like	ely	FT]2	23
CТ	[CTTT]	seq	uences not	in th	ne current	data	set [TT]2	61
CТ	[CTTT]	3 C	[CTTT]15	CT	[CTTT]3	CT	[CTTT]2	73
CT	[CTTT]	3 C	[CTTT]16	CT	[CTTT]3	CT	[CTTT]2	8 6
СT	[CTTT]	3 C	[CTTT] 17	CT	[CTTT]3	CT	[CTTT]2	139
CT	[CTTT]	3 C	[CTTT] 18	CT	[CTTT]3	CT	[CTTT]2	175
СT	[CTTT]	3 C	[CTTT] 19	CT	[CTTT]3	CT	[CTTT]2	158
CT	[CTTT]	3 C	[CTTT]20	CT	[CTTT]3	CT	[CTTT]2	126
СT	[CTTT]	3 C	[CTTT]21	CT	[CTTT]3	CT	[CTTT]2	60
СT	[CTTT]	3 C	[CTTT]22	CT	[CTTT]3	CT	[CTTT]2	22
CT	[CTTT]	3 C	[CTTT]23	CT	[CTTT]3	CT	[CTTT]2	6

Types	of Seq	uence	es Observed	Counts
	СТ		[CTTT]n CT [CTTT]3 CT [CTTT]2	1
	CT [CTTT]2	c c	[CTTT]n CT [CTTT]3 CT [CTTT]2	7
	CT I			4
	CT [Sec	ona most	common sequence pattern in the data set	56
	OT LOTTIN	COTT C	(CTTT), CT (CTTT), CT (CTTT)) CT (CTTT))	56
	CT [CTTT]2	CCTT C	[CTIT]n TT [CTIT]n CT [CTIT]3 CT [CTIT]2	801
	CT [CTTT]2	CCTT C	[CITI]n TI [CITI]n CI [CITI]n CI [CITI]3 CI [CITI]2	2
	CI [CIII]2	CUTT C	(chiljn li (chiljn li (chiljn ch (chilj3 ch (chilj2	15
	CT [CTTT]2	COTT C	CONTRACT TO CONTRACT CONTRACT CONTRACT	13
OF Disting	CT [CTTT]2	CCTT12 C	CTITTIN CTICTTIC CTICTTIC	2
25 Distinct	CT [CTTT]2	ICCTT12 C	ICTTTIN CT ICTTTIN CT ICTTTIS CT ICTTTIS	9
Patterns	CT (CTTT)	ICCTT12 C	CTTTIN TT CTTTIII CT CTTTII CT CTTT	Á
	CT (CTTT)2	ICCTT12 C	[CTTT]n TT [CTTT]n CT [CTTT]3 CT [CTTT]2	34
	CT [CTTT]2	ICCTT13 C	[CTTT]n TT [CTTT]n CT [CTTT]3 CT [CTTT]2	2
	CT [CTTT]3	i c	[CTTT]n CT CTTT	2
	CT [CTTT]3	I C	[CTTT]n CT [CTTT]2	20
	CT [CTTT]3	C C	[CTTT]n CT [CTTT]3 CT [CTTT]2	940
	CT [CTTT]3	c C	[CTTT]3 C [CTTT]n CT [CTTT]2	5
	CT [CTTT]3	C C	[CTTT]n CT [CTTT]n CT [CTTT]3 CT [CTTT]2	5
	CT [CTTT]3	C C	[CTTT]n TT [CTTT]n CT [CTTT]3 CT [CTTT]2	1
	CT [CTTT]3	C C	CCTT [CTTT]n CT [CTTT]2 CT [CTTT]2	12
	CT [CTTT]3	CCTT C	[CTTT]n CT [CTTT]3 CT [CTTT]2	30
	CT LOTTIC		Communication of Communication	4
	CT [CTTT]	COTT C	CTTTIN TT CCTTTIN CT CCTTTIN	1
	CT (CTTT)2	CCTT C	[CTTT]N TT [CTTT]N TT [CTTT]N TT CT [CTTT]2 CT [CTTT	12 1
40.11.1	CT (CTTT)2	CCTT C	[CTTT]h TT [CTTT]h T CTTT CT [CTTT]3 CT [CTTT	12 1
10 Unique	CT [CTTT]2	CCTT C	[CTTT]n TT [CTTT]n [CT12 CTTT CT [CTTT]3 CT [CTTT	12 1
Sequences	CT [CTTT]2	CCTT C	[CTTT]n TT [CTTT]n CT [CTTT]3 [CT]2	1
	CT [CTTT]3	c C	[CTTT]n CTT [CTTT]n CT [CTTT]3 CT [CTTT	12 2
	CT [CTTT]2	CCTT C	[CTTT]n TTT [CTTT]n CT [CTTT]3 CT [CTTT]2 1
	CT [CTTT]2	CCTT C	[CTTT]n CTGT [CTTT]n TT [CTTT]n CT [CTTT]3 CT [CTTT	2 1

Second Most Common Pattern									
 CT [CTTT]2 CCTT C [CTTT]m TT [CTTT]n CT [CTTT]3 CT [CTTT]2 Observed range of m is between 8 – 24 Observed range of n is between 5 – 16 Observed range of allele length is between 19.2 – 32.2 109 Observed Alleles There appears to be more sequences not in the current data set Examples 									
CT [CTTT12 CCTT C [CTTT117 TT [CTTT15 CT [CTTT13 CT [CTTT12	1								
CT [CTTT12 CCTT C [CTTT117 TT [CTTT17 CT [CTTT13 CT [CTTT12	1								
CT ICTTT12 CCTT C ICTTT117 TT ICTTT18 CT ICTTT13 CT ICTTT12	7								
CT ICTTT12 CCTT C ICTTT117 TT ICTTT19 CT ICTTT13 CT ICTTT12	10								
CT ICTTT12 CCTT C ICTTT117 TT ICTTT110 CT ICTTT13 CT ICTTT12	20								
CT ICTTT12 CCTT C ICTTT117 TT ICTTT111 CT ICTTT13 CT ICTTT12	23								
CT ICTTT12 CCTT C ICTTT117 TT ICTTT112 CT ICTTT13 CT ICTTT12	19								
CT ICTTT12 CCTT C ICTTT117 TT ICTTT113 CT ICTTT13 CT ICTTT12	17								

ISFG 2017 Workshop #10

(Seoul, 29 August 2017)

- SE33 genotypes for 1036 high quality single source samples were recovered from the ForenSeq data set
- Results concordant with CE length-based methods
 Sanger sequencing provided further conformation
- · SE33 is a complex STR to analyze
 - Required more manual data curation
 Disparate depth of coverage for larger alleles resulted in allele coverage ratio imbalance and generally low depth of coverage
 - Longer alleles present a greater challenge for accurate sequencing – 49 is the largest Sanger sequence allele currently observed
- The SE33 sequence data set is a good resource for the community

Conclusions

- · Sequencing adds alleles
 - Including flanking sequencing can add additional alleles
 - TPOX and other simple loci can gain from sequencing
- SE33 length and sequence complexity results in difficultly in sequencing
 - Other loci do demonstrate SE33 issues but not to the same degree

STR Nomenclature, STRSeq, and STRidER

Katherine Gettings PhD Research Biologist – NIST USA

WORKSHOP #10 International Society for Forensic Genetics Tuesday, August 29, 2017

Autosomal STR Markers and Interpretation

Points of view in this document are those of the authors and do not necessarily represent the official position or policies of the U.S. Department of Commerce. Certain commercial equipment, instruments, and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by NIST, nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose.

Funding:

NIJ Inter-Agency Agreement: Forensic DNA Application of Next Generation Sequencing.

A copy of this presentation is available at: http://strbase.nist.gov/NISTpub.htm#Presentations

STR Nomenclature

Focusing on

- Autosomal STR Loci Sequencing
- Work over the past two years
- Foundation for NGS/MPS
- CE Back-compatibility

STR Nomenclature

STR Review Article

CTD 1-		iour most commonly used autosomal STR loci.								
STR locus	Chromosome position	GRCh38 (Dec 2013)								
		Location	Strand	Allele designation	Repeat region sequence ^a					
D1S1656	1q42	230,769,616-230,769,683	R	17	[TAGA] ₁₆ [TAGG] [TG] ₅					
TPOX	2p25.3	1,489,653-1,489,684	F	8	[AATG] ₈					
D2S441	2p14	68,011,947-68,011,994	F	12	[TCTA] ₁₂					
D2S1338	2q35	218,014,859-218,014,950	R	23	[TGCC]7 [TTCC]13 [GTCC] [TTCC]2					
D3S1358	3p21.31	45,540,739-45,540,802	F	16	[TCTA] [TCTG] [TCTA] ₁₄					
FGA	4q31.3	154,587,736-154,587,823	R	22	[TTTC] ₃ [TTTT] [TTCT] [CTTT] ₁₄ [CTCC] [TTCC] ₂					
D5S818	5q23.2	123,775,556-123,775,599	R	11	[AGAT] ₁₁					
CSF1PO	5q33.1	150,076,324-150,076,375	F	13	[ATCT] ₁₃					
SE33	6q14	88,277,144-88,277,245	R	25.2	[AAAG]2 AG [AAAG]3AG [AAAG]9 AAAAAG [AAAG]15 G AAGG [AAAG]2 AG					
D6S1043	6q15	91,740,225-91,740,272	R	12	[AGAT] ₁₂					
D7S820	7q21.11	84,160,226-84,160,277	R	13	[GATA] ₁₃					
D8S1179	8q24.13	124,894,865-124,894,916	F	13	[TCTA] [TCTG] [TCTA] ₁₁					
D10S1248	10q26.3	129,294,244-129,294,295	F	13	[GGAA] ₁₃					
TH01	11p15.5	2,171,088-2,171,115	F	7	[AATG] ₇					
vWA	12p13.31	5,983,977-5,984,044	R	17	[TCTA] [TCTG] ₅ [TCTA] ₁₁ TCCA TCTA					
D12S391	12p13.2	12,297,020-12,297,095	F	19	[AGAT]11 [AGAC]7 [AGAT]					
D13S317	13q31.1	82,148,025-82,148,068	F	11	[TATC] ₁₁ [AATC] ₂					
Penta E	15q26.2	96,831,015-96,831,039	R	5	[AAAGA] ₅					
D16S539	16q24.1	86,352,702-86,352,745	F	11	[GATA] ₁₁					
D18S51	18q21.33	63,281,667-63,281,738	F	18	[AGAA] ₁₈					
D19S433	19q12	29,926,235-29,926,298	R	14	[AAGG] AAAG[AAGG] TAGG [AAGG] ₁₂					
D21S11	21q21.1	19,181,973-19,182,099	F	29	[TCTA]4[TCTG]6[TCTA]3TA[TCTA]3TCA[TCAT]2TCCATA[TCTA]11					
Penta D	21q22.3	43,636,205-43,636,269	F	13	[AAAGA] ₁₃					
D22S1045	22q12.3	37,140,287-37,140,337	F	17	[ATT] ₁₄ ACT [ATT] ₂					

STR Review Article

Descriptions for 24 autosomal STR loci

D5S818 is a simple tetranucleotide repeat found on the long arm of chromosome 5. The AGAT repeat unit corresponds to the reverse strand of the GenBank reference sequence (GRCh38, Chromosome 5, location 123775556-123775599, reverse strand, allele designation 11) with sequenced alleles ranging in size from 7 to 18 repeat units. Length-based alleles have been reported from 4 to 20 repeats [26,46], while the largest observed "allele" measures 29 by length but contains only 17 repeats by sequence due to a 48 base insertion within the repeat region [8]. Sequence data also shows a rare, non-consensus ACAT tetranucleotide that breaks up the repeat motif: [AGAT]_n [ACAT] [AGAT]_n [14,33]. Microvariant alleles have also been reported including a trinucleotide within the repeat region that results in an x.3 allele (e.g., [AGAT]_n GAT $[AGAT]_n$ [33] and a single adenine base adjacent to the repeat unit on the 5' end (e.g., A [AGAT]_n) [8]. One high frequency SNP has been reported within 150 bp of the repeat region: rs25768 is located 13 bp from the 5' end of the repeat region, and has a frequency of 16%. This SNP was the subject of a study that showed the potential of flanking region polymorphisms in lineage attribution of STR mutations in parentage cases [29]

- Orient the locus on GRCh38
- Allele ranges by length and sequence
- Sequence motifs and microvariants
- Flanking region polymorphisms

STR Review Article

Supplemental Table 1

- Observed alleles for 24 autosomal STR loci
- Excel file with a tab for each locus
- Sequences organized by motif
- References given
- Sequencing method noted
- Length-only observations also noted

D1S1656			
Allele	Repeat Structure	Reference	Platform
	[TAGA]9-14[TG]5		
8	[TAGA]8 [TG]5	Phillips et al. (2011)	Sanger
9	[TAGA]9 [TG]5	Phillips et al. (2011)	Sanger
10	[TAGA]10[TG]5	Lareu et al. (1998)	Sanger
11	[TAGA]11[TG]5	Lareu et al. (1998), 2391c Components B/C/E	Sanger
12	[TAGA]12[TG]5	Lareu et al. (1998)	Sanger
13	[TAGA]13[TG]5	Phillips et al. (2011)	Sanger
14	[TAGA]14[TG]5	Phillips et al. (2011), 2391c Component B	Sanger
16	[TAGA]16[TG]5	Gettings et al. (2015)	MiSeq
	[TAGA]9-17[TAGG] [TG]5		
10	[TAGA]9 [TAGG][TG]5	Phillips et al. (2011)	Sanger
12	[TAGA]11[TAGG][TG]5	Lareu et al. (1998)	Sanger
13	[TAGA] 12 [TAGG] [TG] 5	Lareu et al. (1998)	Sanger
14	[TAGA]13[TAGG][TG]5	Lareu et al. (1998)	Sanger
15	[TAGA]14[TAGG][TG]5	Lareu et al. (1998), 2391c Component C	Sanger
16	[TAGA]15[TAGG][TG]5	Lareu et al. (1998)	Sanger
17	[TAGA]16[TAGG][TG]5	Lareu et al. (1998)	Sanger
18	[TAGA]17[TAGG][TG]5	Phillips et al. (2011)	Sanger
	[TAGA]1-4[TGA][TAGA]9-14[TAGG][TG]5		
13.3	[TAGA]1[TGA][TAGA]11[TAGG][TG]5	Phillips et al. (2011)	Sanger
14.3	[TAGA]4[TGA][TAGA]9 [TAGG][TG]5	Phillips et al. (2011)	Sanger
15.3	[TAGA] 3 [TGA] [TAGA] 11 [TAGG] [TG] 5	Gettings et al. (2015)	MiSeq
15.3	[TAGA]4[TGA][TAGA]10[TAGG][TG]5	Lareu et al. (1998)	Sanger
16.3	[TAGA]4[TGA][TAGA]11[TAGG][TG]5	Lareu et al. (1998), 2391c Component E	Sanger
17.3	[TAGA] 4 [TGA] [TAGA] 12 [TAGG] [TG] 5	Lareu et al. (1998), 2391c Components A/F	Sanger
18.3	[TAGA]4[TGA][TAGA]13[TAGG][TG]5	Lareu et al. (1998)	Sanger
19.3	[TAGA]4[TGA][TAGA]14[TAGG][TG]5	Lareu et al. (1998)	Sanger
Other Repeat	Region Variants		
13	[TAGA]11[TAGC][TAGA][TG]5	Gettings et al. (2015)	MiSeq
16	[TAGA]15[TAAG][TG]5	Gettings et al. (2015)	MiSeq
Genotyped by	Length Only		
17.1		Schröer et al. (2000)	
19		Asamura et al. (2008)	
20.3		Gamero et al. (2000)	

STR Review Article

CI III III	lanaanta		1 0 4
	iemenio		1 - 74
0000		1190105	

30,770,183	230,770,174	230,7	0,164	230,770,154	230,770,1	23	0,770,134	230,770,124	230,7	70,114	230,770,10	24 2	30,770,094	230,77	0,084	230,770,074	230,	70,064	230,770,054	230,7	70,044	230,770,034
						U												U	10		US57452848	10/1
GCCTCC	GTTTG	CAGAGAG	CAGATCGI	GGGACTTO	CTTACTC	TTCACAA	TTG CA TG	AGCCAATO	CCTTAC	AATAAA	TCGTAT	TACAGG	FGATCC	TGGAACA	ATGTCA	GGGGTTG	GGGTGC	CAACCC	TCCTGCA	TTGTCAA	AAAATCT	TGTATTC
230,7	0,024	230,770,014	230,77	0,004 2	30,769,994	230,769,9	184 230 rs4847017 C	0,769,974	230,769,964	2	30,769,954	230,769	944 41091 A/G	230,769,934	230,	769,924 rs377571908 C	230,769,914	23	0,769,904	230,769,894	230,	769,884
					0		Ű						0	<u> </u>		U						
CCTAAAG	CTGAA	TUCGAA	FAGCCTAC	CATTGACC	CAGAAGT	CTTATCG.	ATAACGT	AAAGAACU	AATTAA	CATGTI	TTATAA:	TATTI	ATATTA	TATACTO	TATTCI	TACAATA	AATAAG	CCAGAG	AAAAGAAI	ATGTTAT	CAAGAAA	ATCATAG
230,769,874	230	,769,864	230,769,854	230,769, rs28741089	.844 C/Trs287410	230,769,834 188 A/C rs484701	230,769,83 16 G/T	24 230,	769,814	230,769, rs12738	804 2 160 A/G	30,769,794	230,7	69,784	230,769,774	4 230,	769,764	230,769,7	54 230	1,769,744	230,769,734	*
GGAAGAG	GAAAT	CATTTA		TAAGTGG	AACTGGG	TCATTGT	AAAGGTC	TTCATCCI		CTTCAT	GTTGAG	TAGGCTO	AGAAG	GAGGAGO	AGGAGT	TGGTCTT	GCTGTC	TCAGGG	GTGGTAG	AGATGGA	AGAAAAT	
30 769 774	230 769 71	4 230	769 704	230 769 694	220.765	0.684	230 769 674	220 769 66	4 23/	0 769 654	230 769	644	220 769 624	220	769 674	230 269 61	4 22	0 769 604	220 769 5	94 231	760 584	230 769 574
30,103,124	230,103,11	.4 2.50		rs48	47015 C/T	2,004	2.50,105,014	2.50,105,00	4 15	0,703,034	2.50,705		230,103,034	2.50	100,024	2.50,105,01		0,703,004	2.30,703,3		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	230,109,314
TAAGTTO	AAGCC	IG TG TTG	TCAAGGG	TCAACTG	IG TGA TG	TAGA TAG.	ATAGATA	GATAGATA	GATAGA	TAGATA	GATAGA	TAGATAG	ATAGA	TAGATAG	ATAGAT	AGGTGTG	TGTGTG	TTTAAT	TG TA TG T	ATATATA	TTTGGTT	CCCTAGT
										[TACA]16					(I	TAGG] [TGIS					
230	769,564	230,769,55	4 230,	769,544	230,769,534	230,765	9,524 2	30,769,514	230,769,5	04	230,769,494	230,76	59,484	230,769,47	4 23	80,769,464	230,769,4	54	230,769,444	230,769,4	34 23	10,769,424
							rs7630079	I9 C/T				rs146	50660 C/T				s187126500 A/G	rs115902339	C/T			
GATTCTA	TTTCT	TGAAGA	TCCTGAC	TAACACAG	GGACTGA	AGGAGAA	TTGGGAA	AGAAAGGA	AATTAA	AAATAA	AACAAAGA	ACCAGG	GCTTA	CAGCTGO	TAAACG	AGTTTTG	TGCTGC	GGTGGA	ATCACAT	GGTTTCT	стстттс	CTGGCTT
230,769,41	4 2	30,769,404	230,769,39	4 230,76	69,384	230,769,374	230,769	,364 2	30,769,354	230,76	9,344	230,769,334	230	0,769,324	230,769,3	314 23	30,769,304	230,76	¥,294 2	230,769,284	230,769,2	274
											rs28359649 (i)т										
GCCGTT	TGAAT	PCCAGCC!	GCCTCTT	TAGGTGA	CATAATC	TCTGAAA	TGCCTGA	AAGG CAGA	CATTTA	AACTGO	CAATGCA	CTGAATA	AAATGC	CTAAGGO	ATTAGC	ATTGTCA	CATGTC	TCCCCA	TAGCCTG	CAGTTGG	AGTTCAA	GTCGCCT
30,769,264	230,769	.254 2	30,769,244	230,769,234	230,7	769,224	230,769,214	230,769,	204 2	230,769,194	230,7	69,184	230,769,1	74 2	30,769,164	230,769,	154	230,769,144	230,769),134 2	30,769,124	230,769,116
					Ü	10/1 15	Ű		6.	191041763 C/	30	/6	13303801		Ű				194	02246380 C/G		
ACCTGG	CAATT	CCCGTTA	CACTGTAG	GCATGAC	CCTTAAT	AAGACCA.	AACGGCG	TCCGGGCC	TCAGAT	TCTGCA	AGCACTT(CTGGTC	PAAAAC	ATGGAAA	IGAG CAG	AGTCACA	CCCACC	GTCTAA	GTCAAGC	CTCCCCT	GCTGGAT	CAGA
Suppleme	ental Figu	ire 1 Anno	tation of the	GRCh38 S	equence a	at the D1S1	656 Locus															

STR Review Article

Supplemental Table 2

Excel File with a tab for each locus, details flanking region polymorphisms

D7S820

Reference SNP	Chromosome	Chromosome Position	Distance from STR repeat	RefSNP alleles	Minor Allele	Minor Allele Frequency	Minor Allele Count
		GRCh 38	Blue text if < 150 bp, bolded if > 5 % frequency	Forward strand unless otherwise noted	Second most frequent allele	Bolded if > 5 % frequency	
rs540349249	7	84159732	494	C/T	т	0.0004	2
rs149464212	7	84159838-57	388	-/ATGTGAACAATTGTGTTCTA	-	0.0104	52
rs58675984	7	84160017	209	G/T	G	0.0802	401
rs59186128	7	84160110	116	C/T	Т	0.0758	379
rs7786079	7	84160161	65	A/C	с	0.0798	399
rs7789995	7	84160204	22	A/T	т	0.0698	349
Repeat Region	7	84160226-84160277 (REV)	13 repeats				
rs16887642	7	84160286	9	A/G	А	0.1406	704
rs141022647	7	84160382	105	G/T	G	0.0074	37
rs150246249	7	84160452	175	A/G	A	0.0006	3
rs554238483	7	84160498	221	A/G	А	0.0006	3
rs192610146	7	84160504	227	A/G	А	0.0044	22
rs533853989	7	84160553	276	A/T	A	0.0006	3
rs563661578	7	84160565	288	C/T	с	0.0004	2
rs544030261	7	84160606	329	C/T	т	0.0004	2
rs7806601	7	84160645	368	A/G	A	0.0802	401
rs188794547	7	84160704	427	C/T	т	0.0014	7

Contents lists available at ScienceDirect Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements

Walther Parson^{a,b,*}, David Ballard^c, Bruce Budowle^{d,e}, John M. Butler^f, Katherine B. Gettings^f, Peter Gill^{g,h}, Leonor Gusmão^{i,j,k}, Douglas R. Hares^I, Jodi A. Irwin^I, Jonathan L. King^d, Peter de Knijff^m, Niels Morlingⁿ, Mechthild Prinz^o, Peter M. Schneider^p, Christophe Van Neste^q, Sascha Willuweit^r, Christopher Phillips^s CrossMark

Principal guidelines:

- 1. STR sequences aligned to the genome reference sequence.
- 2. Variant annotation (systematic description of genome sequence differences between individuals), use locus identifiers and variant reporting methods applied in 1000 Genomes and dbSNP databases.

STR sequence template file summarised STR sequence alignments and annotations.

It was recognised at the time of publication that sequence variation in STRs presents particular challenges, requiring care and a period of time to compile sufficiently detailed sequencing data.

STR Nomenclature

 Forensic Science International: Genetics 29 (2017) 191-204

 Contents lists available at ScienceDirect

 Forensic Science International: Genetics

 journal homepage: www.elsevier.com/locate/fsig

 Research paper

. .

A genomic audit of newly-adopted autosomal STRs for forensic identification

C. Phillips

orensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Galicia, Spain

A R T I C L E I N F O Article history: Received 22 January 2017 Received 1 revised form 3 April 2017 Accepted 14 April 2017 Accepted 14 April 2017 Krywords: K

Supplementary markers .inkage HGDP-CEPH Sequence data ABSTRACT

In preparation for the growing use of massively parallel sequencing (MPS) technology to genotype forensic STRs, a comprehensive genomic addit of 73 STRs was made in 2016 [Parson et al., Forensic Sci. Int. (nexet. 22, 54–63). The loci examined included ministifs that were not in widespread use, but had been incorporated into MPS kits or were under consideration for this purpose. The current study expands the genomic analysis of autoomal STRs that are not commonly used, to include the full set of developed minisTRs and an additional 24 STRs, most of which have been recently included in several supplementary forms in rulpiped kits for capital peticitophoresis. The genomic and to these 47 nev/b-adopted STRs world-wide population variation of the nev/b-adopted STRs sing published data; assessed their forensis informativeness; and compiled the sequence characteristics, repeat structures and flanking regions of each STR. A further 44 autosomal STRs developed for forensis analyses but not incorporated intito commercial kits, are also briefly described.

Characterizes 47 newly adopted autosomal STRs and examines linkage status

Briefly describes 44 additional autosomal STRs

Eliminate ambiguity prior to assay development/publication

CrossMark

Three questions sent to 40 laboratories interested in STR sequencing:

1 Are you sequencing forensic STRs? For what purpose?

2 Would you use forensic STR reference sequences? How?

3 How would you want to access this information?

Feedback

Are you sequencing forensic STRs? For what purpose?

Casework

- Validating for casework and/or missing persons
- Interlaboratory studies and/or beta testing Academia
 - Population data
- Degraded DNA and/or mixture studies
 Industry
 - Assay and/or software development

Would you use forensic STR reference sequences? How?

Yes

- Standardize reporting
- International databasing
- Flanking region variants
 - imputation
- Bioinformatics
- Searchable repository
- Frequency data
- Certified controls

No

- Direct comparisons
- Local databasing
- In-house nomenclature

Feedback

How would you want to access this information?

- Manufacturer software
- Database query by sequence, allele (size), or locus
- Public, official database
- Download FASTA
- Online naming tool
- N/A already using an in-house database
- Database with frequencies

- 1 NIST creates record for each unique sequence
- 2 Initial data are NIST population samples
- 3 Non redundant records; number of records per locus varies
- 4 Records include flanking regions with high confidence sequence
- 5 Records include length-based allele designations determined by CE
- 6 Records can expand for future additional flank
- 7 Records organized into BioProject for improved access

Development

BioProject hierarchy

Record format

Partner labs

https://www.ncbi.nlm.nih.gov/bioproject/380127

S NCBI R	esources 🕑	How To 🕑						Sign in to NCBI
BioProject		BioProject	•				Search	
			Advanced					Help
Display Setting	gs: 🗸					Send to: +		
The STR S	equencin	g Project (hun	nan)		Accession: PRJNA380127	ID: 380127	Related information	
The nurnes	a of STRSa	n is to facilitate th	n human	Data projects				
identification	n assays. Th	is collaborative ef	board of					
observed se	equence of	an STR region, (I	b) annotation of the r	epeat region ("bracketing") and	flanking region polymorphisms, (c) in	formation	Related Resources	
is organized	e sequencin I into locus s	g assay and data ub-projects, and c	an be accessed by br	owsing, BLAST searching, or ftp (download at NCBI. For comments or c	STRSeq		
please contact strseq@nist.gov.						STRidER		
Accession	PR.INA38	1127						
Туре	Umbrella	project					Recent activity	
Submission	Registrational I	n date: 22-Mar-20 nstitute of Stand)17 ards and Technology					
Related Resources	STRSec STRidE	l R						
Relevance	Human Ide	entification						
Project Data:								
	R	esource Name		Number of Links				
SEQUENCE DATA	A							
Nucleotide	(Genomic L	INA)						
Project Tur	quencing Pr	oject (human) en	compasses the follo	wing 4 sub-projects:				
Umbrella	project			4				
BioProject Name Title								
PRJNA38 PRJNA38	30345 H	omo sapiens	STRSeq Commonly U: STRSeq Alternate Auto	sed Autosomal STR Loci (National In osomal STR Loci (National Institute (nstitute of Standards)			
PRJNA38	30347 H	omo sapiens	STRSeq Y-Chromosor	nal STR Loci (National Institute of St	andards)			
	002X0 LL	omo saniens	STRSeg X-Chromosor	mal STR Loci (National Institute of St	(abrahoat			

Autosomal STRs: **Nomenclature, STRseq, STRidER** Katherine Gettings

ISFG 2017 Workshop #10

Homo s GenBank: M	apiens microsatellite TPOX 7 [AATG]7 rs115644759 s	equence	
COUS DEFINITION ACCESSION VERSION DBLINK	DHOS NFG44247 163 bp DNA linear PRI 30-HAV-2017 HFG44247 HFG44247.1 Bioproject: <u>P23NA380554</u>	##Human STR loc Length- Bracket Sequenc Coverag Length-	STR-START## us name :: TPOX based allele :: 7 ed repeat :: [AATG]7 ing technology :: ForenSeq, MiSeq F6x; PowerSeq Auto, MiSeq e :: >30X based tech. :: PowerPlex Fusion, ABI3500x1
KEYWORDS SOURCE ORGANISM REFERENCE	STRSEQ, STR, TPOX. Homo sapiens (human) <u>Homo sapiens</u> Eukaryota; Hetazoa; Chondata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglines; Primates; Haplorrhini; Catarrhini; Hominidae; Homo. 1 (bases 1 to 183)	Assembl Chromos Refseq Chrom, Repeat Cytogen	y :: GRCh38 (GCF_000001405) ome :: 2 Accession :: NC_000002.12 Location :: 14595321459698 Location :: 1459653189684 etic Location :: 2p25.3
AUTHORS TITLE JOURNAL	T (Uasta L Cor) Gettings,K.B., Borsuk,L.A. and Vallone,P.M. The STR Sequencing Project [manuscript in preparation] Unpublished	##Human FEATURES Source	STR-END## Location/Qualifiers
REFERENCE AUTHORS TITLE JOURNAL	2 (bases 1 to 163) NIST,A.G.G. Direct Submission Submitted (04-HAY-2017) Applied Genetics Group, National Institute of Standards and Technology, 100 Bureau Drive, MS-8314,	misc_feature	/organism="Homo sapiens" /mol_type="genomic DNA" /db_xref="taxon: <u>9606"</u> 1163 /note="Promega PowerSeq Sequence"
COMMENT	Gaithersburg, ND 20899, USA Annotation ('bracketing') of the repeat region is consistent with the guidance of the ISFG (International Society of Forensic Genetics), PHID: 20844939. Lower case letters in the 'Bracketed repeat' region below denote uncounted bases. The given length-based allele value was determined using the designated length-based technology. Variation in the length-based allele between individuals or assays can result from indels in flanking regions. The length of reported sequence is dependent on the assay (see 'sequencing technology') and the quality of the flanking sequence. This information is provided as part of the STR Sequencing Project (STRSeq), a collaborative effort of the international forensic DNA community. The purpose of this project is to facilitate the description of sequence-based STR alleles. Additional resources can be found at strseq.nist.gov. For questions or feedback, please contact strseq@nist.gov. Allele frequency data can be accessed in the strider.online database.	variation misc_feature repeat_region ORIGIN 1 tggcctgtg 61 tgatcata 121 gaatgaatg //	<pre>//dctr Fromgs Foursed Sequence 25 //dcts="C/T SNP" /db_xref="dbSNP:<u>nsi15644759</u>" 120154 //note="Illumina ForenSeq Sequence" 122149 //pt_type=tandem /satellite="microsatellite:TPOX" g gtcccccat agattgtaag cccaggaga agggctgtgt ttcagggctg g caccaggaac ggtggattg cacggaacag gcacttagg aaccctcact a atgaatgaat gaatgaatgt ttgggcaaat aaa</pre>

Homo sapiens microsa													
Homo sapiens microsa													
Homo sapiens microsa													
Homo capions microsa													
Homo sapiens microsa	tellite T	POX 7	[AATC]7 rs	115644	759 se	quence	9					
GenBank: MF044247.1													
							_				Link To	This View Fee	dback
1 10 20 30	40	150	60	70	80	90	1 100	110	120	130	14	150	160
🔄 MF044247.1: 114158 (45bp) - Find:		~								>	Tools •	💠 Tracks 🧋	29 -
100	110				120			130				140	
	A T G A	A T	GAA	TG	AAT	G A A	TGA	ATG	AAT	GTI	TG	GGC	A A
Repeat region	ACI	IA	C I I	AC			ACI	IAC		CAP	AC		×
[repeat_region]	<u>></u>	<u>></u>	>		(repeat_regi	on)	>	>	~				
misc_feature Features		~	~	_	LH LHI		Prom	ess PowerSes	Sequence		`	~	×
Illumina ForenSeq	>			>	Illumina Fo	renSeq Seque	ance	>		>	\rightarrow	-	
100	110				120			130				140	

Recommendations of the DNA Commission of the International Society for Forensic Genetics (ISFG) on quality control of autosomal Short Tandem Repeat allele frequency databasing (STRidER)

Martin Bodner^a, Ingo Bastisch^b, John M. Butler^c, Rolf Fimmers^d, Peter Gill^{e,f}, Leonor Gusmão^{g,h,i}, Niels Morling^j, Christopher Phillips^k, Mechthild Prinz^l, Peter M. Schneider^m, Walther Parson^{a,n,*}

Content

- Positioning STRidER relative to other existing databases (STRbase, ALFRED, pop STR, popAffiliator, ALLST*R); important element of QC
- II) Rationale, concept and workflow of QC via STRidER
- III) Benefits to forensic and other scientific community
- IV) Transparency, traceability and protection of data
- V) Outloook: STR sequence data in STRidER (MPS)

STRICER STRs for identity ENFSI Reference database, v2

HOME	QUERY	BATCH QUERY	ABOUT	FREQUENCIES	FORMULAE	STR SEQUENCE NOMENCLATURE	CONTACT	TERMS OF USE
			The CSV file ro as field enclos Download a s File format • CSV file	equires <i>commas (.)</i> as delin sure characters. ample CSV file. CSV © GeneMapper Durchsuchen Keine D	niters and <i>double quote</i> Datei ausgewählt.	 check/uncheck all AUSTRIA BELGIUM BOSNIA AND HERZEGOWINA CZECH REPUBLIC DENMARK FINLAND FRANCE GERMANY GREECE HUNGARY IRELAND MONTENEGRO NORWAY POLAND SLOVAKIA SLOVENIA SWEDEN SWITZERLAND 		
			Submit					

STRidER	STRs for identity ENFSI Reference database, v2	M	TIOMIN,

HOME	QUERY	BATCH QUERY	ABOUT	FREQUENCIES	FORMULAE	STR SEQUENCE NOMENCLATURE	CONTACT	TERMS OF USE

Frequencies

These tables include allele frequencies and number of samples (n) from the most recent database release sorted by marker and country.

In these tables, "I" represents all rare alleles shorter than the accepted allele categories. The value "99" represents all rare alleles longer than the accepted categories.

This data can be downloaded as 🔂 XML file.

V	WA																		
A	liele	AUSTRIA	BELGIUM	BOSNIA AND HERZEGOWINA	CZECH REPUBLIC	DENMARK	FINLAND	FRANCE	GERMANY	GREECE	HUNGARY	IRELAND	MONTENEGRO	NORWAY	POLAND	SLOVAKIA	SLOVENIA	SPAIN	SWEDEN
		222	206	171	200	200	230	208	662	208	224	304	200	202	206	247	207	449	424
	11								7.5529e-4										
	12									4.8077e-3									
	13			1.1696e-2					2.2659e-3	2.4038e-3	2.2321e-3			2.4753e-3		2.0243e-3	2.4155e-3	6.6815e-3	1.1792e-3
	14	1.0586e-1	1.0680e-1	1.1111e-1	1.0000e-1	7.0000e-2	1.3043e-1	8.6539e-2	9.7432e-2	9.3750e-2	1.1161e-1	1.1349e-1	1.4500e-1	8.6634e-2	7.7670e-2	1.1943e-1	1.0145e-1	1.1024e-1	9.4340e-2
	15	9.2342e-2	1.2136e-1	1.2573e-1	9.7500e-2	9.7500e-2	5.2174e-2	1.2740e-1	1.0347e-1	7.9327e-2	1.1384e-1	1.0197e-1	9.0000e-2	9.9010e-2	8.4951e-2	1.1943e-1	1.2077e-1	1.2361e-1	8.9623e-2
	16	1.7568e-1	1.9903e-1	2.0468e-1	1.7500e-1	2.6000e-1	1.7609e-1	2.4038e-1	2.2130e-1	1.6827e-1	2.0536e-1	2.1875e-1	1.7500e-1	2.2277e-1	2.2330e-1	1.9231e-1	1.8599e-1	2.4276e-1	2.0991e-1
	17	2.8604e-1	2.7185e-1	2.3977e-1	3.1250e-1	2.3000e-1	2.7174e-1	2.3317e-1	2.5453e-1	3.1731e-1	3.0134e-1	2.7138e-1	2.8750e-1	2.8960e-1	2.7670e-1	2.7530e-1	2.8985e-1	2.7171e-1	2.6533e-1
	18	2.5901e-1	2.0146e-1	2.1053e-1	2.2750e-1	2.4000e-1	2.0435e-1	2.1154e-1	2.2054e-1	2.4279e-1	1.7634e-1	1.9243e-1	2.1250e-1	1.9802e-1	2.4757e-1	2.0445e-1	2.1739e-1	1.7038e-1	2.4174e-1
	19	7.2072e-2	8.0097e-2	9.0643e-2	7.2500e-2	8.2500e-2	1.3696e-1	8.6539e-2	8.6103e-2	7.4519e-2	7.1429e-2	9.3750e-2	7.2500e-2	8.6634e-2	8.0097e-2	7.6923e-2	5.5556e-2	6.1247e-2	7.9009e-2
	20	9.0090e-3	1.9418e-2	5.8480e-3	1.5000e-2	1.7500e-2	2.1739e-2	1.4423e-2	1.2840e-2	1.4423e-2	1.5625e-2	8.2237e-3	1.7500e-2	1.4852e-2	9.7087e-3	1.0122e-2	2.1739e-2	1.3363e-2	1.6509e-2
	21					2.5000e-3	6.5217e-3		7.5529e-4	2.4038e-3	2.2321e-3						4.8309e-3		2.3585e-3
Т	H01																		
A	liele	AUSTRIA	BELGIUM	BOSNIA AND HERZEGOWINA	CZECH REPUBLIC	DENMARK	FINLAND	FRANCE	GERMANY	GREECE	HUNGARY	IRELAND	MONTENEGRO	NORWAY	POLAND	SLOVAKIA	SLOVENIA	SPAIN	SWEDEN S
		222	206	171	200	200	220	209	667	208	224	20/	200	202	206	247	207	454	625

HOME QUERY BATCH QUERY ABOUT

FREQUENCIES FORM

FORMULAE STR SEQUEN

STR SEQUENCE NOMENCLATURE

.....

CONTACT TERMS OF USE

Formulae

 $\label{eq:probability} \begin{array}{ll} \textbf{Actual matching probability} \\ P_m = 2p_i p_j & \text{Heterozygotes} \\ P_m = p_i^2 & \text{Homozygotes} \end{array}$

A minimum allele frequency of 5/2n [1] is used for calculations.

[1] National Research Council. (1996) The evaluation of forensic DNA evidence. National Academy Press, Washington D.C.

HOME	QUERY	BATCH QUERY	ABOUT	FREQUENCIES	FORMULAE	STR SEQUENCE NOMENCLATURE	CONTACT	TERMS OF USE
STR Se	quence No	omenclature						
The file 'ST	R Sequence St	ructure (Supplementary	y File S1)' is an	updated set of forensic	STR sequences that	accompany the article:		
Parson W, Willuweit S (ISFG) on n http://www	Ballard D, Bud , Phillips C: Ma ninimal nomen v.isfg.org/Publ	owle B, Butler JM, Getti ssively parallel sequen clature requirements. F ication;Parson2016).	ngs KB, Gill P, G cing of forensi e Forensic Scienc	Gusmão L, Hares DR, Irw c STRs: Considerations (e International Genetics	in JA, King JL, de Kni o f the DNA commiss 2016, 22: 54-63 (do	jff P, Marling N, Prinz M, Schneider PM, Van Nes Ion of the International Society for Forensic Ger ni: 10.1016/j.fsigen.2016.01.009; available at	te C, netics	
Major char available fe	nges to this file or download he	are currently ongoing. ere. To stay updated abo	When the revie out STRidER, re	ew process is finished, a egister here for the STRi	new version of Supp dER newsletter.	elementary File S1 containing updated information	on will be	
The update	es since the las	t version are:						
		·	, , , <i>,</i>	a a a a a a a a a a a a a a a a a a a	9 6 9 9			o a a a a
		1000 1000 1000 1000 1000 1000 1000 100	1000 C	8000 8000 8000 8000 8000 8000 8000 800	1000 million (1000 million (10	9466	1000 1000 1000 1000 1000 1000 1000 100	
		· · · · ·	56 K K K K		. a a a a		n v n n n	
	*** **********************************							
		r 1 1 1 1 1			units Traject (

<section-header><section-header><section-header><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header>	Christopher Phillips ^{1*} , Katherine B. Gettings ² , Jonathe	an L. King ^a , Martin Bodner ⁴ , Lisa Borsuk ^a , Walther Parson ⁴	
<section-header><section-header><section-header><section-header><figure><text><text><image/><image/><image/></text></text></figure></section-header></section-header></section-header></section-header>	Next the second	The section of the history of the means and the history of the his	STR Nomenclature
<image/> <text><image/><image/><image/><image/><image/></text>	Steps when to enhance, expand and cross-chack formula CTR expanses data A site of e1 additional aboves K. Ye and "commonsme to some mixabili an UTR in their entropy function, only, the marging sources data (step 3 k. 2016) of the data X. 2014 (step 3 k. 2014) is above and the data (step 3 k. 2014) and the entropy complex approximation, A 2016 (step 3 k. 2014) is the dOCOID graves marging CTR 2014 of the complex system for the grave step 3 k. 2014 (step 3 k. 2014) is the dOCOID graves marging CTR 2014 of the complex system for the grave step 3 k. 2014 (step 3 k. 2014) is data and the data (step 3 k. 2014) is an entropy of the data (step 3 k. 2014) is data (step 3 k. 2014) is an entropy of the data (step 3 k. 2014) is data (step 3 k. 2014) is an entropy of the data (step 3 k. 2014) is data (step 3 k. 2014) is an entropy of the data (step 3 k. 2014) is data (step 3 k. 2014) is an entropy of the data (step 3 k. 2014) is data (step 3		
<figure><figure><figure><figure><figure><text><text><text><text><text><text></text></text></text></text></text></text></figure></figure></figure></figure></figure>	 Noders (DK) was identified the bisless spaces of impact CDR. This is compared and the hird hird hird hild have with CHOSEN in the Direction and a line of Direction, anney remerchanged magneting and an effect of the methy and increasing of the target spaces and provide the methy. Second spaced compared the stars the space of the space shall be the Second spaced compared the stars the space of the space shall be the Second spaced compared and and the space of the space shall be the Second spaced compared and the space of the Second Second Second spaced compared and the space of the Second Second Second spaced compared and the space of the Second Second Second Second Second Second Second Compared and the Second Sec		Wednesday Morning Poster Session
<image/> <figure><figure><text><text><text><text></text></text></text></text></figure></figure>		The second secon	
<figure><text><text><text><text><text><text></text></text></text></text></text></text></figure>		The striften collaboration protect (This striften collaboration protection) and the string of the state to the string of the string the string of the string of the string of the string of the string of the string of the origination of the string of the string of the string of the string of the term string of the string of the string of the string of the string of the analysis of rubes of the string of the string of the string of the analysis of rubes of the string of the string of the string of the string of the analysis of rubes the string of the string of the string of the string of the string of the string o	P01-49
P(P(P(P(P(P(P(P	\[1 \[2 \[1 \] 2 \[1	Balls noch ben Unterein Eist an und sind her Schlichk weich in zur dies, normalis der einer Aufen Sonne Frankriker und einer Schlichkeiten im Ball aufen einer Aufenzeiten Ballsteiner Schlichkeiten einer Ballsteine im Ballsteine Ball (Schlichkeiten einer Ballsteine Ballsteiner Ballsteiner Ballsteiner im Ballsteine Ball (Schlichkeiten einerstellt Einer Ballsteiner Balls	
STRICER Provincement and a Company and Company	Bit is FBI to deal when sharply integrates and complex perspectively. The provide the set of the s	w w w w w w w w w w w w w w w w w w w	
	STRICER of the latest of the formation of the statest of the state	https://strider.online	

Autosomal STRs: STRBase revisions

John M. Butler & Lisa Borsuk

Knowing the literature provides a solid foundation for research and future work

Autosomal STRs: STRBase revisions

John M. Butler & Lisa Borsuk

ISFG 2017 Workshop #10

(Seoul, 29 August 2017)

Good information input improves output... Some Fruits of a Good Literature Collection **Review Articles Textbooks** John M. Butler,¹ Ph.D. Genetics and Genomics of Core Short Tandem Repeat Loci Used in Human Identity Testing **USIC DNA** Analytical Chemistry (June 15, 2007 issue) Forensic Science T. A. Brettell* TYPING Department of Chemical and Physical Sciences, Cedar Crest College, 100 College D Allectown, Pennsylvania 18104-6196 J. M. Butler Nochemical Sc J. R. Almirall Department of Chemistry and Bioche Iniversity Park, Miami, Florida 3319

A Brief History of the STRBase Website

- Initial information was collected on STR markers while working on my PhD dissertation in 1993-1995
- Started a review article in 1996 while a NIST postdoc but wanted to create a dynamic rather than an out-of-date resource
- Created hundreds of individual web pages that were hyperlinked together
- Website launched in July 1997 (discussed at ISHI 1997)
- Became a NIST Standard Reference Database (SRD 130) because of its high visibility
- Until early 2017, a single person (JMB) used an HTML editor to update the website
- URL was recently changed to <u>http://strbase.nist.gov</u>

Bullipper STREP (Section 2014)
 Section 2014
 Section 2014

AmpF/STR[®] Identifiler™ 200 bp 300 bp 400 hn 100 bp D21S11 D7S820 CSF1PO D195433 TPOX D18S51 I I GS500-internal lane standard The schematic diagram illustrates the fluorescent dye label color and relative PCR product size ranges for the various STR loci present in this particular kit. Click on the locus name to learn more about the STR marker of interest. http://www.cstl.nist.gov/strbase/kits/Identifiler.htm

http://www.cstl.nist.gov/strbase/multiplx.htm

Autosomal STRs: STRBase revisions John M. Butler & Lisa Borsuk

(Seoul, 29 August 2017)

Why the Planned Changes to STRBase?

- More information to upload than one person (i.e., John Butler) can easily manage
- The website system design and maintenance is out-ofdate having been developed 20 years ago
- Some portions of the website are extensively used and updated (e.g., variant alleles) and other sections have fallen significantly out-of-date
 - STRBase is not up-to-date with many new autosomal STRs now being used
- Would like to enable search capabilities to aid future research investigations and answer specific questions
 - For example, D12S391 single-base variants exist and could potential impact accurate DNA mixture resolution

S	ΓR	Lo	00	us	5 D	1:	253	39	1 "	۶V	ari	ar	nt"	Α	lle	le	s
Wh is	at is s typ	dei ical	fine Ily L	d as	s a va ed on	aria n al	ant (o lleles	r o pre	ff-lac sent	ldei t in	r) all STR	lele kit	by a alle	lab lic la	orat adde	ory er	
							Allelic	Lad	der A	llele	s						
Fusior	14	15	16	17	17.3	18	18.3	19		20	21	22	23	24	25	26	27
GlobalFile	14	15	16	17		18	3	19	19.3	20	21	22	23	24	25	26	27
D12S3 (data p	i91 v rovide	arian	nt al	e) Ilele: on 12	s (126 23 NG	6 to M S	otal) re SElect,	epor 1 ES	ted s 3116, 1	io fa 1 NG	ir in M, ai	STR nd 1 I	Base PP21	D)			
	Vari	iant		# tin	nes		Vari	ant	#	tim ‡	ies						
13	16	5.1		1:	x		19	.1		1x		1	tri-a		e re	epoi	ted
P 20	17	'.1		2	x		20	.1		2x			1	7,'	19,	20	
Fe	17	. 3		43	x		20	.3		2x			S	inofil	er (Cł	ina)	
ls o	18	.1		3	x		21	.3		1x							
٩	18	.3		66	ix		2	В		1x							

	From	NIST 1	036 d	ata set	(Butler et al	. 2012 Profi	les in DNA	D400004
-83		Tota	al	F	opulati	ons, %		D125391
680	Allele	#	%	AfAm	Asian	Cauc	Hisp	
1.7	14	1	0.0	0.1				NIST U.S. Allele
38/16	15	105	5.1	7.7	4.1	3.2	4.4	
Int. 1	16	84	4.1	6.7	1.0	2.2	4.2	Frequencies
Sci.	17	258	12.5	16.7	8.2	12.7	7.6	riequentites
nsic	17.1	3	0.1	0.4				Theoretical heterozygotes (2pg)
Form	17.3	26	1.3	0.4		2.1	1.7	(Lpq)
9	18	432	20.8	25.3	26.3	17.2	17.8	2 x 0.013 x 0.208 = 0.54% (17.3,18)
Ē	18.1	1	0.0	0.1				2 x 0.013 x 0.152 = 0.40% (18.3, 19)
8	18.3	27	1.3	0.4		2.5	1.3	
mo s	19	314	15.2	14.8	17.5	12.5	18.9	Observed heterozygotes with
auto	19.1	7	0.3	0.9			0.2	a single nucleotide difference
23	19.3	10	0.5	0.4	0.5	0.4	0.6	9 out of 1036 - 0.87%
ta to	20	262	12.6	10.4	19.6	11.1	15.5	5 Out of 1050 = 0.0770
a pu	20.1	2	0.1	0.3				17 17 1
Inic	20.3	1	0.0				0.2	,
8	21	209	10.1	6.4	9.8	12.9	11.2	17.3. 18 (3x)
20	22	137	6.6	3.7	5.7	9.6	6.8	10 10 1
13) [22.2	1	0.0				0.2	18, 18.1
8	23	102	4.9	2.9	2.6	6.9	5.7	19.2 10 (2x)
of al.	24	53	2.6	1.3	1.0	4.7	1.7	10.3, 19 (ZX)
α ²	24.3	1	0.0		0.5			19, 19, 1
E, C	25	24	1.2	0.9	1.5	1.7	0.6	,
T	26	7	0.3		1.0	0.3	0.6	19.3, 20
	27	5	0.2		0.5	0.1	0.6	

- Widely used (>500,000 hits cumulative)
- Method for sharing information (presentations, population data, etc.)

STRBase could be a model for other forensic disciplines in sharing information with the forensic science community

Mixture Section of STRBase

http://strbase.nist.gov/mixture.htm

•	Training workshop slides	Literature listing by topic for 1	50 articles
	materials available from >10 workshops)	Topic category	# References
	SWCDAM Mindune Committee	Mixture Principles & Recommendations	13
•	SWGDAM MIXture Committee	Setting Thresholds	12
	mixture examples by Bruce Heidebrecht.	Stutter Products & Peak Height Ratios	20
	Maryland State Police DNA Technical	Stochastic Effects & Allele Dropout	18
	Leader)	Estimating the Number of Contributors	15
	Links to misture intermetation	Mixture Ratios	9
•	software (currently 17 links)	Statistical Approaches	23
	Soliware (currently 17 links)	Low Template DNA Mixtures	10
	Literature references	Separating Cells to Avoid Mixtures	3
	 currently 150 articles listed 	Software (plus 17 websites links)	7
	 needs to be updated 	Probabilistic Genotyping Approach	13
		General Information on Mixtures	7

Additional Information Needed/Planned

- Mutation rate information to aid kinship analysis

 More father/son studies are needed with D12S391, D1S1656, D2S441, D10S1248, and D22S1045
- A complete summary of flanking region variation and null alleles produced from primer binding site mutations
- Future plans for STRBase: listing of full sequences for detected STR alleles (repeats and flanking regions) to aid next-generation sequencing efforts
 Will enable nomenclature and classification of sub-allele variation for STR markers

Revisions Planned

Lisa

Redesigning STRBase - Goals

· For the public

- Make STRBase easier to navigate and use
 - · Find what you are looking for faster
 - · Ability to download more types of useful information
- Make submitting information to STRBase simpler

· For the curators of STRBase

- Make maintaining STRBase simpler
- Simplify adding new information to STRBase
- Simplify reviewing submitting information

Past and Future formats of STRBase

- Currently STRBase is over 2,500 individual files
 HTML
- · The new STRBase in development
 - ASP .NET Core
 - MySQL database

STRBase Questionnaire – an informal survey 147 Responses Total - 13 Questions How often do you visit STRBase? 142 responses 142 responses 142 responses

🔺 1/6 🔻

Autosomal STRs: **STRBase revisions** John M. Butler & Lisa Borsuk

(Seoul, 29 August 2017)

Current designs for STRBase

- Pulling all information about a locus into one place
- · Cleaning up the site
 - Removing duplicate data
 - Organizing
 - Simplifying
- General house cleaning

E	xar	nple	D1	S165	6 – Varian	t Allele	S
Searc Locus Allele	h for s = D13 = 13.3	specific c S1656 3	riteria				
Allele Designation	Allele Size	Instrument	Amp Kit*	Contributor	Verification/ Confirmation Method(s)	Notes	Frequency
13.3	192.5	ABI 3500	NGM SElect	ABC Lab	Reamplified and reanalyzed	Convicted offender sample	
13.3	192.61	ABI 3500	NGM SElect	ABC Lab	Reamplified and reanalyzed	Convicted offender sample	
13.3	150.29	ABI 3500xl	ESX 16	XYZ Group	Re-amplified and re- electrophoresed	Reference sample	1
13.3	176.65	ABI 3500	PP21	LMN Department	Re-amplified & re-analyzed	Immigration case	2 in 2730
Sort T	ables	by colum	ins				

Example D1S1656 – Observed Alleles Search for specific criteria

	Inskat Reference Rist										
Allele	Bracket	Reference	Platform								
7	[ca]5 [TCTA]7	KCL	FGx MiSeq								
8	[ca]5 [TCTA]8	Phillips et al. (2011)	Sanger								
9	[ca]5 [TCTA]9	Phillips et al. (2011)	Sanger								
10	[ca]5 [TCTA]10	Lareu et al. (1998)	Sanger								
10	[ca]5 CCTA [TCTA]9	Phillips et al. (2011)	Sanger								
10.3		Variant Allele STRBase	CE								
11	[ca]5 [TCTA]11	Lareu et al. (1998)	Sanger								
11	[ca]5 CCTA [TCTA]10	Lareu et al. (1998)	Sanger								
11.1		Variant Allele STRBase	CE								
11.3		Variant Allele STRBase	CE								
12	[ca]5 [TCTA]12	Lareu et al. (1998)	Sanger								
12	[ca]5 CCTA [TCTA]11	Lareu et al. (1998)	Sanger								
12.1		Variant Allele STRBase	CE								
12.3		Variant Allele STRBase	CE								
13	[ca]5 [TCTA]13	Phillips et al. (2011)	Sanger								
13	[ca]5 CCTA [TCTA]12	Lareu et al. (1998)	Sanger								
13	[ca]5 TCTA GCTA [TCTA]11	Gettings et al. (2015)	MiSeq								
13.1		Variant Allele STRBase	CE								
13.3	[ca]5 CCTA [TCTA]8 TCA [TCTA]4	Novroski et al. (2016)	FGx MiSeq								
13.3	[ca]5 CCTA [TCTA]11 TCA TCTA	Phillips et al. (2011)	Sanger								

Other Updates

- Additional STRs
- · Additional general information about the STRs
- · Additions of new kits
- Visualization of new kits

STRBase Group for Website Upgrade

- John Butler
- · Peter Vallone
- · Katherine Gettings
- Lisa Borsuk
- · Arlin Stoltzfus
- Casey Hume
- Angela Lee
- Marcus Newrock

What would you like to see in STRBase?

Autosomal STRs: **Potential Privacy Concerns** John M. Butler

(Seoul, 29 August 2017)

STRs are the Dominant Genetic Markers

Autosomal STRs: **Potential Privacy Concerns** John M. Butler

Thoughts on the Future of Forensic DNA Published in 2015		
PHILOSOPHICAL TRANSACTIONS B	The future of forensic DNA analysis	
rstb.royalsocietypublishing.org	John M. Butler	
	National Institute of Standards and Technology, Gatthersburg, MD, USA	
Opinion piece Construction of the service South Annue, R. Soc. B 378: 2140252. http://dx.doi.org/10.1098/rth5.2014.0252 Accepter: 26 February 2015	The author's thoughts and opinions on where the field of forensic DNA testing is headed for the nest decade are provided in the context of where the field has come over the past 30 years. Similar to the OUTpurje (metho of Taster, higher, stronger', forensic DNA protocols can be expected to become more rapid and sensitive and provide stronger investigative potential. New short tandom report [25] kels have expanded the core set of genetic markers used for human identification in Europe and the USA. Repid DNA testing is in the verge of subling new applications. Next-generation sequencing has the potential to provide genetic depth of occurring for information on STR alleles. Familial DNA searching has expanded capabilities of DNA databases in parts of the verd where it is allowed. Challenges and opportunities that will impact the future of forensic DNA are explored indialing the next for education and training its improve interpretation of complex DNA profiles.	
One contribution of 15 to a discussion meeting iccus The naradism shift for LW forencir	Addressed Rapid DNA and	
science'.	Next-Generation Sequencing	

Butler, J.M. (2015) The future of forensic DNA analysis. Phil. Trans. R. Soc. B 370: 20140252

Stages of Forensic DNA Progression		
Stages	Time Frame	Description
Exploration	1985 - 1995	Beginnings, different methods tried (RFLP and early PCR)
Stabilization	1995 - 2005	Standardization to STRs, selection of core loci, implementation of Quality Assurance Standards
Growth	2005 - 2015	Rapid growth of DNA databases, extended applications pursued
Sophistication	2015 to 2025 and beyond	Expanding tools available, confronting privacy concerns
Table 1 from J.M. Butler (2015) The future of forensic DNA analysis. Phil. Trans. R. Soc. B 370: 20140252		

An Attempt to Link Forensic STR Markers to Clinical SNP Assays

Linkage disequilibrium matches forensic genetic records to disjoint genomic marker sets

Michael D. Edge[®], Bridget F. B. Algre-Hewitt[®], Trevor J. Pemberton[®], Jun Z. L¹, and Noah A. Rosenberg^{®-1} "pagement of Biology, Stanford University, Stanford, G. A. Skallo, "Regariment of Biolomitity and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada N28/8, and "Department of Human Genetics, University of Michigan, Ann Andor, M. 4910.

"Using two datasets for the same 872 people—one with 642,563 genome-wide SNPs and the other with 13 short tandem repeats (STRs) used in forensic applications—we find that 90–98% of forensic STR records can be connected to corresponding SNP records and vice versa. Accuracy increases to 99–100%when ~30 STRs are used. Our method expands the potential of data aggregation, but it also suggests privacy risks intrinsic in maintenance of databases containing even small numbers of markers—including databases of forensic significance."

Edge, M.D., et al. (2017) Linkage disequilibrium matches forensic genetic records to disjoint genomic marke sets. PNAS (Proceedings of the National Academy of Sciences USA) 114: 5671-5676

This Work Has Raised the Potential for Perceived Privacy Risks

Significance

We describe a method for identifying in distinct genetic datasets observations that represent the same person. By using correlations among genetic markers close to one another in the genome, the method can succeed even if the datasets contain no overlapping markers. We show that the method can link a dataset similar to those used in genomic studies with another dataset iniliar to those used in genomic studies with another dataset in maintaining backward compatibility with databases of existing forensic genetic profiles as systems move to new marker types. At the same time, it illustrates that the privacy risks that can arise from the cross-linking of databases are inherent even for small numbers of markers.

Edge, M.D., et al. (2017) Linkage disequilibrium matches forensic genetic records to disjoint genomic marker sets. PNAS (Proceedings of the National Academy of Sciences USA) 114: 5671-5676

This Concern is Not New...

Kimpton, C.P., et al. (1995). Report on the second EDNAP collaborative STR exercise. *Forensic Science International*, 71, 137-152.

"...it is likely that many or possibly most STRs will eventually be shown to be useful in following a genetic disease or other genetic trait *within a family* and therefore this possibility must be recognized at the outset of the use of such systems" (emphasis added) Laird, R., et al. (2007). Forensic STRs as potential disease markers: a study of VWA and von Willebrand's disease. Forensic Science International: Genetics. 1, 253-261

Abstract

"In recent years it has been established that non-coding variants may be in linkage disequilibrium (LD) with coding variants up to several thousand base pairs away forming haplotype blocks. These non-coding markers may be haplotype specific and, therefore, informative regarding the surrounding coding sequence. In this study, we chose to study the VWA short tandem repeat (STR) as it is targeted in all major commercial kits utilized in routine forensic DNA profiling and is located in the von Willebrand Factor (vWF) gene; a gene associated with von Willebrand's Disease (vWD)... [T]here appeared to be no evidence of LD blocks surrounding the VWA STR and evidence for recombination within 3 kb of VWA, hence, it is unlikely that VWA STR alleles could be used to predict haplotypes within the vWF gene that are associated with different forms of vWD."

From J.M. Butler (2012) Advanced Topics in Forensic DNA Typing: Methodology, p. 228

"...[U]se of STRs for family linkage studies is different than associations of specific alleles in a general population with a disease state. Colin Kimpton and coworkers from the European DNA Profiling Group (EDNAP) recognized early on in the application of STRs for human identity testing that "it is likely that many or possibly most STRs will eventually be shown to be useful in following a genetic disease or other genetic trait within a family and therefore this possibility must be recognized at the outset of the use of such systems' (Kimpton et al. 1995; emphasis added). Family pedigree studies that track a few specific loci and alleles are different than equating a specific allele in the population with some kind of phenotypic correlation..."

Kimpton, C.P., et al. (1995). Report on the second EDNAP collaborative STR exercise. Forensic Science International, 71, 137-152.

From J.M. Butler (2012) Advanced Topics in Forensic DNA Typing: Methodology, p. 228

"In 2005, an infrequently used X-chromosome STR marker named HumARA was removed from future consideration in human identity testing (Szibor et al. 2005) since it was located in an exon. Some of the longer CAG repeat alleles with HumARA have been shown to be the cause of a genetic disease, which is why this STR locus was removed from use. All of the 23 commonly used STR markers described throughout this book and present in current commercial STR kits are located in between genes ('junk DNA' regions) or in introns. Thus, by definition they are non-coding."

Szibor, R., et al. (2005). Letter to the editor: the HumARA genotype is linked to spinal and bulbar musculai dystrophy and some further disease risks and should no longer be used as a DNA marker for forensic purposes. International Journal of Legal Medicine, 119, 179-180. From J.M. Butler (2012) Advanced Topics in Forensic DNA Typing: Methodology, p. 228

"[T]he relatively high mutation rate of STRs means that even if any linkage existed at one time between a specific allele and a genetic disease state, this linkage would likely not last beyond a few generations before mutation altered the allele length and effectively broke any linkage of an allele or genotype state to that specific phenotype state."

Summary

- STR markers have proven to be valuable in forensic evidence examinations for almost two decades (the U.S. has recently moved from 13 to ~20 core STR loci)
- Genetic disease linkage studies often involve STR markers, some of which may be core forensic loci
- The high mutation rate of forensic STR markers means that any potential allele associations with disease phenotypes will not hold over time in the general population

STR Kits and Measurement Techniques

Butler, J.M., et al. (2004). Forensic DNA typing by capillary electrophoresis: using the ABI Prism 310 and 3100 Genetic Analyzers for STR analysis. <u>*Electrophoresis*</u>, 25: 1397-1412.

Butler, J.M. (2012). Advanced Topics in Forensic DNA Typing: Methodology. Elsevier Academic Press: San Diego.

Butler, J.M. (2015). Advanced Topics in Forensic DNA Typing: Interpretation. Elsevier Academic Press: San Diego.

Butler, J.M. (2015) The future of forensic DNA analysis. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, 370, 20140252.

STR Markers and Alleles

Butler, J.M. (2006). Genetics and genomics of core STR loci used in human identity testing. <u>Journal of Forensic Sciences, 51(2)</u>, 253-265.

Butler, J.M., et al. (2009). The single most polymorphic STR locus: SE33 performance in U.S. populations. *Forensic Science International: Genetics Supplement Series (Progress in Forensic Genetics 13)*, *2*, 23-24. [available at http://www.fsigeneticssup.com]

Butler, J.M., et al. (2011). SE33 variant alleles: sequences and implications. *Forensic Science International: Genetics Supplement Series, 3*, e502-e503. [available at <u>http://www.fsigeneticssup.com</u>]

Butler, J.M., et al. (2012). Variability of new STR loci and kits in U.S. population groups. *Profiles in DNA*. Available at https://www.promega.com/resources/profiles-in-dna/2012/variability-of-new-str-loci-and-kits-in-us-population-groups/.

Butler, J.M., & Hill, C.R. (2012). Biology and genetics of new autosomal STR loci useful for forensic DNA analysis. <u>Forensic</u> <u>Science Reviews</u>, 24(1), 15-26.

Gill, P., et al. (2006a). The evolution of DNA databases-Recommendations for new European STR loci. *Forensic Science International*, 156, 242-244.

Gill, P., et al. (2006b). New multiplexes for Europe-amendments and clarification of strategic development. *Forensic Science International, 163,* 155-157.

Hares, D.R. (2015) Selection and implementation of expanded CODIS core loci in the United States. *Forensic Sci. Int. Genet.* 17): 33-34.

Phillips, C., et al. (2014). "New turns from old STaRs": enhancing the capabilities of forensic short tandem repeat analysis. *Electrophoresis*, *35*, 3173-3187.

Phillips, C., et al. (2016) D5S2500 is an ambiguously characterized STR: identification and description of forensic microsatellites in the genomics age. *Forensic Science International: Genetics, 23,* 19-24.

Interpretation

Cadenas, A.M., et al. (2007). Male amelogenin dropouts: phylogenetic context, origins and implications. *Forensic Science International, 166*, 155-163.

Coble, M.D., et al. (2015). Uncertainty in the number of contributors in the proposed new CODIS set. *Forensic Science International: Genetics*, *19*, 207-211.

Gill, P., et al. (2015). Genotyping and interpretation of STR-DNA: Low-template, mixtures and database matches-Twenty years of research and development. *Forensic Science International: Genetics, 18,* 100-117.

Santos, F.R., et al. (1998). Reliability of DNA-based sex tests. Nature Genetics, 18(2), 103-103.

SWGDAM Interpretation Guidelines for Autosomal STR Typing by Forensic DNA Testing Laboratories (see swgdam.org)

Length vs Sequence Information and STR Nomenclature

Bodner, M., et al. (2016). Recommendations of the DNA Commission of the International Society for Forensic Genetics (ISFG) on quality control of autosomal Short Tandem Repeat allele frequency databasing (STRidER). *Forensic Science International: Genetics, 24,* 97-102.

Casals, F., et al. (2017). Length and repeat-sequence variation in 58 STRs and 94 SNPs in two Spanish populations. *Forensic Science International: Genetics, 30*, 66-70.

Friis, S.L., et al. (2016). Introduction of the Python script STRinNGS for analysis of STR regions in FASTQ or BAM files and expansion of the Danish STR sequence database to 11 STRs. *Forensic Science International: Genetics, 21,* 68-75.

Gettings, K.B., et al. (2015). STR allele sequence variation: current knowledge and future issues. *Forensic Science International: Genetics, 18,* 118-130.

Gettings, K.B., et al. (2016). Sequence variation of 22 autosomal STR loci detected by next generation sequencing. *Forensic Science International: Genetics*, *21*, 15-21.

Novroski, N.M., et al. (2016). Characterization of genetic sequence variation of 58 STR loci in four major population groups. *Forensic Science International: Genetics*, *25*, 214-226.

Parson, W., et al. (2016). Massively parallel sequencing of forensic STRs: considerations of the DNA Commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements. *Forensic Science International: Genetics*, *22*, 54-63.

Phillips, C. (2017). A genomic audit of newly-adopted autosomal STRs for forensic identification. *Forensic Science International: Genetics, 29,* 193-204.

STRidER (STRs for Identity ENFSI Reference Database) available at https://strider.online/

STRSeq (The STR Sequencing Project) available at https://www.ncbi.nlm.nih.gov/bioproject/380127

van der Gaag, K.J., et al. (2016). Massively parallel sequencing of short tandem repeats-Population data and mixture analysis results for the PowerSeq system. *Forensic Science International: Genetics, 24,* 86-96.

Wendt, F.R., et al. (2016). Genetic analysis of the Yavapai Native Americans from West-Central Arizona using the Illumina MiSeq FGx[™] forensic genomics system. *Forensic Science International: Genetics, 24,* 18-23.

Wendt, F.R., et al. (2017). Flanking region variation of ForenSeq DNA Signature Prep Kit STR and SNP loci in Yavapai Native Americans. *Forensic Science International: Genetics*, *28*, 146-154.

STRBase

Ruitberg, C.M., et al. (2001). STRBase: a short tandem repeat DNA database for the human identity testing community. *Nucleic Acids Research*, 29, 320-322.

STRBase available at http://strbase.nist.gov/ (URL changed from http://www.cstl.nist.gov/strbase)

Other Uses, Potential Disease Linkage, and Privacy Concerns

Katsanis, S.H., & Wagner, J.K. (2013) Characterization of the standard and recommended CODIS markers. *Journal of Forensic Sciences, 58(S1),* S169-S172.

Kimpton, C.P., et al. (1995). Report on the second EDNAP collaborative STR exercise. *Forensic Science International*, 71, 137-152.

Kloosterman, A., Sjerps, M. and Quak, A. (2014) Error rates in forensic DNA analysis: definition, numbers, impact and communication. *Forensic Science International: Genetics*, *12*, 77-85.

Laird, R., et al. (2007). Forensic STRs as potential disease markers: a study of VWA and von Willebrand's disease. *Forensic Science International: Genetics*, *1*, 253-261.

SWGDAM (2012). SWGDAM Executive Board Considerations for Claims that the CODIS Core Loci are 'Associated' with Medical Conditions/Diseases. Available at https://www.swgdam.org/publications.