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Representing and solving complex DNA

identification cases using Bayesian networks
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Abstract. Object-oriented Bayesian networks (OOBNs) can be used to model and solve a wide

variety of complex forensic DNA identification problems, involving such complications as missing

individuals, mutation, and null alleles. We provide a brief overview of the approach and illustrate its

use. In particular, we investigate the effect on paternity ratios of allowing for silent alleles, and show

that this can be substantial even when the probability of silence is very small. D 2006 Elsevier B.V.

All rights reserved.
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1. Introduction

Forensic DNA identification and parentage testing are currently conducted using DNA

profiles comprising several highly polymorphic short tandem repeat (STR) genetic

markers [1]. The forensic impact of such DNA evidence is captured by the associated

likelihood ratio for comparing rival hypotheses [2,3]. However computing this becomes

challenging in the presence of such features as missing individuals, mixed trace evidence,

mutation, silent alleles, etc. For example, in a paternity case the true father may appear to

be excluded when in fact a mutation has taken place, or an allele has not been recorded.

Here we show how the computational technology of Bayesian networks (BNs), and

especially object-oriented Bayesian networks (OOBNs), can be used to model and solve

such problems. We briefly describe a construction set of basic OOBN modules for DNA

identification, and its application to some problem cases. In particular we show that, in
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Fig. 1. Pedigree for incomplete paternity case.
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paternity testing where we can also observe the putative father’s brother, properly allowing

for even a very small probability of an inherited silent allele can have a dramatic effect on

the strength of the evidence for paternity.

For fuller background and details of the forensic use of BNs the reader is referred to [4–8].

2. Disputed paternity with missing father

Fig. 1 is a bdisputed pedigreeQ representation of a paternity case (originally treated in [4]
using a non-object-oriented BN) where we have DNA profiles from a disputed child c1 and

from its mother m1, but not from the putative father pf. We do however have DNA from c2,

an undisputed child of pf by a different, observed, mother m2, as well as from two

undisputed full brothers b1 and b2 of pf. (The sibling relationship is made explicit by the

incorporation of the unobserved grandfather gf and grandmother gm, parents of pf, b1 and

b2.) The bhypothesis nodeQ tf=pf? indicates whether the true father tf is pf, or is an

alternative father af, treated as randomly drawn from the population.

The DNA evidence E consisted of the 6 DNA profiles, each comprising 12 STR

markers, from m1, m2, c1, c2, b1 and b2. We need to compute the impact of this

evidence E on the case, as measured by the corresponding paternity ratio (likelihood ratio

in favour of paternity): LR ¼ Pr EjH0ð Þ ¼ Pr EjH1ð Þ: the methods routinely used in simple

cases [9] do not apply or readily extend to cases such as this.

3. Bayesian networks

Fig. 1 is in fact the user interface of an object-oriented Bayesian network, constructed

using the OOBN software Hugin version 6.1 We build a separate such network for each STR

marker. On entering the available DNA data, we can compute the associated paternity ratio.

Finally we multiply these together across all markers to obtain the overall paternity ratio.

Each node in Fig. 1 is itself an binstanceQ of another generic (bclassQ) network, with further
internal structure. We describe only selected features here. A complete description of our

networks can be found in [8], while the underlying computational theory is described in [10].

Nodes gf, gm, m1, m2 and af are all instances of a class founder; and pf, b1, b2, c1

and c2 are instances of a class child; tf is an instance of class query.
1 Obtainable from www.hugin.com.

http://www.hugin.com
http://www.hugin.com
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Within founder (not shown) we have two instances (maternal and paternal genes) of a

class genewhich embodies the relevant repertory of alleles and their associated frequencies.

The internal structure of child is displayed in Fig. 2. On the paternal (left-hand) side of

child, the input nodes fpg and fmg represent the child’s father’s paternal and maternal

genes (an arrow such as that from pf to c2 in Fig. 1 serves to copy the relevant values

from pf into c2). These are then copied into nodes pg and mg of an instance fmeiosis

of a class network mendel, whose output node cg is obtained by flipping a fair coin (node

cg=pg?) to choose between pg and mg; this is then copied to pg (child’s paternal gene)

in network child. A similar structure holds for the maternal (right-hand) side of child.

Finally pg and mg are copied into an instance gt of a network class genotype, which

forgets the information on parental origin (this is also a feature of founder). Any DNA

evidence on the individual is entered here.

The hypothesis node tf=pf? embodies H0 (tf=pf) when it takes the value true and

H1 (tf=af) when false; it feeds into the instance tf of class query to implement this

selection. We initially, and purely nominally, set both hypotheses as equally probable, so

that, after propagation of evidence, the ratio of their posterior probabilities yields the

paternity ratio based on this marker. By entering the data for each marker into the appropriate

Bayesian network, we can thus easily calculate the associated paternity ratio. The overall

paternity ratio, given by their product, was around 1300 for this particular case.

It should be clear that, once supplied with the basic building blocks founder, child and

query, we can connect them together in different ways, much like a child’s construction

set, to represent a wide range of similar problems, including the other cases treated in [4].

4. Mutation

It is easy to modify our networks to account for possible mutation of genes in

transmission from parent to child. We distinguish between a child’s original gene cog,

identical with one of the parent’s own genes, and the actual gene cag available to the

child, which may differ from cog because of mutation. We elaborate the class network

mendel of Fig. 2 as shown in Fig. 3, by passing its original output cog (bchild’s original
geneQ) through an instance cag (bchild’s actual geneQ) of a new network mut, constructed

to implement whatever model is used to describe how the value of cog is stochastically

altered by mutation. The output of mut is then copied to cg. Thus mendel now represents

the result of mutation acting on top of Mendelian segregation.
Fig. 2. Networks child and mendel.



Fig. 3. Revised network mendel, incorporating mutation.
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Once an appropriate network mut has been built, and mendel modified as described

above, pedigree networks constructed as in §2 will now automatically incorporate the

additional possibility of mutation. No other changes are required. We can now use

them, for example, to compute the paternity ratio in a seemingly incompatible simple

case (all three parties observed) where the incompatibility might be due to mutation. Of

course we can deal just as readily with more complex cases such as that of Fig. 1. We

have experimented with both a simple bproportional mutationQ model and the more

realistic bmixed mutation modelQ [11,12,7]. By including additional adjustable

parameter nodes we can also explore the sensitivity of the paternity ratio to the

assumed overall mutation rate, or the ratio of the mutation rates for the paternal and

maternal lines.

Mutation rates for forensic markers are often estimated from routine case data collected

for paternity testing. Then the possibility of non-paternity can itself perturb estimates [12].

We can use essentially the same network to develop estimation methods that properly

correct for this [7].

5. Null alleles

A bnullQ (or bdrop-outQ) allele is one that is not recorded by the equipment used. Then

what appears to be a homozygous genotype may in fact be heterozygous, one band being

null. This phenomenon will affect the evidential interpretation of DNA profiles. One

possible cause is a mutation in the primer binding site leading to failure of the

amplification process [13]. Such a null allele will be inherited exactly like any other allele;

we then term it silent. Another possibility is sporadic failure of the recording apparatus.

We refer to such a non-inherited null allele as missed.

Again very simple modifications to the lower level networks in our system–see [8] for

full details–allow us to incorporate these possibilities, both singly and in combination with

each other and/or mutation. Having made such internal modifications, we can continue to

use top-level pedigree networks such as Fig. 1 unchanged. In [8] we give several

examples: in particular we explore the sensitivity of conclusions to assumed rates of

mutation, silence and missingness.

6. Examples

We have built and used OOBNs to analyse a wide variety of complex cases. Here we

illustrate the effects of accounting for inherited silent alleles. We use marker VWA, with

Austrian–German gene frequencies as given in [8].



Fig. 4. Pedigree for paternity testing with additional individual.
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We consider a simple disputed paternity case where, in addition to the genotypes of the

basic triplet m, pf and c, the genotype bgt of the putative father’s full brother bmay also be

observed. The relevant top-level network is shown in Fig. 4. The likelihood ratio in favour of

paternity P based on just the triplet data D:= (mgt, pfgt, cgt) is LD:=Pr(D|P) /Pr(D|P̄);

the impact of the additional information carried by the brother’s data B:= (bgt) is measured

by LB:=Pr(B|D, P) /Pr(B|D, P̄); and the overall paternity ratio, taking account of bothD and

B, is LR:=LD�LB. Under simpleMendelian segregation with fully observed genotypes, the

additional information B would be entirely uninformative as to paternity. However this

needs no longer be so once we allow for mutation or silent or missed alleles.

Example 1. To illustrate the possible effect of the additional measurement B on the paternity

ratio, we consider an example where the triplet evidence D is as follows: mgt={12, 15},

pfgt={14, 14}; cgt={12, 12}. The putative father and child are both apparently

homozygous, in a way that would be incompatible with paternity under Mendelian

segregation. However pf could still be the true father if he had a silent allele that he passed to

the child. Observation of his brother’s genotype can help to shed light on this possibility.

Table 1 displays the paternity ratio, allowing for silent alleles, for a range of values for

ps=pr(silent), the probability of silence. The second column gives the paternity ratio LD

based on the triplet data only. The later columns show the additional factor LB for various

possible observations on the brother’s genotype bgt. The behaviour of this term is
Table 1

Prima facie incompatible case: mgt={12, 15}, pfgt={14, 14}, cgt={12, 12}

pr(silent) LD LB with bgt=

{16, 20} {12, 17} {12, 14} {14, 17} {14, 14} {16, 16} {12, 12}

0 0 1 1 0.546 0.546 1 6.13 3334

0.000015 0.472 1 1 0.546 0.546 1.0000 6.12 1595

0.0001 2.473 1 1 0.546 0.546 0.9999 6.07 403.7

0.001 7.485 1 1 0.551 0.551 0.9992 5.54 46.07

0.01 8.100 1 1 0.590 0.590 0.9932 3.19 5.45

Likelihood ratio in favour of paternity allowing for silent alleles: LD, without brother’s genotype. LB, additional

effect of brother’s genotype.
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determined by its relationship to the putative father’s observed genotype pfgt. In columns 3

and 4 we consider bgt={16, 20} and bgt={12, 17}: b is heterozygous, and does not share

any allele (in particular, not a silent allele) with pf. We see that the additional observation B

makes no difference whatsoever in this case: LB=1 for all values of pr(silent).

However, when b is heterozygous but shares an allele with pf, the paternity ratio is

reduced by this additional knowledge: intuitively this is because it becomes more likely that

pf is a true homozygote, and hence excluded from paternity. This effect is seen in columns 5

and 6 of Table 1 for the cases bgt={12, 14} and bgt={14, 17}, so that b and pf share

allele 14. The additional paternity ratio factor is the same in both cases, and close to 0.5.

Column 7 refers to the case bgt=pfgt (={14, 14}). Since b could now have a silent

allele the additional data do little to distinguish whether or not pf is a true homozygote.

Indeed we see that the extra factor LB is very close to 1, and so essentially uninformative.

Finally we consider the case that b is apparently homozygous, but with bgt different

from pfgt. With such a configuration pf and b might still share a silent allele, and the

additional observation B therefore renders it more probable that pf is a false homozygote,

who could have passed a silent allele down to the child. As a consequence the paternity ratio

is increased. In column 8 the brother exhibits a relatively common allele, bgt={16, 16},

where p16620%. Even though this renders him likely to be a true homozygote, the effect on

the paternity ratio of the uncertainty introduced by this extra information is to introduce a

factor of around 6 for small ps, reducing somewhat as ps increases. In column 9 we take a

very rare allele, bgt={12, 12}, where p12=0.03%. The increase in the paternity ratio is now

dramatic. The limiting value of the additional factor LB as the probability ps of silence

approaches 0 is 3334.33, while the overall paternity ratio LR =LD�LB for this prima facie

incompatible case achieves a maximum value of 1027.3, at ps =0.0000642 (!).

A similar but smaller effect can also be seen in compatible cases when pfgt is

apparently homozygous. This is most marked when bgt is also apparently homozygous

but different from pfgt: in our experiments this modified the paternity ratio by a factor of

around one half for ps ~10
�4.
7. Mixed trace analysis

Bayesian networks have also been constructed to address other challenging problems of

forensic DNA identification, for example the interpretation of mixed trace evidence. Fig. 5

shows a (non-object-oriented) Bayesian network that, taking the observed alleles (repeat

numbers) as data, can be used to infer which of a suspect, victim and up to 6 possible

unknown individuals might have contributed DNA to a mixed crime trace [5].

A more sensitive analysis uses information on the peak areas measured by an

electropherogram in addition to the observed repeat numbers. This requires much more

detailed modelling, but again this can be made into a Bayesian network [6]. Fig. 6 shows

the top level of a OOBN for two contributors, involving six markers, each represented as

an instance of a lower level network marker. Because the mixture proportion frac of

DNA contributed by one party is a common quantity across markers, we must now handle

them all simultaneously within one bsuper-networkQ.
Cowell et al. [6] analyse the data shown in Table 2 (taken from [14]), involving a 6-

marker mixed profile with between 2 and 4 distinct observed bands per marker, and a



Fig. 5. Single-marker network for mixture, up to 6 unknown contributors.
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suspect whose profile is contained in these. It is assumed that this profile is a mixture

either of the suspect and one other unobserved contributor, or of two unknowns. Using

only the repeat numbers as data, the likelihood ratio for the suspect being a contributor to
Fig. 6. 6-marker OOBN for mixture using peak areas, 2 contributors (reproduced from [6]).



Table 2

Data for mixed trace with two contributors

Marker D8 D18 D21 FGA THO1 VWA

Alleles 10* 11 14* 13* 16 17 59 65 67* 70* 21* 22* 23 8* 9.3* 16* 17 18* 19

Peak area6416383565938,98519141991122614348816889416,09910,538101417,44122,36846699314724188

The starred values are the suspect’s alleles.
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the mixture is calculated to be around 25,000. On taking account of the peak areas also,

this rises to about 170,000,000.

8. Conclusions

We have illustrated the use of object-oriented Bayesian networks to model and solve

complex problems of forensic DNA identification and paternity testing involving missing

individuals, mutation, silent alleles and mixed samples. The technology could also be

applied to model such further artifacts as stutter, drop-in, contamination, laboratory error,

etc., and we hope to address these in future work.
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