International Congress Series 1288 (2006) 180-182

AmpFℓSTR[®]Y-filer[™]: A new tool for rapid Y-STR forensic haplotyping

M.L. Pontes ^{a,*}, D. Abrantes ^a, G. Lima ^a, L. Cainé ^a, M.J. Pereira ^a, P. Matos ^a, M.F. Pinheiro ^{a,b}

 ^a Delegação do Porto do Instituto Nacional de Medicina Legal, Jardim Carrilho Videira, 4050-167 Porto, Portugal
^b Faculdade de Ciências da Saúde-Universidade Fernando Pessoa, Portugal

Abstract. Allele frequencies and population data for 17 Y-STR loci, including all the markers in the actually used European "extended haplotype" (DYS19, DYS189I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385I/II, DYS438 and DYS439) and also DYS437, DYS448, DYS456, DYS458, DYS635 and Y GATA H4 included in a new commercial kit that has recently been available, the AmpF ℓ STR® Y-filerTM PCR amplification kit (Applied Biosystems), were obtained from a sample of 175 healthy unrelated males and 45 father–son pairs from the North of Portugal. A total of 171 haplotypes were identified, of which 167 were unique and 4 found in two individuals. The haplotype diversity (99. 97%) and discrimination capacity (95.43%) were calculated. © 2005 Published by Elsevier B.V.

Keywords: Y-chromosome; Short tandem repeat typing; Multiplex amplification; North of Portugal; Y-filer™

1. Introduction

In addition to the standard panel of autosomal loci used in forensic genetics, Y-STR haplotyping gives the ability to sensitive typing of male-specific DNA especially in sexual assault cases or other situations where mixtures of male and female cells are present [1]. Within the last years, a number of Y-STR multiplex assays have been developed [2]. Recently, a new commercial kit has been available, the AmpFℓSTR[®] Y-filer[™] PCR amplification kit (Applied Biosystems) that permits the simultaneous amplification of 17 Y-STR loci, including all the markers in the actually used European "extended haplotype",

* Corresponding author. Tel.: +351 22 2073850; fax: +351 22 3325931. *E-mail address:* mariopontes@netcabo.pt (M.L. Pontes).

^{0531-5131/ © 2005} Published by Elsevier B.V. doi:10.1016/j.ics.2005.09.132

Allele	DYS19	DYS389I	DYS389II	DYS390	DYS391	DYS392	DYS393	DYS437	DYS438	DYS439	DYS448	DYS456	DYS458	DYS635	GATA H4	Genotypes	DYS385
8									0.006	0.040				0.029		10-14	0.006
9					0.051				0.114	0.337				0.206	0.011	11-11	0.017
10					0.503	0.006			0.291	0.469				0.086	0.017	11-12	0.023
11		0.006			0.423	0.360			0.051	0.143				0.520	0.320	11-13	0.040
12	0.006	0.166			0.023	0.057	0.206		0.509	0.006			0.006	0.120	0.583	11-14	0.303
13	0.120	0.657				0.537	0.651		0.029			0.011	0.000	0.040	0.069	11-15	0.114
14	0.566	0.166				0.040	0.120	0.366				0.097	0.046			12-12	0.029
15	0.229	0.006					0.023	0.514				0.457	0.097			12-13	0.006
16	0.063							0.114				0.314	0.200			12-14	0.034
17	0.017							0.006			0.006	0.097	0.303			12-15	0.034
18											0.086	0.023	0.211			12-17	0.006
19											0.486		0.114			12-20	0.006
20											0.246		0.023			13-14	0.051
21				0.029							0.137					13-15	0.046
22				0.103							0.029					13-16	0.034
23				0.194							0.011					13-17	0.040
24				0.554												13-18	0.006
25				0.091												13-19	0.011
26			0.023	0.017												14–14	0.011
27			0.029	0.006												14-15	0.029
28			0.131													14–16	0.023
29			0.480													14–17	0.011
30			0.246													14–18	0.006
31			0.080													14–19	0.006
32			0.029													15-15	0.017
R										0.006						15-16	0.006
																15-17	0.006
																15-18	0.011
																16-16	0.006
																16-17	0.011
																16-18	0.023
																16-19	0.011
																16-20	0.006
																17-17	0.006

Table 1 Allele frequencies at 17 Y-STRs in a North of Portugal population sample (175 individuals)

R corresponds to a duplicated allele-10-12.

DYS19, DYS189I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385I/II, DYS438, DYS439 and also DYS437, DYS448, DYS456, DYS458, DYS635 and Y GATA H4. Here we report population data for a sample of 175 males and 45 father–son pairs from the North of Portugal.

2. Materials and methods

Blood and/or oral swabs from 175 apparently healthy and unrelated males and 45 father–son pairs from the North of Portugal were collected. DNA was extracted using the Chelex or a standard phenol–chloroform method. The loci DYS19, DYS389I and II, DYS385, DYS390, DYS391, DYS392, DYS393, DYS456, DYS458, DYS437, DYS438, DYS439, DYS448, DYS635 and Y GATA H4 were co-amplified by using the AmpFℓSTR[®] Y-filer[™] PCR amplification Kit (Applied Biosystems) following the conditions recommended by the manufacturer (Technical Manual) and carried out using a thermocycler GeneAmp[®] PCR System 9700 (Applied Biosystems). The ABI PRISM[®] 3100 Genetic Analyzer (Applied Biosystems) was used for genetic typing. Fragment sizes were determined automatically using the Genescan[®] Analysis Software v. 3.7 and allele designations were based on comparison with allelic ladders included in the Y-filer[™] kit. We also used some known control samples for comparison. Allele frequencies were estimated by gene counting. Gene and haplotype diversities were calculated according to Nei [3] using the Arlequin Software, version 2000 [4] and the discrimination capacity was also determined.

3. Results and discussion

Allele frequencies for the 17 Y-chromosome STRs are shown in Table 1. A total of 171 different haplotypes were identified, 167 of them were unique and 4 were found in two individuals. The observed haplotype diversity was 0.9997 ± 0.0007 . In the system DYS439, we have found a duplicated allele (10–12) that needs to be sequenced. The generated data shows that the haplotype constructed using the present set of 17 Y-STR markers studied with the AmpF ℓ STR[®] Y-filerTM kit is highly polymorphic and discriminative in the North of Portugal population. The genotyping with this kit resulted in a greater discrimination capacity when compared with the PowerPlex[®] Y System kit (Promega Corporation) (data not shown). This is important when regarding forensic casework analysis since it permits the genotyping of a greater set of markers using less DNA sample. No comparisons were made with other populations due to the lack of information for these particular set of loci.

In 2 of the 45 father–son pairs analysed, we have found inconsistencies of allelic transmission in the loci DYS448 and Y DYS456, which must be confirmed by sequencing.

References

- M. Prinz, et al., Validation and casework application of a Y chromosome specific STR multiplex, Forensic Sci. Int. 120 (2001) 177–188.
- J.M. Butler, A novel multiplex for simultaneous amplification of 20 Y chromosome STR markers, Forensic Sci. Int. 129 (2002) 10–24.
- [3] M. Nei, Molecular Evolutionary Genetics, Columbia Univ. Press, New York, 1973.
- [4] S. Schneider, D. Roessli, L. Excoffier, Arlequin Version 2.000: A Software for Population Genetics Data Analysis, Genetics and Biometry Laboratory, University of Geneva, Switzerland, 2000.