International Congress Series 1261 (2004) 229-232

Population genetics of the Identifiler system in Poland

R. Jacewicz^{a,*}, J. Berent^a, A. Prosniak^a, P. Galecki^b, A. Florkowski^b, S. Szram^a

^a Department of Forensic Medicine, Medical University of Lodz, Lodz, Poland ^b Department of Psychiatry and Neurosis Disorders with Crisis Intervention Word, Medical University of Lodz, Lodz, Poland

Abstract. Allele frequency data and forensic efficiency parameters for 15 Identifiler STR loci: D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818, FGA, were estimated from a sample of 125 unrelated individuals in central Poland. The accordance with the Hardy and Weinberg equilibrium (HWE) for all analyzed loci was proven. The combined power of discrimination (PD) and probability of identity (DI) were greater than 0.999999999999999999 and 6.7×10^{-18} , respectively, which proves that this multiplex system is an excellent tool for forensic casework. © 2003 Elsevier B.V. All rights reserved.

Keywords: Multiplex STR; Identifiler; Population data; HWE; Forensic usefulness; Poland

1. Introduction

One of the two commercially available multilplex systems enabling a simultaneous variability analysis of the 15 different autosomal loci and AMG on the basis of the fivecolor detection is the Identifiler system [1,2]. The purpose of this work was to establish the allele frequencies for the 15 STR-loci included in this system, i.e., D3S1358, vWA, D16S539, D2S1338, D8S1179, D21S11, D18S51, D19S433, TH01 and FGA in a Polish population sample. The evaluation of Hardy–Weinberg equilibrium (HWE) and the calculation of statistical parameters were another aim of this study.

2. Materials and methods

The database was obtained from blood samples taken from 125 unrelated healthy individuals at the Department of Forensic Medicine, Medical University of Lodz, Poland. Genomic DNA was isolated by the salt extraction procedure as described by Lahiri and Nurnberger [3]. Amplification was carried out using the Identifiler kit according to the User's Manual (Applied Biosystems). PCR products were detected in 5-dye florescent system and genotyped using GeneScan version 3.7 on the ABI Prism 377 sequencer with

^{*} Corresponding author. Tel.: +48-42-6544536; fax: +48-42-6544293.

E-mail address: r.jacewicz@post.pl (R. Jacewicz).

The allele f	requencies for the	e 15 STR loci inc													
Allele	D8S1179	D21S11	D7S820	CSF1PO	D3S1358	TH01	D13S317	D16S539	D2S1338	D19S433	vWA	TPOX	D18S51	D5S818	FGA
6						0.22400									
7			0.02000			0.12400									
8	0.00400		0.12400			0.11200	0.11600	0.00400				0.56800		0.00400	
9	0.01600		0.16000	0.04800		0.20800	0.08800	0.05600				0.08800		0.07200	
10	0.05200		0.30000	0.33600		0.00800	0.07200	0.04000				0.06000	0.00400	0.08400	
=	0.06000		0.20000	0.22800			0.35600	0.32800				0.25200	0.01600	0.32800	
12	0.18400		0.16000	0.31600	0.00400		0.25600	0.32400		0.06000		0.03200	0.13600	0.37600	
13	0.32400		0.02400	0.06400			0.08000	0.20400		0.20400			0.10400	0.12400	
13.2										0.01600					
14	0.20800		0.01200	0.00800	0.18000		0.02800	0.04400		0.40000	0.09600		0.16800	0.00400	
14.2										0.01600					
15	0.12400				0.27600		0.00400			0.16000	0.09200		0.16000	0.00800	
16	0.02000				0.23600				0.06000	0.04000	0.18000		0.15600		
16.2										0.02800					
17	0.00800				0.15600				0.18000		0.28800		0.12800		
17.2										0.00800					
18					0.13600				0.06800		0.25200		0.07600		0.01200
18.2										0.00400					
19					0.00800				0.11600		0.07600		0.02000		0.06800
20					0.00400				0.15200		0.01600		0.02000		0.13200
21									0.04800				0.00800		0.17600
21.2															0.00400
22									0.00800						0.19600
7.77															0.02400
23									0.10000				0.00400		0.12400
25.2									0.13200						0.13600
24.2									007010						0.01600
25									0.12400						0.09600
26									0.01200						0.00800
27		0.05200													0.00400
28		0.18800													
29		0.17600													
30		0.21600													
30.2		0.04400													
31		0.06800													
31.2		0.08400													
32		0.00800													
32.2		0.11600													
33		0.00400													
33.2		0.04000													
34.2		0.00400													

R. Jacewicz et al. / International Congress Series 1261 (2004) 229-232

230

Table 2 The HWE evaluation and the forensic efficiency parameters for the 15 STR loci included in the Identifiler system in the population of central Poland

Locus	D8S1179	D21S11	D7S820	CSF1PO	D3S1358	TH01	D13S317	D16S539	D2S1338	D19S433	vWA	TPOX	D18S51	D5S818	FGA
HWE	0.08156	0.47375	0.38188	0.35000	0.96938	0.21688	0.41250	0.85938	0.72500	0.51750	0.53750	0.15063	0.85500	0.82750	0.19625
Hobs	0.80500	0.83200	0.78400	0.74400	0.81600	0.72800	0.78400	0.76800	0.86400	0.76000	0.81600	0.61600	0.85600	0.76000	0.84800
Hexp	0.79868	0.85899	0.80553	0.73173	0.79598	0.77671	0.77725	0.74210	0.88103	0.76517	0.80064	0.60392	0.87271	0.72623	0.86786
PIC	0.76796	0.83934	0.77447	0.68069	0.76076	0.73815	0.74380	0.69543	0.86494	0.73354	0.76856	0.55090	0.85492	0.67866	0.84942
PD	0.93065	0.96292	0.93308	0.87834	0.92503	0.91329	0.91865	0.88824	0.97243	0.91484	0.93009	0.79056	0.96860	0.87878	0.96664
DI	0.02707	0.05171	0.08323	0.11430	0.06148	0.12784	0.08323	0.09516	0.03448	0.10138	0.06148	0.23829	0.03849	0.10138	0.04270

HWE (Hardy and Weiberg equilibrium)—probability values of exact test based on 2300 shufflings, PIC polymorphism information content, H_{obs} —observed heterozygosity, H_{exp} —expected heterozygosity, PD—power of discrimination, DI—discrimination index. The combined values for the 10 loci of: PD>0.99999999999999999, $DI = 6.729 \times 10^{-18}$.

GeneScan-500 LIZ as internal lane standard. Allele frequencies were calculated from the number of each genotype obtained in the sample set. Pairwise interclass correlation tests were performed for all possible two-locus combination. The evaluation of HWE was tested by the exact test with the computer programme GDA [4]. The evaluation of forensic efficiency parameters was estimated according to the appropriate designs: heterozygosity observed (H_{obs}), heterozygosity expected (H_{exp}) [5], polymorphism information content [6], power of discrimination [7], discrimination index [8].

3. Results and discussion

4. Conclusion

The 15 DNA STR loci included in the Identifiler multiplex possess a highly discriminating power in forensic casework in the population of central Poland. The allele frequency data will be applied for statistical evaluation of the DNA evidence in human identification as well as healthy population database for clinical studies.

Acknowledgements

This project was supported by the Medical University of Lodz grant no. 502-11-107.

References

- [1] Paternity testing workshop of the English Speaking Working Group of the ISFG, 2003 (draft report).
- [2] A. Barbaro, P. Cormaci, G. Falcone, A. La Marca, A. Barbaro, Population genetic study of 15 STRs loci using AmpF/STR Identifiler[™] kit, Prog. Forensic Genet. 9 (2003) 259–266.
- [3] D.K. Lahiri Jr., J.I. Nurnberger, A rapid non enzymatic method for RFLP studies, Nucleic Acids Res. 19 (1991) 5444.
- [4] P.O. Lewis, D. Zaykin, Genetic Data Analysis, Version 1.1, 2003, available at: http://lewis.eeb.unconn.edu/ lewishome/software.html.
- [5] M. Nei, A.K. Roychoudhury, Sampling variances of heterozygosity and genetic distance, Genetics 76 (1974) 379–390.
- [6] D. Botstein, R.L. White, M. Skolnick, R.W. Davis, Construction of genetic linkage map in man using restriction fragment length polymorphism, Am. J. Hum. Genet. 32 (1980) 314–331.
- [7] The Evaluation of Forensic DNA Evidence, National Research Council Report, vol. II, National Academy Press, Washingtonm, DC, 1996, pp. 96–97.
- [8] Z. Wong, V. Wilson, I. Patel, S. Povey, A.J. Jeffreys, Characterization of a panel of highly variable minisatellites cloned from human DNA, Ann. Hum. Genet. 51 (1987) 269–288.